Savitribai Phule Pune University

Three Year BSc (Blended) Degree Course

Syllabus

(To Be Implemented from Academic Year 2016-17

Introduction

The SPPU instituted the innovative Bachelors in Science degree known as **BSc** (**Blended**) in collaboration with the University of Melbourne (UOM), Australia and the Indian Institute of Science Education and Research Pune (IISERP) to strengthen science education at the undergraduate level.

The SPPU is among the top universities in the country and has been in the forefront for initiating innovative programs. The UOM is ranked #1 in Australia and it has been among the top 50 in the world. IISERP established by the Government of India to strengthen science education and research in the country has attained national and international recognition in a short span of a decade. It offers an holistic BS – MS program in Science covering the basic science disciplines.

The BSc (Blended) program is a joint initiative of SPPU-UOM-IISERP offering a transparent and internationally recognized bachelors degree in science underlining clearly the teaching objectives and learning outcome . In the first two years of the degree program all four basic sciences (biology, chemistry, mathematics and physics) will be taught providing basic knowledge with specialization in one of them in the third year. The UOM and IISERP will provide with support in terms of special lectures, workshops, and quality assurance.

Objectives

- To introduce the fundamentals of science education
- To enrich students' knowledge in all basic sciences
- To help the students to build interdisciplinary approach
- To inculcate sense of scientific responsibilities and social and environment awareness
- To help students build-up a progressive and successful career in academics and industry

Highlights of the Program

- The course will be run in collaboration with UOM and IISERP
- Special lectures by expert faculty from IISER and other institutes.
- The UOM will provide online teaching of some topics from the syllabus.
- The course will be accredited by the UOM
- The degree will be considered on par with that of UOM and the students will be eligible to pursue higher studies at UOM and other Universities in Australia
- The students will be imparted solid training to enable them to pursue Masters and Integrated PhD degrees in reputed institutes such as IITs, IISERs and Central Universities

Eligibility

1. First Year B.Sc (Blended)

Higher Secondary School Certificate (10+2) or its equivalent Examination in Science stream with Mathematics as one of the subjects.

2. Second Year B.Sc.

Students are not directly admitted to second year of B.Sc.(Blended) course. Those who complete first year BSc (Blended) course are promoted to second year.

3. Third Year B. Sc.

Students are not directly admitted to third year of B.Sc. (Blended) course. Those who complete first year and Second year Proposed Curriculum Structure for the BSc (Blended) Program (Semesters 1-4)

examination of BSc (Blended) are promoted to Third year B.Sc. (Blended) course

Reservation and relaxation will be as per the Government rules. Course Structure

Duration: The duration of (B.Sc.Blended) Degree Program shall be three years. **Medium of Instruction:** The medium of instruction for the course shall be English.

The course is a semester and credit system based course and is divided into six semesters of 14 weeks each. The total number of credits for each semester is 23 making a total of 92 credits during the first two years with instruction in all the four subjects (biology, chemistry, mathematics s and physics). In the third year, the student specializes in one of the subjects. For example, the entire third year is devoted to Biosciences fo those pursuing BSC (Blended) Biosciences. The advantage for a student opting for Biosciences specialization in the third year BSc (Blended) is the possibility to pursue Masters degree in life sciences/biosciences in reputed institutes.

At **first year of under-graduation**, students will be given the basic information that includes – all basic science subjects as mentioned above. The topics include general and organic chemistry, calculus, introductory classical physics, waves, gravitation, unifying themes in biology, diversity of life etc. Relevant experimentation on these topics are included in practical courses. They will also be introduced to scientific writing and communication skills.

At the **second year under-graduation** level, students will be introduced to linear algebra, vectors, complex numbers, computing, electricity, magnetism, special relativity, physical chemistry, inorganic chemistry, reactions and synthesis, cell biology, genetic control principles of physiology, both animal and plant physiology, mechanism of evolution, and population biology etc. The relevant practical experiments are included to enrich the student's knowledge.

At the **third year under-graduation**, eight theory papers which include six core and two optional papers are taught during the two semesters which deal with broad areas in one of the specializations. (Biosciences, Chemistry, Mathematics or Physics).

Examination and Grading

The course is based on credit system and the examination process consists of two parts: continuous assessment (internal 50%) and end semester examination (50%) with 50% each. The internal assessment will consist of one mid semester examination and at least two quizzes one before the mid semester and after mid semester. The grading will be as per the university norms applicable to credit system.

University Terms

Dates for commencement and conclusion for the first and second terms will be declared by the University authorities. Terms can be kept by only duly admitted students. The term shall be granted only on minimum 80 percent attendance at theory and practical course and satisfactory performance during the term.

Intake capacity of student: 48

Proposed Curriculum Structure for the BSc (Blended) Program (Semesters 1-4)

Number of weeks in a semester: 14 (excluding holidays and one week mid semester examination)

Nomenclature: BO: Biology. CHM: Chemistry. MTH: Mathematics. PHY: Physics. HSS: Humanities and Social Sciences

1 Credit = 1 Contact hour per week both for theory and lab courses

Semester	Code	Name	Credits	Lectures	Tutorial	Practical	Total
Semester 1	MTH101	Maths 1: Calculus	5	42	28		70
Semester1	PHY101	Physics 1: ntroductory classical physics	3	36	6		42
Semester 1	CHM101	Chemistry 1: General Chemistry – Chemistry of life	3	36	6		42
Semester 1	BO101	Biology 1: Diversity of Life	3	36	6		42
Semester 1	LAB101	Science Lab101	3			42	42
Semester 1	LAB111	Science Lab111	3			42	42
Semester 1	HSS101	English: Critical Reading, Writing, Communication	3	14	28	42	42

Semester 2	MTH102	Maths 2: Algebra	5	42	28		70
Semester 2	PHY102	Physics 2: Modern physics	3	36	6		42
Semester 2	CHM102	Chemistry 2: Physical and norganic	3	36	6		42
Semester 2	BO102	Biology 2: Cell Biology	3	36	6		42
Semester 2	DC102	Computing	3			42	42
Semester 2	LAB102	Science Lab 102	3			42	42
Semester 2	LAB112	Science Lab 112	3			42	42

Semester 3	MTH201	Maths 3:	5	42	28	70
		Vector Calculus,				
		and Probability and				
		Statistics 1				
Semester 3	PHY 201	Physics 3:	3	36	6	42

Proposed Curriculum Structure for the BSc (Blended) Program (Semesters 1-4)

		Quantum mechanics and Thermodynamics					
Semester 3	CHM201	Chemistry 3: Reactions and synthesis	3	36	6		42
Semester 3	BO202	Biology 3: Functional biology	3	36	6		42
Semester 3	CHMLAB:	IChemistry Lab 3	3			42	42
Semester 3	BOLAB3	Biology Lab 3	3			42	42
Semester 3	PHYLAB3	Physics Lab 3	3			42	42

Semester 4	MTH202	Maths 4: Differential Equations, and Probability and Statistics 2	5	42	28		70
Semester 4	PHY202	Physics 4: Electricity, magnetism and Optics	3	36	6		42
Semester 4	CHM202	Chemistry 4: Structure and properties	3	36	6		42
Semester 4	BO202	Biology 4: Genetics Evolution and Ecology	3	36	6		42
Semester 4	CHMLAB ²	· IChemistry Lab 4	3			42	42
Semester 4	PHYLAB4	Physics Lab 4	3			42	42
Semester 4	BOLAB4	Biology Lab 4	3			42	42

BSc (Blended) Curriculum Years 1 and 2

functions of one variable, trigonometric functions and theirlaws of motion. Momentum and impulse. Translational, vibrationalSt ch	eneral Chemistry: Stoichiometry, equilibrium chemistry, acids and bases, valency, electrostatics, states of	Unifying themes in biology: Cell theory, origin of life = origin of the cell, life's raw ingredients, RNA
trigonometric functions, implicit differentiation, related rates. Partial derivatives, chain rule for partial derivatives, directional derivatives, tangent planes, extrema for functions of several variables and double integrals.harmonic motion. Rigid body rotationsmathematical or or 	matter, The Periodic Table Organic Chemistry: Alkanes, alkenes, alkynes, benzene, acids, aldehydes, ketones, functional groups, elimination reactions, addition and substitution reactions (nucleophilic and electrophilic). The Chemistry of Life: Stereochemistry and biomolecular chirality. Biopolymers	 polymers, DNA as the basis for life, life evolves, evolutionary relationships are summarised as classifications, the tree of life Biological evolution: evolution of complexity, unicellular to multicellular, structural organization -symmetrical and asymmetrical Diversity of Life: principles of taxonomy and systematics, Domains and kingdoms of life, Evolutionary relationships, Tree of life – Prokaryotes, Protists, Fungi, Plants, Animals.Viruses and Prions

	crystallography		
MATHS 102	PHYSICS 102	CHEMISTRY 102	BIOLOGY 102
 Analysis: Limits of real-valued functions, continuity and differentiability; Mean Value Theorem and applications; Taylor polynomials; sequences and infinite series; Vectors: dot product, scalar and vector projections, plane curves specified by vector equations. Complex numbers: arithmetic of complex numbers, sketching regions in the complex plane, De Moivre's Theorem, roots of polynomials, the Fundamental Theorem of Algebra. Linear Algebra: Systems of linear equations, matrices and determinants; vectors in real n-space, cross product, scalar triple product, lines and planes; vector spaces, linear independence, basis, dimension; linear transformations, eigenvalues, eigenvectors; inner pr 	 Electricity and magnetism: Electric charge and field, conductors and insulators, electric potential, capacitance, resistance, electric circuits, magnetic field, Faraday's law of induction, Maxwell's equations, electromagnetic waves. Applications to electronics, household electricity and power supply, magnetosphere, communications Special relativity: Frame transformations, relativity of space and time, modification of classical mechanics, mass-energy equivalence. Applications to particle physics: photons, blackbody radiation, matter waves, quantisation in atoms, interaction of light with matter, x-rays. Application to atomic physics, lasers, and spectroscopy 	 Physical Chemistry: Kinetic theory of gases, energy, thermodynamic laws, redox chemistry and electrochemistry, chemical kinetics, structure determination, elementary quantum theory, atomic structure, atomic spectra, spectroscopy. Inorganic Chemistry: Periodic behaviour of structure, bonding and chemical properties of Groups 1,2, 13-18. Transition metal chemistry (Groups 3-12). Coordination chemistry 	 Cell biology: Structure and function of cell components – nucleus, chloroplast, golgi, endoplasmic reticulum, mitochondria, lysosomes, vesicles, membrane, cell wall, flagella and cilia, plasmodesmata, cytoskeleton, spore, glycocalyx. Endosymbiosis: chloroplast and mitochondria. Cell division: binary, budding, mitosis and meiosis, cell cycle, differentiation, aging and death Multicellularity: stem cells, embryonic development, cells/tissues/organs, signalling enetic control: genetic code and central dogma of life, Gene expression – prokaryotic, eukaryotic, RNA interference

	ionising radiation, nuclear fission and fusion. Application to nuclear energy, radiation safety, nucleogenesis, carbon dating		
MATHS 201	PHYSICS 201	CHEMISTRY 201	BIOLOGY 201
Vector Calculus: Functions of several variables; limits, continuity, differentiability, the chain rule, Jacobian, Taylor polynomials and Lagrange multipliers. Vector calculus; vector fields, flow lines, curvature, torsion, gradient, divergence, curl and Laplacian. Integrals over paths and surfaces topics; line, surface and volume integrals; change of variables; averages, moments of inertia, centre of mass; Green's theorem, Divergence theorem in the plane, Gauss' divergence theorem, Stokes' theorem; curvilinear coordinates. Probability and Statistics 1: Probability theory basis of statistical inference. Probability and, random variables are introduced; applications to common univariate probability models. Joint behaviour of random	Quantum mechanics: Quantum theory of light, the particle nature of matter, matter waves, quantum mechanics in one dimension and tunnelling phenomena, atomic and molecular orbitals, the chemical bond. Applications to atoms, molecules, particle in a box. Thermodynamics: Thermal equilibrium, ideal gas and kinetic theory, equipartition of energy, heat and work, heat capacity, latent heat, enthalpy, thermodynamic processes; thermal systems and statistics, interacting systems, statistics of large systems, entropy, temperature and heat, pressure, chemical potential; heat engines, Carnot cycle, refrigerators, heat engines, throttling process; Helmholtz and Gibbs Free energies, and phase transformations	Reactions and synthesis: Synthesis and design of organic and inorganic molecules, molecular architecture and the energy transformations associated with chemical and physical processes. Topics covered include synthesis of simple polyfunctional organic compounds, thermodynamically controlled reactions of s-, p- and d- block elements and thermodynamics	 Principles of physiology: Energy management, maintenance of homeostasis, salts and water, metabolic processes (anabolism, catabolism), respiration and fermentation, regulation of metabolism (molecular signaling, genetic), growth kinetics, survival strategies (symbiosis, defense) Animal physiology (Human): Respiration, digestion, nutrition and metabolism. Nervous system, Endocrine system, Excretion and osmoregulation (water and salt balance), Cardiovascular system. Thermal regulation, Reproduction and development Plant physiology: Water balance. Mineral nutrition and nutrient assimilation, Solute transport across membranes; Phloem translocation; Photosynthesis; espiration and lipid metabolism;

variables, conditional probability, Markov chains. Distributions of functions of random variables are considered; techniques to obtain the exact and approximate distributions of sums of random variables. Applications to normal approximations to discrete distributions and by obtaining the exact and approximate distributions of some commonly used statistics.			Secondary metabolism and defense; Growth and development (signal transduction, cell walls, growth and development, light responses, hormones); Control of flowering; Abiotic stress Microbial physiology: Aerobic and anaerobic respiration;Extremophiles; Symbiotic associations; Enzymes
MATHS 202	PHYSICS 202	CHEMISTRY 202	BIOLOGY 202
Differential Equations: Linear differential equations, both ordinary and partial, use of linear algebra to provide the general structure of solutions for ordinary differential equations and linear systems. Initial value problems, boundary value problems and eigenvalue problems arising from common classes of partial differential equations. Laplace transform methods; separation of variables applied to simple second order partial differential equations. Fourier series solutions of the heat and wave equations; Fourier transforms.	Electricity and Magnetism: Electric field, Gauss's law in integral and differential form, scalar potential and gradient, Poisson and Laplace equations), the magnetic field (e.g. Ampere's law in integral and differential forms), Maxwell's equations in vacuum (differential forms), Maxwell's equations in matter (polarization, electric displacement, magnetic vector potential), time-varying electric and magnetic fields (Maxwell's equations in general form, wave equations for E and B, plane electromagnetic wave, Poynting	Structure and properties:Stereochemical and electronic properties of molecules and the methods central to their study. Important elements of the subject include the spectroscopic characterisation and quantification of materials by a range of spectroscopic techniques, molecular orbital techniques and the application of approaches based on molecular symmetry and group theory to the understanding of molecular properties, stereo- selective reactions, bonding and spectroscopy. These topics have applications to advanced	 Mechanisms of evolution: Mendelian genetics; Genetic diversity (mutation, recombination); Genetic structure of populations (random mating/Hardy-Weinberg equilibrium); Selection; Speciation and species concepts; Mechanisms of speciation (geographical, sexual, temporal, ecological) Population biology: Nature of populations; Distribution and abundance of populations; Density independent, density dependent growth; Managing populations for production; Conservation biology;

|--|

BSc (Blended) Mathematics

MATHS 101: Calculus Lectures: 42: Tutorials: 28

Differential Calculus: Graphs of functions of one variable, trigonometric functions and their inverses, derivatives of inverse trigonometric functions, implicit differentiation, related rates. Partial derivatives, chain rule for partial derivatives, directional derivatives, tangent planes, extrema for functions of several variables and double integrals.

Integral Calculus: Fundamental theorem of calculus, integration by trigonometric and algebraic substitutions, use of partial fractions with application to areas and volumes. iemann integration, further techniques of integration and applications, improper integrals;

ifferential Equations: First order differential equations, second order linear differential equations with constant coefficients.

MATHS 102: Analysis and Linear Algebra Lectures: 42: Tutorials: 28

Analysis: Limits of real-valued functions, continuity and differentiability; Mean Value Theorem and applications; Taylor polynomials; sequences and infinite series;

Vectors: dot product, scalar and vector projections, plane curves specified by vector equations.

Complex numbers: arithmetic of complex numbers, sketching regions in the complex plane, De Moivre's Theorem, roots of polynomials, the Fundamental Theorem of Algebra.

Linear Algebra: Systems of linear equations, matrices and determinants; vectors in real n-space, cross product, scalar triple product, lines and planes; vector spaces, linear independence, basis, dimension; linear transformations, eigenvalues, eigenvectors; inner pr

MATHS 201: Vector Calculus and Probability and Statistics 1 Lectures: 42: Tutorials: 28

Vector Calculus: Functions of several variables; limits, continuity, differentiability, the chain rule, Jacobian, Taylor polynomials and Lagrange multipliers. Vector calculus; vector fields, flow lines, curvature, torsion, gradient, divergence, curl and Laplacian. Integrals over paths and surfaces topics; line, surface and volume integrals; change of variables; averages, moments of inertia, centre of mass; Green's theorem, Divergence theorem in the plane, Gauss' divergence theorem, Stokes' theorem; curvilinear coordinates.

Probability and Statistics 1: Probability theory basis of statistical inference. Probability and, random variables are introduced; applications to common univariate probability models. Joint behaviour of random variables, conditional probability, Markov chains. Distributions of functions of random variables are considered; techniques to obtain the exact and approximate distributions of sums of random variables. Applications to normal approximations to discrete distributions and by obtaining the exact and approximate distributions of statistics.

MATHS 202: Differential Equations and Probability and Statistics 2 Lectures: 42: Tutorials: 28

Differential Equations: Linear differential equations, both ordinary and partial, use of linear algebra to provide the general structure of solutions for ordinary differential equations and linear systems. Initial value problems, boundary value problems and eigenvalue problems arising from common classes of partial differential equations. Laplace transform methods; separation of variables applied to simple second order partial differential equations. Fourier series solutions of the heat and wave equations; Fourier transforms.l

Probability and Statistics 2: Classical and Bayesian statistical methods; maximum likelihood, sufficiency, unbiased estimation, confidence intervals, hypothesis testing and significance levels. Applications include distribution free methods, goodness of fit tests, correlation and regression; the analysis of one-way and two-way classifications.

BSc (Blended) Syllabus for Physics

Physics 101: Year 1, Semester 1

Classica	al mechanics:	10 Lectures
	Newton's laws of motion.	
	Momentum and impulse.	
	Translational, vibrational and rotational energy.	
	Simple harmonic motion.	
_	Rigid body rotations	
_	Applications to biological and physical systems	
Waves	and oscillations:	8 Lectures
_	Reflection, refraction, superposition,	
_	Resonance, energy transport, absorption,	
_	Doppler effect.	
_	Applications to water waves, acoustics, seismology	
Gravita	tion:	6 Lectures
_	Newton's law of gravity,	
_	Kepler's Laws.	
_	Applications to astrophysics including orbital motion, escape velocity, apparent weightlessness	t
Fluids:		6 Lectures
_	Pressure,	
_	Buoyancy	
_	Fluid flow	
_	Viscosity	
_	Surface tension	
_	Applications to hydraulics, biophysics, atmospheric physics, aerodynamics	
Optics:		6 Lectures
_	Geometrical optics	
_	Dispersion,	
_	Lenses, mirrors,	
_	Interference, Diffraction,	
_	Polarisation.	
_	Applications to microscopy, imaging, vision, crystallography	

Physics 102: Year 1, Semester 2

Electricity and magnetism:	18 Lectures
_ Electric charge and field,	
_ Conductors and insulators,	
_ Electric potential,	
_ Capacitance,	
_ Resistance,	
_ Electric circuits	
_ Magnetic field, Biot-Savart law	
_ Faraday's law of induction,	
_ Maxwell's equations,	
_ Electromagnetic waves.	
Special relativity:	6 Lectures
_ Frame transformations,	
_ Relativity of space and time,	
_ Modification of classical mechanics,	
_ Mass-energy equivalence.	
Quantum physics:	6 Lectures
_ Photons,	
_ Blackbody radiation,	
_ Matter waves,	
_ Quantisation in atoms,	
_ Interaction of light with matter, x-rays.	
Nuclear physics:	6 Lectures
_ Atomic nucleus,	
_ Radioactive decay, half-life,	
_ Ionising radiation,	
_ Nuclear fission and fusion.	
_ Nuclear energy, radiation safety, nucleogenesis,	

Physics 201: Year 2, Semester 1

Quantum mechanics: 18 Lectures		
_ Quantum theory of light		
_ The particle nature of matter		
_ Matter waves		
_ Quantum mechanics in one dimension		
_ Particle in a box: three-dimensional generalization.		
_ Tunnelling phenomena,		
_ The chemical bond.		
_ Atomic and molecular orbital theory,		
_ Valence bond theory		
_ Applications to atoms, molecules		
Thermodynamics:	18 Lectures	
_ Thermal equilibrium		
_ Ideal gas and kinetic theory,		
_ Equipartition of energy		
_ Heat and work		
_ Heat capacity, latent heat, enthalpy		
_ Thermodynamic processes;		
_ Thermal systems and statistics,		
_ Interacting systems,		
_ Statistics of large systems, entropy		
_ Temperature and heat,		
Pressure		
_ Chemical potential		
_ Heat engines		
_ Carnot cycle,		
_ Refrigerators, heat engines, throttling process;		
_ Helmholtz and Gibbs Free energies		
_ Phase transformations		

Physics 202: Year 2, Semester 2

Electri	city and Magnetism:	20 Lectures
	Electric field,	
	Gauss's law in integral and differential form,	
_	Scalar potential and gradient,	
_	Poisson and Laplace equations),	
_	Ampere's law in integral and differential forms,	
_	Maxwell's equations in vacuum (differential forms),	
_	Maxwell's equations in matter (polarization, electric displacement, magnetic vector potential),	
_	Time-varying electric and magnetic fields	
_	Maxwell's equations in general form,	
_	Wave equations for E and B,	
_	Plane electromagnetic wave	
_	Poynting vector	
_	Applications to electronics, materials, neural networks, telecommunication	
Optics	:	16 Lectures
_	Fourier optics	
_	Fourier transforms in 1 and 2D,	
_	Dirac delta function and comb,	
_	Discrete Fourier transforms	
_	Nyquist-Shannon sampling theorem	
_	Convolution, cross and autocorrelation.	
_	Fresnel and Fraunhofer diffraction	
_	Paraxial approximation	
_	Polarized light including production and control of polarisation	
_	Applications to optical and X-ray imaging systems	

BSc (Blended) – Proposed Chemistry Syllabus Years 1 and 2

Chemistry 101 (Year 1, Semester 1)

General and Organic Chemistry

The subject provides an introduction to general chemistry, organic chemistry, and the chemistry of some important biological molecules.

General Chemistry (14 Lectures)	
The Periodic Table	1
Molecular Structure and Bonding	2
• Lewis structures	
Formal charge	
Resonance	
• VSEPR – predicting the shapes of molecules	
Polarity of molecules	
Covalent Bonding	
alence bond theory (Localized Electron model)	
• Molecular orbital theory	
Intermolecular forces	
Water – the biological solvent	1
Physical characteristics and chemical properties	
Carbon – the basis of life	1
3D molecular structure and isomerism	1
Isomerism	
Stereoisomerism	
Small inorganic molecules of biological importance	1
Phosphates and phosphoric acid	
Nitrogen	
Oxygen	
Acids and Bases	2
• The Nature of Acids and Bases	
• Lowry Bronsted Theory	
Lewis Acids/Bases	
Dissociation of Carboxylic Acids	
Amine Basicity	
• Acid Strength	
• The pH Scale	
 Calculating the pH of Strong Acid Solutions 	
Calculating the pH of Weak Acid Solutions	
• Bases	
 Strategy for Solving Acid-Base Problems: A Summary 	
• Buffers	
Polyprotic acids	
• Gas solubility	
Stoichiometry	1
Chemical Kinetics	2

Reaction Rates		
Rate Laws: An Introduction		
Determining the Form of the Rate Law		
The Integrated Rate Law		
Rate Laws: A Summary		
Reaction Mechanisms		
The Steady-State Approximation		
A Model for Chemical Kinetics		
Catalysis		
Chemical Equilibrium	2	
The Equilibrium Condition		
The Equilibrium Constant		
 Equilibrium Expressions Involving Pressures 		
Heterogeneous Equilibria		
Applications of the Equilibrium Constant		
Solving Equilibrium Problems		

Organic Chemistry (17 Lectures)

Organic Chemistry (17 Lectures)		
Structure and Bonding Alkanes(spO Hybridisation)		
• Covalent bonding - H 2	2	
• s-bonding and sp V^3 hybridisation in methane and ethane		
Structural isomerism		
• Methane, ethane, nomenclature of saturated hydrocarbons		
Conformational isomerism: ethane, butane		
• Stereochemistry, Optical activity, enantiomers and their		
physical/chemical properties. Racemates.		
Designation of absolute configuration		
• Diastereoisomers		
Meso compounds		
Cycloalkanes		
Conformational isomerism of cyclohexanes		
Structure and Bonding Alkenes(sp ² Hybridisation)		
• sp^2 hybridisation, s and p bonding in ethene	2	
Nomenclature of alkenes		
Geometrical isomerism		
Conjugated alkenes		
Benzene and its derivatives		
Kekulé structures/resonance	1	
Nomenclature of substituted benzenes		
Structure and Bonding of Alkynes (sp hybridisation)	1	
• sp hybridisation, s and p bonding in ethyne		
Nomenclature of alkynes		
Functional Groups-	1	
• Haloalkanes		
• Alcohols		
• Ethers		

• Amines	
Carbonyl compounds	
Carboxylic acids and derivatives	
Electrophiles and Nucleophiles	
Arrow conventions	2
Organic acids and bases	2
Strengths of acids and bases: electronegativity, hybridisation, resonance	
Nucleophilic substitution reactions	
Nucleophiles and electrophiles	1
SN1 and SN2 reactions. Determination of mechanism by stereochemical	-
and kinetic methods	
Properties of good leaving groups	
Properties of good nucleophiles	
Elimination reactions	
E1 and E2 reactions. Determination of mechanism by stereochemical	1
and kinetic methods	_
Dehydration of alcohols	
Addition reactions	
Markovnikov's rule	1
Hydration of alkenes	
Electrophilic aromatic substitution reactions	
Substitution reactions of benzene: halogenation, nitration, sulfonation,	1
Friedel-Crafts acylation and alkylation	
Nucleophilic addition reactions	
Addition to carbonyl groups by cyanide, Grignard reagents, acetylide	1
anions	
Synthesis and chemistry of acids, amides, esters, acyl chlorides and	
anhydrides	
rganic redox reactions	
Reductions: Catalytic hydrogenation, hydride reagents	1
Oxidations: Benzylic oxidation	
Oxidation of primary alcohols to aldehydes then carboxylic acids by	
Cr(VI) reagents	
Oxidation of secondary alcohols to ketones by Cr(VI) reagents	

Chemistry of Life (7 lectures)	
Stereochemistry and Biomolecular chirality	2
Concatenation and Biopolymers	5
Polypeptides	
NucleicAcids	
Lipids	
Sugars	
Cellulose	
Isoprenes and Turpenoids	

Chemistry 102 (Year 1, Semester 2)

Physical and Inorganic Chemistry The subject provides an introduction to physical and inorganic chemistry.

Physical Chemistry (15 Lectures)	
Gases, Kinetic Theory	4
• Early Experiments	
• The Gas Laws of Boyle, Charles and Avogadro	
• The Ideal Gas Law	
Gas Stoichiometry	
Dalton's Law of Partial Pressures	
• Collisions of Gas Particles with the Container Walls	
Intermolecular Collisions	
Real Gases	
Chemistry in the Atmosphere	
Thermodynamics	4
• The Nature of Energy	
• Enthalpy	
Thermodynamics of Ideal Gases	
• Calorimetry	
• Hess's Law	
Standard Enthalpies of Formation	
Spontaneity, Entropy and Free Energy	2
Spontaneous processes	
• Entropy	
• The 2nd law of thermodynamics	
• Free energy	
Free energy and equilibrium	
Spectroscopy and Determination of Structure	3
• The EM Spectrum	
Mass spectrometry / combustion analysis information available	
from molecular formulae	
• Infrared spectroscopy	
Nuclear magnetic resonance spectroscopy: 1H and 13C	
Elementary quantum theory	2

Inorganic Chemistry 2.1– (21Lectures)

Ionic Compounds and their Solutions	2
Ions: electron configurations and sizes	
• Lattice energy	
Solubility equilibria and solubility products	
Structures of Solids	3
• X-ray diffraction	
Metallic bonding	
Sphere packing models	
• Structures of metals	
Structures of ionic compounds	
• Silicates	

Main Group Chemistry	4
Structures of the elements	+
Chemistry of main group compounds	
Redox reactions and electrochemistry	4
Galvanic cells and a quantitative treatment of standard reduction	+
potential	
Concentration dependence of reduction potential	
- Nernst equation	
- Concentration cells	
- Equilibrium constants	
- Solubility constants	
Batteries	
- Primary, secondary fuel cells	
Corrosion	
- Overpotential	
Electrolysis	
The transition metals : a survey	1
Electron configurations	1
Oxidation states and ionisation energies	
Reduction potentials	
First-row transition metals	
Ores and extraction of the metal	
Stable oxidation states	
Coordination Chemistry	4
Coordination compounds	
Oxidation number, coordination number	
Lewis acid-Lewis base interaction	
Ligands: properties, donor atom, denticity	
Iron nutrition	
Nomenclature	
Isomerism of coordination compounds	
Structural isomers, ionization, linkage, coordination	
Stereoisomerism - geometrical, optical	
Bonding in complex ions	2
Crystal-field model	
Octahedral complexes	
- Colour and Spectrochemical series	
- High- and low- spin complexes	
- Magnetism	
Other coordination geometries:	
- Tetrahedral and square planar	
Transition metals in biological systems	1
Abundance of transition metals in humans	

Chemistry 201 (Year 2, Semester 1)

Reactions and Synthesis

This subject covers key concepts associated with the synthesis and design of organic and inorganic molecules, molecular architecture and the energy transformations associated with chemical and physical processes. Topics covered include synthesis of simple polyfunctional organic compounds, thermodynamically controlled reactions of s-, p- and d- block elements and thermodynamics. In the last three weeks of the subject students will be able to choose between lecture modules with a focus on theory of advanced materials or biological chemistry. These topics have applications in drug discovery, chemical industry, nanotechnology, and energy harnessing through conventional and alternative energy sources.

Upon completion of this subject students should:

- have developed an understanding of molecular properties and energetics and be able to apply these concepts to the synthesis of organic and inorganic compounds;
- know approaches to the synthesis and some reactions of simple polyfunctional organic compounds;
- be able to distinguish between kinetically and thermodynamically controlled reactions and to apply these concepts to rationalise synthetic transformations;
- understand basic thermodynamic concepts and the application of these approaches to real solutions, mixtures and phase equilibria;
- have a knowledge of the main factors controlling the substitution and redox reactions of main group and transition metal elements.

1	Organic Synthesis C-C bond Forming Reactions	Grignard Reagents and Organolithiums. Formation and reaction with Carbonyl compounds.
2	Organometallic Reagents in Synthesis	Applications of Organocerium and Organocuprate reagents.
3	Carbonyl Compounds and Reactions	Carbonyl compounds, tautomerism as a general phenomen, keto-enol tautomerism of carbonyl compounds, mechanism of keto-enol tautomerism
4		Generating enolate anions, suitable base catalysts for enolising aldehydes, ketones ester and β - dicarbonyl compounds, general α -substitution reaction
5		Reactions of enols and enolates, α-substitution with H/D Stereochemical consequences and deuterium incorporation. Halogenation of carbonyl compounds. The haloform reaction
6		Halogenation of carbonyls, Hell-Volhard-Zelinsky reaction. Synthetic applications of □-halo

		carbonyl compounds
7		• 1
		Alkylation of enolates, LDA, scope and limitations
8		Aldol reaction, mechanism and retrosynthesis,
		inter-and- intra-molecular variants, mixed Aldol reaction
0		
9		Claisen reaction, mechanism and retrosynthesis,
10		mixed Claisen and Deickman reaction.
10		Malonate Diester Chemistry, Acetoacetate
		chemistry, Synthesis of substituted acetic acid
		and acetone derivatives. Scope, Mechanism and
11		Retrosynthesis.
11		Michael addition Chemistry, reaction of enolates
10		with various Michael electrophiles
12		Kinetic and Thermodynamic enolates, Enamines
10		and silvlenol ethers
13	Energy Transformations and	Introduction, Energy conversion: chemical
	Thermodynamics	combustion, Green Energy – solar energy and
	Will need to be selective with	light harvesting, ocean thermal energy,
	the choice of topics here	bioreactors Energy storage systems, fuel cells, the
	(unless space found by	fly-wheel, underground thermal energy storage,
	removing topic(s) from	hydroelectricity, superconducting magnetic
0	following section.	energy storage
9	Energy quantization and	The atomic and molecular basis of energies
	Boltzmann distribution	(kinetic and potential), energy quantization and
		the Schrodinger Equation, distribution of energy
1.7		over quantum states – the Boltzmann distribution
15		Heat, work first law of thermodynamics,
		molecular basis of enthalpy and it's temperature
		dependence Reversible versus irreversible
		processes in terms of expansion/compression of
		ideal gases, free expansion, adiabatic processes,
16		adiabatic expansion/compression of deal gases
16		Entropy and the direction of spontaneous change,
		statistical mechanical (molecular) view of
		entropy, entropy and the Second Law of
		thermodynamics Entropy as a state function, the
		Third Law of thermodynamics, absolute entropies
		and absolute zero, the Clausius Inequality,
		entropy change as a result of work, temperature,
17		phase change (Trouton's Rule)
17		Gibbs Free energy and spontaneity, Helmholtz
18		Free energy, standard free energies, free energy
10		as a function of pressure and temperature The
19		Fundamental equation, properties of internal
20		energy and Maxwell's relations
20		Thermodynamics criteria for chemical and phase
		equilibria, chemical potential and partial molar
21		quantities, the Gibbs Free Energy minimum and
21		equilibrium, extent of reaction and equilibrium
		constant, molecular description of equilibrium,
		response of equilibria to temperature

		
22		Thermodynamics of liquids and liquid mixtures,
23		chemical potentials of liquids, ideal liquid
		mixtures and Raoult's Law, Henry's Law, vapor
		pressure diagrams, liquid-liquid phase diagrams
		Free energy and entropy of mixing, excess
		functions and real solutions, solute and solvent
		activity, activity coefficient
24		Colligative properties, osmotic pressure
25	I. Redox (and important acid-	Oxidation of elements by halogens and dioxygen.
25	base) Reactions	Metal and main group halides and oxides.
	base) Reactions	Discussion of selected syntheses, chemistry and
		• •
		structures of halides and oxides including
		amphoteric behaviour and hydroxide/aqua ion
		formation. Thermodynamic vs kinetic control of
		reactions.
26		Thermodynamic aspects of halide and oxide
		formation. Thermodynamic parameters, their
		estimation and uses of tabulations. Born-Haber
		cycle and construction and uses of Ellingham
		diagrams for these systems. (Electrides and
		sodides?)
27		Oxidation of metals by protons etc. and
		generation of aqua ions. Comparison of TM and
		main group systems and hydrolysis in TM aqua
		ions (acid-base chemistry of coordinated water-
		hydroxide-oxo ligands). Connection between
		electrochemical and thermodynamic parameters.
		Construction and uses of Latimer and Frost
		diagrams.
28		0
28		Interpretations of Frost diagrams exemplified by
		the more complex chemistry of main group
		elements, such as nitrogen. Thermodynamic
		content of plots (free energy of formation vs
<u> </u>		oxidation state) and predictive power.
29		Nernst equation revisited and construction and
		uses of Poubaix diagrams combining redox and
		acid base reactions. Comparison of chemistry of
		representative elements as reflected in Pourbaix
		diagrams.
30	II. Exchange reactions.	Solid/gas phase systems exemplified by transport
		reactions and preparation of solid-state
		materials, in vulcanology, halogen lamps etc.
		Solution examples of double decomposition
		(metathesis). Solubility trends. Common ion
		effect.
31		Hard/soft acid/base theory. Thermodynamic
51		
		basis for HSAB theory. Usefulness in predicting
		direction of equilibrium and solubility.
32	III. Substitution Reactions.	Typical reactions and synthetic applications and
		examples. Inert and labile complexes. Stability
		(K, \Box) and factors affecting stability (metals,

		ligands). Irving-Williams series, Chelate effect. Applications of chelate effect. Siderophores. antioxidants, garden products, chelation therapy in medicine.
33		Mechanism of substitution reactions. Square planar Pt complexes and applications. Trans effect. Pt chemistry. Applications in synthesis of action of chemotherapeutic agents.
34		Dissociative, interchange and associative mechanisms in substitution, racemization <i>etc</i> in octahedral complexes.
35		Combination of substitution and redox chemistry in TM systems. Co(III) syntheses, Cr(II) catalysed substitution. Electron transfer, inner- and outer- sphere reactions.
36	IV. Metal centred reactions.	Template reactions and reactions of coordinated ligands. Atom transfer reactions (redox reactions). Metal directed ligand syntheses

Chemistry 202 (Year 2, Semester 2)

Structure and Properties

This subject covers key concepts related to the stereochemical and electronic properties of molecules and the methods central to their study. Important elements of the subject include the spectroscopic characterisation and quantification of materials by a range of spectroscopic techniques, molecular orbital techniques and the application of approaches based on molecular symmetry and group theory to the understanding of molecular properties, stereo-selective reactions, bonding and spectroscopy. These topics have applications to advanced materials, light emitting polymers, chemical analysis and catalysis in biological and industrial systems.

Upon completion of this subject students should;

- be able to classify molecules according to their symmetry and to relate their physical properties (e.g. dipole moment, isomerism) to the molecular symmetry;
- have a basic knowledge of the basis and application of spectroscopic techniques that are conducted in the presence (NMR, EPR) or absence (IR, Raman, UV-Vis.) of an applied magnetic field;
- be able to apply molecular orbital theory to simple homo- and heteronuclear diatomic molecules and polyatomic molecules;
- be able to apply simple Huckel approaches to arrays of atoms having orbitals of pi symmetry;
- be able to identify systems that are aromatic or antiaromatic in character and to have a knowledge of their basic reactions;
- be able to describe the changes in bonding that occur to small molecules (e.g. CO) on binding to a transition metal and to be able to apply these concepts to the catalysis of reactions of those species.

1	Molecular shape and simple electronic structure, Isomerism	Introduction – scope of course Orbitals, hybridization and shapes of molecules, sterochemical consequences of tetrahedral carbon (isomers, enantiomers, R/S, D/L, optical rotation)
2	Stereochemistry – optical activity	Molecules with more than one chiral centre (diastereomers, meso compounds, separation of racemic mixtures)
3	Symmetry	Symmetry operations and elements
4		Assignment of point groups Leading to definition of components of character tables (irreducible representations, characters – at least the interpretation of the sign of the character)

~		
5		Simple applications
		Label molecular shapes, isomers
		Identify chiral molecules
		Physical properties $-e.g.$ dipole moment,
		possible optical isomers
		Orbital symmetry labels (e.g. s, p & d orbitals in
		T_d , O_h , D_{4h})
6	Stereochemistry and	Prochirality, chirality in Nature, Sterochemistry on
	Reactions	atoms other than carbon, Retrosynthetic analysis
7	Stereochemistry and	Stereochemistry and Mechanism (nucleophilic
	mechanism	substitution, elimination from non-cyclic
		compounds)
8		Alkene addition reactions – Hydrogenation,
		halogenation, HX addition. Elimination Reactions
		epoxide ring forming reactions
9	Zeeman effect	Effect on the energies of a system by application of
Í		a magnetic field; Magnetochemistry, spin and
		orbital contribution to the magnetic moment
10	Magnetic resonance	EPR spectroscopy, hyperfine coupling application to
10	spectroscopies	organic radicals and to transition metal complexes
11	spectroscopies	Nuclear Magnetic Resonance (NMR), energies of
11		nuclei in magnetic fields
12		5
12		Chemical shift and the δ scale, resonance of
		different nuclei, shielding, spin-orbit coupling and
12		coupling constants, molecular symmetry
13		¹³ C NMR, ¹ H NMR, integration, multiplicity, chemical
1.4		shift typical ranges
14	Spectroscopy and Molecular	Introduction to molecular spectroscopy and
	Structure	spectroscopic transitions, absorbance,
		transmittance, the Beer-Lambert Law, intensities of
		spectroscopic transitions
15	Molecular Vibrational	Quantised vibration and simply harmonic oscillator
		model, wavefunctions,
16		Molecular vibrational modes, vibrational
		spectroscopy infrared and Raman spectroscopy 3N-
		5, 3N-6 vibrational degrees of freedom
	Group theory: Irreducible	Definition of reducible and irreducible
17	representations	representations, Use of group theory to determine
L		the irreducible representation
18	Vibrational symmetry and	Symmetry properties of the vibrational degrees of
	IR/Raman activity of normal	freedom and to deduce IR, Raman activity. Use of
	modes	internal coordinates to get symmetry properties of
		a subset of bands
19	Vibrational spectroscopy:	Characteristic infrared absorptions (alkyl CH,
	Local mode approximation	alcohol, amine RN H and RNH, carboxylic acid,
		amide, ester, ketone, aldehyde, nitrile RCN, alkyne,
		alkene, aromatic), fingerprint regions,
		interpretation of IR spectra
20	Molecular orbital theory	Electronic spectroscopy requires understanding of
		electronic structure leading to
		Molecular orbital theory – HOMO. LUMO
-	•	

21		Diatomia molecular I CAO MO Symmetry of MO's
		Diatomic molecules, LCAO-MO, Symmetry of MO's
22		Photoelectron spectroscopy
22		Generalisation of the application of MO approaches
00		to polyatomic molecules
23		Hückel Theory
24	Aromaticity and the	Aromatic and Heterocyclic Chemistry. Benzene and
25	reactions of compounds	Aromaticity/Antiaromaticity, Reactions of Aromatic
26	with delocalised \square orbitals	Compounds Electrophilic aromatic substitution.
		Reactions of Polycyclic and Heteroaromatic
		Compounds. Reactions via Aromatic Transition
		States Electrophilic aromatic substitution on
		naphthalene. Electrophilic aromatic substitution on
		heteroaromatics (<i>e.g.</i> pyridine and pyrrol).
27		Non C-based aromatic systems
27	Electronic spectroscopy	Chromophores and excited electronic states,
		electronic transitions, UV-Vis spectroscopy, Franck-
	1	Condon Principle, Franck-Condon factors
28		Fates of electronic excited states – fluorescence and
		phosphorescence, non-radiative transitions,
		internal conversion and intersystem crossing,
20		fluorescence spectra
29		Applications – light emitting polymers
30	Organometallic chemistry	Organometallic chemistry. Types and broad
		applications of organometallic complexes and
21		catalysts. Ligand types and examples.
31		Group 1 (LiR) and group 2 (Grignard) and p-block
		chemistries. EPR spectroscopy as a tool to probe
		electron distribution in carbocyclic and organometallic species
32		0 1
32		Covalent interactions in coordination compounds – rationalisation of spectrochemical series in terms of
		bonding interactions
		Binary metal carbonyl complexes Synergistic
33		bonding and the 18-electron rule. IR and NMR
55		spectroscopy
34		Substitution at metal carbonyl. Other
51		organometallic ligand types and complexes thereof.
		Alkyne and alkene complexes. <i>etc</i> .
35		Redox reaction in organometallic chemistry.
55		Hydrogen complexes and oxidative addition
		reactions. Reductive elimination reactions.
		Activation and reactions of organometallic ligands.
		Insertions, migrations.
36	Catalysis involving	Catalytic systems. Water gas shift reaction,
	transition metals	hydrogenations, acetic acid process etc. Metallocene
		complexes and their chemistry leading to advanced
		polymerization catalysts etc.
	-	. <u></u>

BSc (Blended) Syllabus for Biology

Biology 101 (Year 1, Semester 1)

Evolution and diversity of life

This course will introduce the concepts of chemical and biological evolution and their contribution to the evolution of diversity of life forms. Students will learn different theories on the evolution of life and evolution of complexity. It will also provide the basics of biological classification and introduction to major domains and kingdoms of biological diversity, and the structure and biology of these organisms.

Unifying themes in Biology

Cell theory and the origin of life

(Cell theory, living organisms are made of cells, cells are smallest organizational unit of life, origin of life=origin of cell; life is defined by replication, mutation, metabolism

Chemical evolution of life

(RNA polymers and the origins of information storage and replication, containment of molecules in cell-like compartments, DNA as the basis for life)

Life evolves

Evolution and natural selection

Evolution of complexity Unicellular to multicellular Structural organization – symmetrical and asymmetrical

Evolutionary relationships

Evolutionary relationships (phylogenies) are summarized in classifications Principles of phylogenetics and systematics; synapomorphy and monophyly Taxonomy and the naming of organisms

Domains and kingdoms of life

Five kingdoms model; the tree of life

Diversity, structure and biology of major groups

Emphasizing the major evolutionary features and the evolution of body plans

Prokaryotes: Bacteria and Archaea

(4 lectures)

(4 lectures)

(2 lectures)

(24 Lectures)

Protists (Slime moulds, amoebae, primary plastids – red and green algae, secondary plastids – brown algae lineage, dinoflagellates and apicomplexans, euglenoids)

Fungi (Structure and growth, nitrition, reproduction, fugal phyla, mutualisms, fungi and humans)

Plants (Alternation of generations and the land plant life cycle, bryophytes, evolution of vascular tissue, lycophytes and ferns, seed plants, the seed and secondary growth, cycads and Ginkgo, conifer diversity and biology, Angiosperm structure, biology and diversity, the flower, double fertilization.

Animals (Simple animals – sponges to flatworms; annelids, molluscs, nematodes and arthropods; echinoderms; chordates

Viruses and Prions

(2 lectures)

Viruses are subcellular organisms

Biology 102 (Year 1, Semester 2)

Cell biology

This course will introduce the basic unit of life, or the cell, and its structural and functional elements. Students will learn the components of a cells and their functioning, cell division, contribution of a cell to form multicellular units, and flow of genetic information within a biological system through the central dogma of life.

Structure and function of cell components

Membranes Plasma membrane and glycocalyx Nucleus Ribosomes Endoplasmic reticulum Plasmodesmata Golgi and vesicles Lysosomes Vacuoles Mitochondria Plastids, Chloroplast Microbodies Cytoskeleton Flagella, Cilia Cell wall

Endosymbiosis

Chloroplast Mitochondria

Genetic code and central dogma of life

Nucleic acids, one gene-one polypeptide hypothesis, chromosome structure, DNA synthesis, transcription, translation, protein synthesis, protein targeting and processing

Gene expression

prokaryotic, eukaryotic, RNA interference

Cell division

binary, budding, mitosis and meiosis, cell cycle, differentiation, aging, and death

(4 lectures)

(2 lectures)

(2 lectures)

(2 lectures)

(24 lectures)

Developmental control in multicellular systems

(2 lectures)

stem cells; embryonic development and pattern formation; cells, tissues, and organs; signaling and developmental controls. Examples from animals and plants.

515

Biology 201 (Year 2, Semester 1)

Physiology

In this course, the learning objective is to integrate cell and molecular biology in the context of anatomy and physiology of various systems including plants, animals and microbes.

Principles of physiology (Introduction)

- · Energy management, maintenance of homeostasis, metabolic processes
- Homeostasis Salts and water
- [•] Cellular Respiration (processing of glucose and lipids: glycolysis, B-oxidation, Krebs cycle, electron transport chain, fermentation.
- · Metabolic processes (Anabolism, Catabolism)
- Regulation of metabolism (molecular (signaling), genetic)

Animal physiology (Human)

- [•] Respiration, digestion, nutrition and metabolism
- · Nervous system
- Endocrine system
- Excretion and osmo-regulation (Water and Salt Balance)
- · Cardiovascular system
- Thermal regulation
- · Reproduction and development (Introduction)

Plant physiology

- · Water balance
- Mineral nutrition and nutrient assimilation
- · Solute transport across membranes
- · Phloem translocation
- [.] Photosynthesis
- · Respiration and lipid metabolism
- · Secondary metabolism and defense
- [•] Growth and development (signal transduction, cell walls, light responses, hormones, control of flowering
- · Abiotic stress

Microbial physiology

- · Aerobic and anaerobic respiration
- Extremophiles
- · Symbiotic associations
- · Enzymes

(14 lectures)

(2 lectures)

(14 lectures)

sses

(6 lectures)

Biology 202 (Year 2, Semester 2)

Genetics, evolution and ecology

The purpose of this course is to introduce the higher levels of biological organizations by examining aspects of population genetics, ecology and evolutionary biology.

Genetics, and mechanisms of evolution

(12 lectures)

- . Mendelian genetics (segregation of alleles, independent assortment)
- . Beyond Mendel (multigene inheritance, sex-linkage, gene interaction, gene linkage,
- Genetic diversity (mutation, recombination)
- · Genetic structure of populations (random mating/Hardy-Weinberg
- . equilibrium. Mutation, selection, drift, inbreeding) Selection
- · Speciation and species concepts
- . Mechanisms of speciation (geographical, sexual, temporal, ecological)

Population biology

- . Nature of populations
- Distribution and abundance of populations
- [•] Density independent, density dependent growth
- Managing populations for production
- · Conservation biology
- · Demography and Epidemiology

Community ecology

Nature of communities

- Community structure
- · Intracommunity interactions
- · Symbiosis
- · Predation
- · Competition
- . Host-parasite interactions
- · Niche
- · Dynamics of communities (perturbation and succession)
- Biomes (communities on a global scale)

[•]Ecosystems

- . Pond ecosystem
- . Food chains and webs
- . Pyramids (numbers, biomass, energy)
- Productivity (Primary and secondary) Biogeochemical cycles (Water, C, N, P)

(6 lectures)

(8 lectures)

(10 lectures)

615