

Savitribai Phule Pune University

F. Y. B. B. A. (C. A.) Semester I (CBCS 2019 Pattern)

C Language, DBMS, PPA
CA-106: Lab Book

Student Name: \qquad

College Name:

Roll No.: \qquad Division: \qquad Seat No:

Academic Year: \qquad

CERTIFICATE

This is to certify that Mr./Ms.

Seat Number of F.Y.B.B.A. (C.A) Sem-I has Successfully completed Laboratory course (C Language, DBMS, PPA) in the year \qquad .
$\mathrm{He} /$ She has scored mark out of 10 (For Lab Book).

About the Book:

This workbook is intended to be used by F.Y.B.B.A. (C.A.) Semester-I students for C Language, DBMS and PPA Practical assignments. This workbook is designed by considering all the practical topics mentioned in syllabus.

How to use this workbook:

The workbook is divided into three sections. Section-I is related to C Language assignments, Section-II is related to DBMS JS assignments, Section-III is related to PPA assignments
Section-I: C Language is divided into eleven assignments.
Section-II: DBMS is divided into ten assignments.
Section-III: PPA is divided into three assignments

Instructions to the Students and Instructors:

- Students should carry workbook while coming to the practical.
- Students should complete all the practical assignments within given time interval.
- Instructors should check all the assignments regularly and guide to the students accordingly.
- Students have to solve exercises of Section I (C Language) and Section II (DBMS) but there will not be any evaluation for Section III (PPA) from University side.
- There is mini project on Scratch that student have to develop and get it checked from subject teacher

Editorial Board: Dr. D. Y. Patil ACS College, Pimpri, Pune

1. Mr. Satyawan Kunjir
2. Mr. Yogesh Ingale
3. Mrs. Deepashree Mehendale
4. Mrs. Reshma Masurekar

Reviewed By:

1. Dr. Ranjit Patil.
2. Mrs. Sujata Patil

Assignment Completion Sheet

Section-I: C Language			Assignment Name
Sr. No.	Marks (out of 5)	Teacher's Sign	
1	Basic HTML Tags		
2	Creating List through HTML		
3	Creating Tables through HTML		
4	Creating Frames through HTML		
5	Creating Forms through HTML		
6	Image Mapping		
7	Styling HTML with CSS		
8	JavaScript		
Total (Out of 40)			
Total (Out of 5)			

Instructor Signature:

Assignment Completion Sheet:

Section-II: DBMS			Assignment Name
Sr. No.	Marks (out of 5)	Teacher's Sign	
1	DDL Commands (Table Creation).		
2	DDL Commands(Alter and Drop table).		
3	DML Commands(Insert, Update and Delete).		
4	RDB without Constraints.		
5	Table Creation with Constraints.		
6	RDB with constraints.		
7	Implementation of Select Command		
8	SQL Set operation.		
9	Joins		
10	Case Study		
Total (Out of 50)			
Total (Out of 5)			

Instructor Signature:

Assignment Completion Sheet

Sr. No.	Assignment Name	Teacher's Sign
1	DOS Commands and MS Office	
2	Scratch Programming	
3	Mini Project using Scratch	

Instructor Signature:

Section-I

C Language

Exercise 1: Data types and operators

Data Types in C:

Each variable in C has an associated data type. Each data type requires different amount of memory and has some specific operations which can be performed over it. Let us briefly describe them one by one:

Following are the examples of some very common data types used in C

1. char: The most basic data type in C. It stores a single character and requires a single byte of memory in almost all compilers.
2. int: As the name suggests, an int variable is used to store an integer.
3. float: It is used to store decimal numbers (numbers with floating point value) with single precision.
4. double: It is used to store decimal numbers (numbers with floating point value) with double precision.

Different data types also have different ranges up to which they can store numbers. These ranges may vary from compiler to compiler. Below is list of ranges along with the memory requirement and format specifiers on 32 bit gcc compiler.

DATA TYPE	MEMORY (BYTES)	RANGE	$\begin{aligned} & \text { FORMAT } \\ & \text { SPECIFIER } \end{aligned}$
short int	2	$-32,768$ to 32,767	\%hd
unsigned short int	2	0 to 65,535	\%hu
unsigned int	4	0 to 4,294,967,295	\%u
int	4	$-2,147,483,648$ to $2,147,483,647$	\%d
long int	4	$-2,147,483,648$ to $2,147,483,647$	\%ld
unsigned long int	4	0 to 4,294,967,295	\%lu
long long int	8	$-\left(2^{\wedge} 63\right)$ to ($\left.2^{\wedge} 63\right)-1$	\%lld
unsigned long long int	8	$\begin{gathered} 0 \text { to } \\ 18,446,744,073,709,551,615 \end{gathered}$	\%llu

DATA TYPE	MEMORY		FORMAT
(BYTES)	RANGE	SPECIFIER	
signed char	1	-128 to 127	$\% \mathrm{c}$
unsigned char	1	0 to 255	$\% \mathrm{c}$
Float	4	$\% \mathrm{f}$	
Double	8		$\% \mathrm{lf}$
long double	12		$\% \mathrm{Lf}$

We can use the sizeof() operator to check the size of a variable.

* Operators in C:

An operator is a symbol that tells the compiler to perform specific mathematical or logical functions. C language is rich in built-in operators and provides the following types of operators.

1. Arithmetic Operators $(+,-, *, /, \%)$
2. Relational Operators (<, <=, >, >=, ==, !=)
3. Logical Operators (\&\&, $\|,!$)
4. Bitwise Operators(\&, |, ^, <<, >>, ~)
5. Assignment Operators (=)
6. Increment Operator(++) and Decrement Operator(--)
7. Conditional Operator (expr1?expr2:expr3)

* Assignments based on Data Types and Operators:
(Hint: Do not accept input from user. Declare variables with default values)

1) Write a C Program to demonstrate the working of arithmetic operators (Associativity and precedence of arithmetic operators is expected)
2) Write a C program to find maximum of two numbers using conditional operator.
3) Write a C Program to find maximum of three numbers using logical operators.
4) Write a C Program to display Quotient and Remainder of division of two variable.
5) Write a C Program which illustrate increment and decrement operators (Use of Pre and Post increment is expected)
6) Write a program to display the size of different data types.
7) Write a program to swap the values of two variables using bitwise operator (^)
8) Write a C program which illustrate the use of Bitwise And, Bitwise Or and Bitwise XOR Operator).
9) Write a C program which illustrate Bitwise Left shift and Right Shift operators.
10) Write a C program to check Least Significant Bit (LSB) of a number is set or not.
11) Write a C program to check Most Significant Bit (MSB) of a number is set or not.
12) Write a C program to flip bits of a binary number using bitwise operator.
13) Write a C program to check whether a number is even or odd using bitwise operator.

Date \square

Exercise 2: Managing I/O Operations

Many functions for input and output purpose have been provided in the C standard input and output library. These functions interact with the standard input usually the keyboard and the standard output usually the screen.

Input function scanf():

The general purpose input function is scanf() used to supply the values of variables through keyboards.
Syntax: scanf("control string",\&var1,\&var2....,\&varn);
Where var1, var2 and varn are variable name.
The control string may contain format specifiers such as (\%d \%f \%c \%s etc).
\%d- for integer values
\%f- for float values
\%c- for character values
Eg. scanf("\%d",\&a) ;
scanf("\%d \%f \%c",\&a,\&b,\&c);

* Output function printf():

printf() is a output function which is used to print on screen the value contained in a variable.
Syntax: printf("Control String", var1, var2.....varn);
The control string may contain escape sequence characters ($\backslash \mathrm{n}, \mathrm{lt}, \backslash \mathrm{l}, \mathrm{lb}$ etc) and format specifiers (\%d \%f \%c etc).
Ex. printf("C is very easy");
printf(" The value of $\mathrm{a}=\% \mathrm{od}$ ", a);
printf("'n The value of $b=\% \mathrm{~d}$ and sum=$=\% \mathrm{f}$ ', b ,sum);

* Character input and output function:

C provides fuctions for reading and writing one character at a time by using getchar() and putchar() function respectively. The function getchar() reads and return an input character from the standard input device.

Syntax: variable=getchar();
Eg. char ch;
ch=getchar();
The function putchar() writes a single character on the standard output device.
Syntax: putchar(variable);
Eg. putchar(ch);

* Assignments based on Input and Output functions:

1. Accept dimensions of a cylinder and print the surface area and volume.
2. Accept temperatures in Fahrenheit (F) and print it in Celsius (C) and Kelvin (K) (Hint: $\mathrm{C}=5.0 / 9(\mathrm{~F}-32)$, $\mathrm{K}=\mathrm{C}+273.15$)
3. Accept initial velocity (u), acceleration (a) and time (t). Print the final velocity (v) and the distance travelled (s) (Hint: $v=u+a t, s=u+a t^{2}$)
4. Accept two numbers and print arithmetic and harmonic mean of the two numbers (Hint: $\mathrm{AM}=(\mathrm{a}+\mathrm{b}) / 2$
, $\mathrm{HM}=\mathrm{ab} /(\mathrm{a}+\mathrm{b})$)
5. Accept three dimensions length (l), breadth(b) and height(h) of a cuboid and print surface area and volume (Hint : surface area=2 $(\mathrm{lb}+\mathrm{lh}+\mathrm{bh})$, volume $=l b h)$
6. Accept a character from the keyboard and display its previous and next character in order. Ex. If character entered is ' d ', display "The previous character is c", "The next character is e".
7. Accept a character from the user and display its ASCII value.
8. Accept the x and y coordinates of two points and compute the distance between the two points.
9. Accept two integers from the user and interchange them. Display the interchangednumbers.
10. A cashier has currency notes of denomination 1,5 and 10. Accept the amount to be withdrawn from the user and print the total number of currency notes of each denomination the cashier will have to give.

Signature of the instructor

Exercise 3: Decision Making using if and if-else

Sometimes it is necessary to alter the sequence of execution of statements based on certain conditions or we may require some statements to be executed repeatedly until some condition is met, this involves decision control structure and loop control structure respectively.

* Decision Control Structure:

Many programs require testing of some conditions at some point in the program and selecting one of the alternative paths depending upon the result of the condition. This is known as decision making.
C provides 3 decision making statements

1. if statement
2. if else statement
3. switch

1. if statement:

This is the simplest form of decision making statement in C. it allows decision to be made by evaluating an expression. Depending upon the result (true or false) the program execution proceeds.

Syntax:
if(expression) \quad or \quad if(expression)
statement; statement;

Statements;
\}
The keyword if must be followed by a set of parentheses containing a single expression to be tested. The statement is executed only if the expression is true. If the condition evaluates to false, the statement is skipped.

Ex. following program accepts two numbers and display maximum number.
\#include<stdio.h>
main()
\{
int a, b;
printf("In Enter any two numbers=");
scanf("\%d\%d",\&a,\&b);
If($a>b$)
printf("In \%d is maximum",a);
$\operatorname{If}(b>a)$
printf("In \%d is maximum",b);
If(a==b)
printf("In both numbers are same");
\}

2. if-else statement:

The if statement will execute the statement if the expression is true otherwise it will be skipped. However in many cases we require an alternate statement to be executed if the expression evaluates to false. This is possible using if else statement.

Syntax:

If (expression)	or	if(expression) Statement 1 else
Statement 2	else	
	\{ statement part 1	
		Statement part 2

Here, expression 1 is executed if expression is true otherwise statment 2 is executed. Thus either statment 1 or statment 2 will be executed, never both.

```
Ex. following program accepts a number and display whether it is even or odd
#include<stdio.h>
main()
{
int n;
printf("\n Enter any number=");
scanf("%d",&n);
if( n%2==0)
printf("\n %d is even number",n);
else
printf("\n %d is Odd number",n);
}
```

Following is a program to accept a year as input to check whether it is leap year or not.
\#include<stdio.h>
main()
\{
int y;
printf("\n enter any year=");
scanf("\%d",\&y);
if $((y \% 4==0) \& \&(y \% 100!=0) \|(y \% 400==0))$
printf("\n \%d is leap year",y);
else
printf("\n \%d is not a leap year",y);
\}

Assignments based on if and if else

1. Write a program to accept an integer and check if it is even orodd.
2. Accept a character as input and check whether the character is a digit. (Check if it is in the range ' 0 ' to ' 9 ' both inclusive)
3. Write a program, which accepts annual basic salary of an employee and calculates and displays the Income tax as per the following rules.

Basic: $<1,50,000$	Tax $=0$
Basic: $1,50,000$ to 3,00,000 Tax $=20 \%$	
Basic: $>3,00,000$	Tax $=30 \%$

4. Accept a character from the user and check whether the character is a vowel or consonant. (Hint: a,e,i,o,u, A, E, I, O, U are vowels)
5. Accept any year as input through the keyboard. Write a program to check whether the year is a leap year or not. (Hint leap year is divisible by 4 and not by 100 or divisible by 400)
6. Write a program to check whether given character is a digit or a character in lowercase or uppercase alphabet. (Hint ASCII value of digit is between 48 to 58 and Lowercase characters have ASCII values in the range of 97 to122, uppercase is between 65 and 90)
7. Accept the x and y coordinate of a point and find the quadrant in which the point lies.
8. Accept the cost price and selling price from the keyboard. Find out if the seller has made a profit or loss and display how much profit or loss has been made.

Signature of the instructor

Exercise 4: Decision Making using Switch

* The switch statement:

C has a built-in multiple branch decision statement called switch. Switch is multiway decision making statement.
Syntax:
switch(expression)
\{
case value_1: statement part_1;
break;
case value_2: statement part_2;
break;
case value_n: statement part_n;
break;
default: default statement part;
\}

Assignments based on switch control structure:

1. Accept a single digit from the user and display it in words. For example, if digit entered is 9, display Nine.
2. Write a program, which accepts two integers and an operator as a character (+ - */), performs the corresponding operation and displays the result.
3. Accept two numbers in variables x and y from the user and perform the following operations

Option	Actions
1. Equality	Check if x is equal to y
2. Less Than	Check if x is less than y
3. Quotient and Remainder	Divide x by y and display the quotient and remainder

4. Accept radius from the user and write a program having menu with the following options and corresponding actions

Options	Actions
1. Area of Circle	Compute area of circle and print
2. Circumference of Circle	Compute Circumference of circle and print
3. Volume of Sphere	Compute Volume of Sphere and print

5. Write a program having a menu with the following options and corresponding actions

1. Area of square	Accept length ,Compute area of square and print
2. Area of Rectangle	Accept length and breadth, Compute area of rectangle and print
3. Area of triangle	Accept base and height, Compute area of triangle and Print

Signature of the instructor \square
$1 \quad 1$

Exercise 5: Loop Control structures

Start Date \square
11

* Loop:

A segment of program code that is executed repeatedly is called a loop. The repetition is done until some condition for termination of the loop is satisfied.
Loops can be of two types:

1) top tested loop (entry controlled loop)
2) Bottom tested loop (exit controlled loop)

In top tested loop, the condition is evaluated before the loop body is executed. In the bottom tested loop, the condition is tested after the loop body is executed.

The C language provides three loop structures

1) While loop
2) Do ..while loop
3) For loop

1. The while loop:

The while loop is top tested loop i.e. the condition is tested before the loop body is executed.
Syntax:

```
while (expression)
{
Instructions;
\}
```

The statement can be a single or compound statement. The expression is evaluated and statement is executed as long as the expression is true. As soon as the expression becomes false, the execution of the loop body is stopped and control is transferred to the first statement outside the loop body.

Following program illustrate while loop
\#include<stdio.h>
main()
\{
int $\mathrm{i}=1$;
while ($\mathrm{i}<=5$)
\{
printf("\n \%d",i);
i++;
\}
\}

2. The do..while loop:

It is bottom tested loop or exit controlled loop i.e. it evaluates the condition after executing the statements. This means that the statement within the loop is executed at least once.

Following program illustrate do..while loop
\#include<stdio.h>
main()

```
{
int i=1;
do
{
printf("\n %d",i);
i++;
}while(i<=5);
}
```


3. The for loop:

This is a top tested loop similar to the while loop but the advantage is that it combines the initialization test condition and loop variable alteration statement in a single statement.

Syntax;

```
    for (initialization; condition; increment/decrement)
    {
        Instructions;
    }
```

Following program illustrate for loop
\#include<stdio.h>
main()
\{
int i ;
for $(i=0 ; i<=10 ; i++)$
printf("\n\%d",i);
\}

Assignments based on Loop Control Structure

1) Write a program to calculate sum of digits of a given input number.
2) Write a program to accept two numbers as a range and display sum of all numbers between that range.
3) Write program to check whether a input number is Armstrong number or not.
4) Write a program to accept a binary number and convert it into decimal number.
5) Write a program to check whether a input number is perfect number of not.
6) Write a program to calculate x^{y}.
7) Write a program to check whether a input number is palindrome or not.
8) Write a program to display multiplication of two input numbers without using * operator.
9) Write a program to calculate sum of first and last digit of a number.
10) Write a program to accept a number and count number of even, odd, zero digits within that number.
11) Write a program, which accepts a number n and displays each digit in words. Example: 6702 Output $=$ Six-Seven-Zero-Two. (Hint: Reverse the number and use a switch statement)

Signature of the instructor

Exercise 6: Nested Loops

* Nested loop:

Nesting of loops means a loop that is contained within another loop. Any loop can be nested within any other loop. The nesting is done such that the inner loop should be completely enclosed in the outer loop. Eg.

```
While(expression)
{
        for( )
        {
    } }
}
```

```
for ()
```

for ()
{
{
for()
for()
{
{
}

```
}
```

do

while() \{ \}
\}while();

Assignment based on Nested Loop

1) Write a program to generate following triangle up to n lines.

1
12
123
2) Write a program to generate following triangle up to n lines.

1

23
$4 \quad 5 \quad 6$
3) Write a program to ge nerate following triangle up to n lines.

A B C
D E
F
4) Write a program to generate following pattern.

5
45
345
2345
13235
5) Write a program to generate following pattern.

Aa
Aa Bb
$\mathrm{Aa} \quad \mathrm{Bb} \quad \mathrm{Cc}$
$\mathrm{Aa} \quad \mathrm{Bb} \quad \mathrm{Cc} \quad \mathrm{Dd}$
6) Write a program to accept two numbers as range and display multiplication table of all numbers within that range.
7) Write a program to display all Armstrong between 1 and 1000 .
8) Write a program to calculate sum of all digits of a input number till it reduce to a single digit. (Ex i/p 489 output sum:21 sum :3)

Exercise 7: Demonstration of 1-D Arrays

The variable allows us to store a single value at a time, what if we want to store roll no. of 100 students? For this task, we have to declare 100 variables, then assign values to each of them. What if there are 10000 students or more? As you can see declaring that many variables for a single entity (i.e student) is not a good idea. In a situation like these arrays provide a better way to store data.

An array is a collection of one or more values of the same type. Each value is called an element of the array. The elements of the array share the same variable name but each element has its own unique index number (also known as a subscript). An array can be of any type, For example: int, float, char etc. If an array is of type int then it's elements must be of type int only.
Arrays can be single or multidimensional. The number of subscript or index determines the dimensions of the array. An array of one dimension is known as a one-dimensional array or 1-D array, while an array of two dimensions is known as a two-dimensional array or 2-D array.

Declaring Arrays

To declare an array in C, a programmer specifies the type of the elements and the number of elements required by an array as follows -

type arrayName [arraySize];

This is called a single-dimensional array. The arraySize must be an integer constant greater than zero and type can be any valid C data type. For example, to declare a 10-element array called balance of type double, use this statement -
double balance[10];
Here balance is a array variable which is sufficient to hold up to 10 double numbers.

| Index 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | | | | | |
| balance[10] | | | | | | | | | |

All arrays consist of contiguous memory locations. The lowest address corresponds to the first element and the highest address to the last element.

Initializing Arrays:

You can initialize an array in C either one by one or using a single statement as follows -

```
double balance[5] = {1000.0, 2.0, 3.4, 7.0, 50.0};
```

The number of values between braces \{ \} cannot be larger than the number of elements that we declare for the array between square brackets [].

If you omit the size of the array, an array just big enough to hold the initialization is created. Therefore, if you write -
double balance[] $=\{1000.0,2.0,3.4,7.0,50.0\} ;$

You will create exactly the same array as you did in the previous example. Following is an example to assign a single element of the array -

balance[4] = 50.0;

The above statement assigns the $5^{\text {th }}$ element in the array with a value of 50.0 . All arrays have 0 as the index of their first element which is also called the base index and the last index of an array will be total size of the array minus 1 .

Assignment based on 1D Array:

1) Write a program to accept n elements of $1 D$ array and then display sum of all elements of array.
2) Write a program to find maximum and minimum elements of 1 D array.
3) Write a program to calculate sum of all odd elements of 1-D array.
4) Write a program to sort 1 D array elements in ascending order.
5) Write a program to display union of two 1 D array.
6) Write a program to display intersection of two 1D array.
7) Write a program to display 1D array elements in reverse order.
8) Write a program to accept a decimal number and convert it to binary, octal and hexadecimal number.
9) Write a program to count the occurrences of a input number in 1D array.
10) Write a program to count Prime Numbers within 1D array.

Exercise 8: Demonstration of 2-D Arrays

* Two-dimensional Arrays

The simplest form of multidimensional array is the two-dimensional array. A two-dimensional array is, in essence, a list of one-dimensional arrays. To declare a two-dimensional integer array of size [x][y], you would write something as follows -

type arrayName [x][y];

Where type can be any valid C data type and arrayName will be a valid C identifier. A two-dimensional array can be considered as a table which will have x number of rows and y number of columns. A twodimensional array \mathbf{a}, which contains three rows and four columns can be shown as follows int a[3][4];

$a[0][0]$	$a[0][1]$	$a[0][2]$	$a[0][3]$
$a[1][0]$	$a[1][1]$	$a[1][2]$	$a[1][3]$
$a[2][0]$	$a[2][1]$	$a[2][2]$	$a[2][3]$

Thus, every element in the array \mathbf{a} is identified by an element name of the form $\mathbf{a}[\mathbf{i}][\mathbf{j}]$, where 'a' is the name of the array, and ' 1 ' and ' j ' are the row and column subscript respectively that uniquely identify each element in ' a '.

Initializing Two-Dimensional Arrays

Multidimensional arrays may be initialized by specifying bracketed values for each row. Following is an array with 3 rows and each row has 4 columns.
int $\mathrm{a}[3][4]=\{$
$\{0,1,2,3\}, / *$ initializers for row indexed by $0 * /$
$\{4,5,6,7\}, /^{*}$ initializers for row indexed by $1 * /$
$\{8,9,10,11\} / *$ initializers for row indexed by $2 * /$

\};

The nested braces, which indicate the intended row, are optional. The following initialization is equivalent to the previous example -

$$
\text { int a[3][4] }=\{0,1,2,3,4,5,6,7,8,9,10,11\} ;
$$

Accessing Two-Dimensional Array Elements

An element in a two-dimensional array is accessed by using the subscripts, i.e., row index and column index of the array. For example -
int val $=\mathrm{a}[2][3] ;$
The above statement will take the 4th element from the 3rd row of the array.

Assignments based on 2D arrays:

1) Write a program to find maximum and minimum elements of a matrix.
2) Write a program to calculate sum of all elements of a matrix.
3) Write a program to calculate sum of all even elements of a matrix.
4) Write a program to calculate sum of all upper triangular matrix elements.
5) Write a program to calculate sum of all diagonal elements of a matrix.
6) Write a program to calculate addition of two matrices of order $\mathrm{m} * \mathrm{n}$.
7) Write a program to calculate multiplication of two matrices.
8) Write a program to display transpose of a matrix.
9) Write a program to calculate sum of elements of each row and column.
10) Write a program to check whether a input matrix is identity matrix or not.
\square Date \square

Exercise 9: Strings

Strings in C

Strings are defined as an array of characters. The difference between a character array and a string is the string is terminated with a special character ' 10 '.

Declaration of strings: Declaring a string is as simple as declaring a one dimensional array. Below is the basic syntax for declaring a string.
char str_name[size];
In the above syntax str_name is any name given to the string variable and size is used to define the length of the string, i.e the number of characters string will store. Please keep in mind that there is an extra terminating character which is the Null character (' $\backslash 0$ ') used to indicate termination of string which differs strings from normal character arrays.
Initializing a String: A string can be initialized in different ways. We will explain this with the help of an example. Below is an example to declare a string with name as str and initialize it with "Pune".

1. char str[] = "Pune";
2. char $\operatorname{str}[50]=$ "Pune";
3. char $\operatorname{str}[]=\left\{{ }^{\prime} \mathrm{P}^{\prime},{ }^{\prime} \mathrm{u}^{\prime}, \mathrm{'n}^{\prime},{ }^{\prime} \mathrm{e}^{\prime}\right\}$;

String Input and Output:

Functions gets() and puts() are two string functions to take string input from the user and display it respectively. Following program illustrate string input and output

```
#include<stdio.h>
void main()
{
    char name[30];
    printf("Enter name: ");
    gets(name); //Function to read string from user.
    print("Name: ");
    puts(name); //Function to display string.
}
```


* Standard String Handling Functions:

Sr.No. Function \& Purpose

Copies string s2 into string s1.
2
strcat(s1, s2);

	Concatenates string s2 onto the end of string s1.
3	strlen(s1); Returns the length of string s1.
4	strcmp(s1, s2); Returns 0 if s1 and s2 are the same; less than 0 if s1<s2; greater than 0 if s1>s2.
5	strchr(s1, ch); Returns a pointer to the first occurrence of character ch in string s1.
6	strstr(s1, s2); Returns a pointer to the first occurrence of string s2 in string s1.

Assignments based on Strings:

1. Write a menu driven program to perform the following operations on strings using standard library functions:

> 1. Length 2. Copy 3. Concatenation 4. Compare
2. Write a program which accepts a sentence from the user and alters it as follows: Every space is replaced by *, case of all alphabets is reversed, digits are replaced by?
3. Write a program to accept a string and then count the occurrences of a specific character of a string.
4. Write a program to count the occurrences of vowel from a input string.
5. Write a program to calculate length of string without using standard functions.
6. Write a program to copy string without using standard function.
7. Write a program to connect two different strings without using standard function.

Exercise 10: Functions

* WHAT IS C FUNCTION?

A large C program is divided into basic building blocks called C function. C function contains set of instructions enclosed by " $\}$ " which performs specific operation in a C program. Actually, Collection of these functions creates a C program.

Note:

- Any C program contains at least one function.
- If a program contains only one function, it must be main().
- If a C program contains more than one function, then one (and only one) of these functions must be main(), because program execution always begins with main().
- There is no limit on the number of functions that might be present in a C program.
- Each function in a program is called in the sequence specified by the function calls in main().
- After each function has done its task, control returns to main(). When main()runs out of function calls, the program ends.

C functions can be classified into two categories,

1. Library functions

2. User-defined functions

Library functions are those functions which are already defined in C library, example printf(), $\operatorname{scanf}(), \operatorname{strcat}()$ etc. You just need to include appropriate header files to use these functions. These are already declared and defined in C libraries.

A User-defined functions on the other hand, are those functions which are defined by the user at the time of writing program. These functions are made for code reusability and for saving time and space.

Benefits of Using Functions

It provides modularity to your program's structure.
It makes your code reusable. You just have to call the function by its name to use it, wherever required.
In case of large programs with thousands of code lines, debugging and editing becomes easier if you use functions.

It makes the program more readable and easy to understand.

C FUNCTION DECLARATION, FUNCTION CALL AND FUNCTION DEFINITION:

- There are 3 aspects in each C function. They are,
- Function declaration or prototype - This informs compiler about the function name, function parameters and return value's data type.
- Function call - This calls the actual function Function definition - This contains all the statements to be executed.

Cfunctions aspects	Syntax
- function definition	- Return_type function_name (arguments l Body of function; \}
- function call	- function_name (arguments list);
- function declaration	- return_type function_name (argument list);

Assignments based on Functions:

1. Write a function isEven, which accepts an integer as parameter and returns 1 if the number is even, and 0 otherwise. Use this function in main to accept n numbers and check if they are even or odd.
2. Write a program to calculate sum of digits of a input number using function.
3. Write a program to calculate x^{y} using user defined fuction.
4. Write a function which accepts one number. Function should return 1 if the number is Perfect No, otherwise function should return 0 . Use this function in main to display whether a input number is perfect number or not.
5. Write a function, which accepts a character and integer n as parameter and displays the next n characters.
6. Write a function isPrime, which accepts an integer as parameter and returns 1 if the number isprime and 0 otherwise. Use this function in main to display the first 10 prime numbers.
7. Write a program to find factorial of a input number using user defined function.
8. Write a program to calculate sum of following series up to n terms.

$$
\text { Sum }=X+X^{2} / 2!+X^{3} / 3!+\ldots \ldots
$$

\square Date \square

Exercise 11: Pointers and Structure

Pointers in C language is a variable that stores/points the address of another variable. A Pointer in C is used to allocate memory dynamically i.e. at run time. The pointer variable might be belonging to any of the data type such as int, float, char, double, short etc.

Pointer Syntax : data_type *var_name;
Example : int *p; char *p;
Where, * is used to denote that " p " is pointer variable and not a normal variable.

KEY POINTS TO REMEMBER ABOUT POINTERS IN C:

- Normal variable stores the value whereas pointer variable stores the address of the variable.
- Always C pointer is initialized to null, i.e. int *p = null.
- The value of null pointer is 0 .
- \& symbol is used to get the address of the variable.
- symbol is used to get the value of the variable that the pointer is pointing to.
- If a pointer in C is assigned to NULL, it means it is pointing to nothing.
- Two pointers can be subtracted to know how many elements are available between these two pointers.
- But, Pointer addition, multiplication, division are not allowed.
- The size of any pointer is 2 byte (for 16 bit compiler).

Structures in C:

What is a structure?

A structure is a user defined data type in $\mathrm{C} / \mathrm{C}++$. A structure creates a data type that can be used to group items of possibly different types into a single type.

How to create a structure?

'struct' keyword is used to create a structure.
How to declare structure variables?
A structure variable can either be declared with structure declaration or as a separate declaration like basic types.
Example :
struct address
\{
char name[50];
char street[100];
char city[50];
char state[20];
int pin;
\};

How to access structure elements?

Structure members are accessed using dot (.) operator.
Array allows to define type of variables that can hold several data items of the same kind. Similarly structure is another user defined data type available in C that allows to combine data items of different kinds.

Structures are used to represent a record. Suppose you want to keep track of your books in a library. You might want to track the following attributes about each book -

- Title
- Author
- Subject

Assignments based on Pointers and Structures:

1. Write a program to display the elements of an array containing n integers in the reverse order using a pointer to the array.
2. Accept n integers in array A. Pass this array and two counter variables to a function which will set the first counter to the total number of even values in the array and the other to the total number of odd values. Display these counts in main. (Hint: Pass the addresses of the counters to the function)
3. Accept n integers in an array. Copy only the non-zero elements to another array (allocated using dynamic memory allocation). Calculate the sum and average of non-zero elements.
4. Write a program to allocate memory dynamically for n integers such that the memory is initialized to 0 . Accept the data from the user and find the range of the data elements.
5. Accept the number of rows (m) and columns (n) for a matrix and dynamically allocate memory for the matrix. Accept and display the matrix using pointers.
6. Create a structure employee (id, name, salary). Accept details of n employees and write a menu driven program to perform the following operations. Write separate functions for the different options
7. Search by name
8. Search by id
9. Display all
10. Create a structure Book (Bno, Bname, Price). Accept details of n Books and write a menu driven program to perform the following operations options.
i. Display all Books having price >500
ii. Display Book having maximum price
\square Date \square

Section-II

DBMS

Relational Model

* What is Relational Model?

The relational model represents the database as a collection of relations. A relation is nothing but a table of values. Every row in the table represents a collection of related data values. These rows in the table denote a real-world entity or relationship.

The table name and column names are helpful to interpret the meaning of values in each row. The data are represented as a set of relations. In the relational model, data are stored as tables. However, the physical storage of the data is independent of the way the data are logically organized.

* Some popular Relational Database Management Systems are:

> DB2 and Informix Dynamic Server - IBM
> Oracle and RDB - Oracle
> SQL Server and Access - Microsoft

* Relational Model Concepts:

1. Attribute: Each column in a Table. Attributes are the properties which define a relation. e.g., Student_Rollno, NAME,etc.
2. Tables - In the Relational model the, relations are saved in the table format. It is stored along with its entities. A table has two properties rows and columns. Rows represent records and columns represent attributes.
3. Tuple - It is nothing but a single row of a table, which contains a single record.
4. Relation Schema: A relation schema represents the name of the relation with its attributes.
5. Degree: The total number of attributes which in the relation is called the degree of the relation.
6. Cardinality: Total number of rows present in the Table.
7. Column: The column represents the set of values for a specific attribute.
8. Relation instance - Relation instance is a finite set of tuples in the RDBMS system. Relation instances never have duplicate tuples.
9. Relation key - Every row has one, two or multiple attributes, which is called relation key.
10. Attribute domain - Every attribute has some pre-defined value and scope which is known as attribute domain

* Relational Integrity constraints:

Relational Integrity constraints are referred to conditions which must be present for a valid relation. These integrity constraints are derived from the rules in the mini-world that the database represents. There are many types of integrity constraints. Constraints on the Relational database management system are mostly divided into three main categories are:

1. Domain constraints
2. Key constraints
3. Referential integrity constraints

Domain Constraints:

Domain constraints can be violated if an attribute value is not appearing in the corresponding domain or it is not of the appropriate data type.

Domain constraints specify that within each tuple, and the value of each attribute must be unique. This is specified as data types which include standard data type's integers, real numbers, characters, Booleans, variable length strings, etc.

* Key constraints:

An attribute that can uniquely identify a tuple in a relation is called the key of the table. The value of the attribute for different tuples in the relation has to be unique.

Example:

In the given table, CustomerID is a key attribute of Customer Table. It is most likely to have a single key for one customer, CustomerID $=1$ is only for the CustomerName =" Google".

CustomerID	CustomerName	Status
1	Google	Active
2	Amazon	Active
3	Apple	Inactive

* Referential integrity constraints:

Referential integrity constraints are base on the concept of Foreign Keys. A foreign key is an important attribute of a relation which should be referred to in other relationships. Referential integrity constraint state happens where relation refers to a key attribute of a different or same relation. However, that key element must exist in the table.

Example:

In the above example, we have 2 relations, Customer and Billing.
Tuple for CustomerID $=1$ is referenced twice in the relation Billing. So we know CustomerName=Google has billing amount $\$ 300$

* Operations in Relational Model:

Four basic update operations performed on relational database model are Insert, update, delete and select.
> Insert is used to insert data into the relation
$>$ Delete is used to delete tuples from the table.
> Modify allows you to change the values of some attributes in existing tuples.
$>$ Select allows you to choose a specific range of data.

Whenever one of these operations are applied, integrity constraints specified on the relational database schema must never be violated.

* DBMS Keys: Primary, Candidate, Super, Alternate and Foreign (Example)

* What are Keys?

A DBMS key is an attribute or set of an attribute which helps you to identify a row(tuple) in a relation(table). They allow you to find the relation between two tables. Keys help you uniquely identify a row in a table by a combination of one or more columns in that table.

Example:

Employee ID	FirstName	LastName
11	Andrew	Johnson
22	Tom	Wood
33	Alex	Hale

In the above-given example, employee ID is a primary key because it uniquely identifies an employee record. In this table, no other employee can have the same employee ID.

* Why we need a Key?

Here, are reasons for using Keys in the DBMS system.
> Keys help you to identify any row of data in a table. In a real-world application, a table could contain thousands of records. Moreover, the records could be duplicated. Keys ensure that you can uniquely identify a table record despite these challenges.
$>$ Allows you to establish a relationship between and identify the relation between tables
$>$ Help you to enforce identity and integrity in the relationship.
DBMS has following seven types of Keys each have their different functionality:

What is the Super key?

A superkey is a group of single or multiple keys which identifies rows in a table. A Super key may have additional attributes that are not needed for unique identification.

Example:

EmpSSN	EmpNum	Empname
9812345098	AB05	Shown
9876512345	AB06	Roslyn
199937890	AB07	James

In the above-given example, EmpSSN and EmpNum name are superkeys.

What is a Primary Key?

A column or group of columns in a table which helps us to uniquely identifies every row in that table is called a primary key. This DBMS can't be a duplicate. The same value can't appear more than once in the table.

Rules for defining Primary key:

1. Two rows can't have the same primary key value
2. It must for every row to have a primary key value.
3. The primary key field cannot be null.
4. The value in a primary key column can never be modified or updated if any foreign key refers to that primary key.

Example:

In the following example, <code>StudID</code> is a Primary Key.

StudID	Roll No	First Name	LastName	Email
1	11	Tom	Price	abc@gmail.com
2	12	Nick	Wright	xyz@ gmail.com
3	13	Dana	Natan	mno@yahoo.com

What is the Alternate key?

All the keys which are not primary key are called an alternate key. It is a candidate key which is currently not the primary key. However, A table may have single or multiple choices for the primary key.

Example: In this table.
StudID, Roll No, Email are qualified to become a primary key. But since StudID is the primary key, Roll No, Email becomes the alternative key.

StudID	Roll No	First Name	LastName	Email
1	11	Tom	Price	abc@ gmail.com
2	12	Nick	Wright	xyz@ gmail.com
3	13	Dana	Natan	mno@yahoo.com

What is a Candidate Key?

A super key with no repeated attribute is called candidate key.
The Primary key should be selected from the candidate keys. Every table must have at least a single candidate key.

Properties of Candidate key:

> It must contain unique values
> Candidate key may have multiple attributes
> Must not contain null values
> It should contain minimum fields to ensure uniqueness
> Uniquely identify each record in a table
Example: In the given table Stud ID, Roll No, and email are candidate keys which help us to uniquely identify the student record in the table.

StudID	Roll No	First Name	LastName	Email
1	11	Tom	Price	abc@ gmail.com
2	12	Nick	Wright	xyz@ gmail.com
3	13	Dana	Natan	mno@yahoo.com

What is the foreign key?

A foreign key is a column which is added to create a relationship with another table. Foreign keys help us to maintain data integrity and also allows navigation between two different instances of an entity. Every relationship in the model needs to be supported by a foreign key.

Example:

DeptCode	DeptName	
001	Science	
002	English	
005	Computer	Lname
Teacher ID	Fname	Warner
B002	David	Joseph
B017	Sara	Brunton
B009	Mike	

In this example, we have two table, teach and department in a school. However, there is no way to see which search work in which department.

In this table, adding the foreign key in Deptcode to the Teacher name, we can create a relationship between the two tables.

Teacher ID	DeptCode	Fname	Lname
B002	002	David	Warner
B017	002	Sara	Joseph
B009	001	Mike	Brunton

This concept is also known as Referential Integrity.

What is the Compound key?

Compound key has many fields which allow you to uniquely recognize a specific record. It is possible that each column may be not unique by itself within the database. However, when combined with the other column or columns the combination of composite keys become unique.

Example:

OrderNo	PorductID	Product Name	Quantity
B005	JAP102459	Mouse	5
B005	DKT321573	USB	10
B005	OMG446789	LCD Monitor	20
B004	DKT321573	USB	15
B002	OMG446789	Laser Printer	3

In this example, OrderNo and ProductID can't be a primary key as it does not uniquely identify a record. However, a compound key of Order ID and Product ID could be used as it uniquely identified each record.

$>$ What is the Composite key?

A key which has multiple attributes to uniquely identify rows in a table is called a composite key. The difference between compound and the composite key is that any part of the compound key can be a foreign key, but the composite key may or maybe not a part of the foreign key.

What is a Surrogate Key?

An artificial key which aims to uniquely identify each record is called a surrogate key. These kind of key are unique because they are created when you don't have any natural primary key. They do not lend any meaning to the data in the table. Surrogate key is usually an integer.

Fname	Lastname	Start Time	End Time
Anne	Smith	$09: 00$	$18: 00$
Jack	Francis	$08: 00$	$17: 00$
Anna	McLean	$11: 00$	$20: 00$
Shown	Willam	$14: 00$	$23: 00$

Above, given example, shown shift timings of the different employee. In this example, a surrogate key is needed to uniquely identify each employee.

Surrogate keys are allowed when
$>$ No property has the parameter of the primary key.
> In the table when the primary key is too big or complicated.

Difference between Primary key \& foreign key:

Primary Key	Foreign Key
Helps you to uniquely identify a record in the table.	It is a field in the table that is the primary key of another table.
Primary Key never accepts null values.	A foreign key may accept multiple null values.
Primary key is a clustered index and data in the DBMS table are physically organized in the sequence of the clustered index.	A foreign key cannot automatically create an index, clustered or non-clustered. However, you can mally create an index on the foreign key.
You can have the single Primary key in a table.	You can have multiple foreign keys in a table.

SQL (Structured Query Language)

$>$ What is SQL?

Structured Query language (SQL) pronounced as "S-Q-L" or sometimes as "See-Quel" is the standard language for dealing with Relational Databases. A relational database defines relationships in the form of tables.

SQL programming can be effectively used to insert, search, update, delete database records.
That doesn't mean SQL cannot do things beyond that. It can do a lot of things including, but not limited to, optimizing and maintenance of databases.

Relational databases like MySQL Database, Oracle, Ms SQL Server, Sybase, etc. use SQL.

> What is NoSQL?

NoSQL is a non-relational DBMS, that does not require a fixed schema, avoids joins, and is easy to scale. NoSQL database is used for distributed data stores with humongous data storage needs. NoSQL is used for Big data and real-time web apps. For example companies like Twitter, Facebook, Google that collect terabytes of user data every single day.

NoSQL database stands for "Not Only SQL" or "Not SQL." Though a better term would NoREL NoSQL caught on. Carl Strozz introduced the NoSQL concept in 1998.

Traditional RDBMS uses SQL syntax to store and retrieve data for further insights. Instead, a NoSQL database system encompasses a wide range of database technologies that can store structured, semi-structured, unstructured and polymorphic data.

Difference between SQL and NoSQL

Parameter	SQL	NOSQL
Definition	SQL databases are primarily called RDBMS or Relational Databases	NoSQL databases are primarily called as Non-relational or distributed database
Design for	Traditional RDBMS uses SQL syntax and queries to analyze and get the data for further insights. They are used for OLAP systems.	NoSQL database system consists of various kinds of database technologies. These databases were developed in response to the demands presented for the development of the modern application.
Query	Structured query language (SQL)	No declarative query language

Type	SQL databases are table based databases	NoSQL databases can be document based, key-value pairs, graph databases
Schema	SQL databases have a predefined schema	NoSQL databases use dynamic schema for unstructured data.
Ability to scale	SQL databases are vertically scalable	NoSQL databases are horizontally scalable
Examples	Oracle, Postgres, and MS-SQL.	MongoDB, Redis, , Neo4j, Cassandra, Hbase.
Best suited for	An ideal choice for the complex query intensive environment.	It is not good fit complex queries.
Hierarchical data storage	SQL databases are not suitable for hierarchical data storage.	More suitable for the hierarchical data store as it supports key-value pair method.
Variations	One type with minor variations.	Many different types which include keyvalue stores, document databases, and graph databases.
Development Year	It was developed in the 1970s to deal with issues with flat file storage	Developed in the late 2000s to overcome issues and limitations of SQL databases.
Open-source	A mix of open-source like Postgres \& MySQL, and commercial like Oracle Database.	Open-source
Consistency	It should be configured for strong consistency.	It depends on DBMS as some offers strong consistency like MongoDB, whereas others offer only offers eventual consistency, like Cassandra.
Best Used for	RDBMS database is the right option for solving ACID problems.	NoSQL is a best used for solving data availability problems
Importance	It should be used when data validity is super important	Use when it's more important to have fast data than correct data
Best option	When you need to support dynamic queries	Use when you need to scale based on changing requirements
Hardware	Specialized DB hardware (Oracle Exadata, etc.)	Commodity hardware
Network	Highly available network (Infiniband,	Commodity network (Ethernet, etc.)

	Fabric Path, etc.)	
Storage Type	Highly Available Storage (SAN, RAID, etc.)	Commodity drives storage (standard HDDs, JBOD)
Best features	Cross-platform support, Secure and free	Easy to use, High performance, and Flexible tool.
Top Companies Using	Hootsuite, CircleCI, Gauges	Airbnb, Uber, Kickstarter
Average salary	The average salary for any professional SQL Developer is $\$ 84,328$ per year in the U.S.A.	The average salary for "NoSQL developer" ranges from approximately $\$ 72,174$ per year
ACID vs. BASE Model	ACID(Atomicity, Consistency, Isolation, and Durability) is a standard for RDBMS	Base (Basically Available, Soft state, Eventually Consistent) is a model of many NoSQL systems

$>$ When to use SQL?

> SQL is the easiest language used to communicate with the RDBMS
> Analyzing behavioral related and customized sessions
> Building custom dashboards
> It allows you to store and gets data from the database quickly
> Preferred when you want to use joins and execute complex queries

When to use NoSQL?

Interest over time \quad Google Trends
mongodb mysql

$>$ NoSQL DB (mongo) Vs RDBMS DB (mysql) Google Trend

$>$ When ACID support is not needed
$>$ When Traditional RDBMS model is not enough
$>$ Data which need a flexible schema
> Constraints and validations logic not required to be implemented in database
> Logging data from distributed sources
> It should be used to store temporary data like shopping carts, wish list and session data

SQL language is divided into four types of primary language statements: DML, DDL, DCL and TCL. Using these statements, we can define the structure of a database by creating and altering database objects, and we can manipulate data in a table through updates or deletions. We also can control which user can read/write data or manage transactions to create a single unit of work.

The four main categories of SQL statements are as follows:

1. DML (Data Manipulation Language)
2. DDL (Data Definition Language)
3. DCL (Data Control Language)
4. TCL (Transaction Control Language)

DML (Data Manipulation Language):

DML statements affect records in a table. These are basic operations we perform on data such as selecting a few records from a table, inserting new records, deleting unnecessary records, and updating/modifying existing records.

DML statements include the following:

SELECT - select records from a table
INSERT - insert new records

UPDATE - update/Modify existing records
DELETE - delete existing records

1. Insert: - Insert data into a table.

Syntax:-
INSERT INTO table_name (column, column1, column2, column3, ...)
VALUES (value, value1, value2, value3 ...)

Example:-

INSERT INTO Student (Roll_No, Name, Age) VALUES ('5','Satyavan','19');

2. Update :-

The UPDATE statement in SQL is used to update the data of an existing table in database. We can update single columns as well as multiple columns using UPDATE statement as per our requirement.

Syntax :

```
UPDATE table_name SET column1 = value1, column2 = value2,.-.
WHERE condition;
table_name: name of the table
column1: name of first , second, third column....
value1: new value for first, second, third column....
Condition: condition to select the rows for which the
    values of columns need to be updated.
```


Example:-

Updating single column: Update the column NAME and set the value to 'Satyavan' in all the rows where Age is 35 .
UPDATE Student SET NAME = 'Satyavan' WHERE Age = 35;

3.DELETE Statement

The DELETE Statement in SQL is used to delete existing records from a table. We can delete a single record or multiple records depending on the condition we specify in the WHERE clause.

DELETE FROM table_name WHERE some_condition;
table_name: name of the table
some_condition: condition to choose particular record.
Example:-

DDL (Data Definition Language):

DDL statements are used to alter/modify a database or table structure and schema. These statements handle the design and storage of database objects.
> CREATE - create a new Table, database, schema
> ALTER - alter existing table, column description
> DROP - delete existing objects from database.

The Create Command:

The create table command defines each column of the table uniquely. Each column has minimum of three attributes.
> Name
> Data type
> Size (column width).
Each table column definition is a single clause in the create table syntax. Each table column definition is separated from the other by a comma.
Finally, the SQL statement is terminated with a semicolon.

Create Table "tablename"
("column1" "data type",
"column2" "data type",
"column3" "data type",
...
"ColumnN" "data type");
The Structure of Create Table Command
Table name is Student

Column name	Data type	Size
Roll_no	number	3
Name	Varchar2	30
DOB	Date	
Address	varchar2	50

Example:

CREATE TABLE Student
(Roll_no number(3),
Name varchar2(30),
DOB date,
Address varchar2(50));

The DROP Command:

Syntax:
DROP TABLE <table_name>
Example:
DROP TABLE Student;
It will destroy the table and all data which will be recorded in it.

The ALTER Command:

By The use of ALTER TABLE Command we can modify our exiting table.
Adding New Columns
Syntax:
ALTER TABLE <table_name>
ADD (<NewColumnName> <Data_Type>(<size>),n)
Example:
ALTER TABLE Student ADD (Age number(2), Marks number(3));
The Student table is already exist and then we added two more columns Age and Marks respectively, by the use of above command.

Dropping a Column from the Table
Syntax:
ALTER TABLE <table_name> DROP COLUMN <column_name>
Example:
ALTER TABLE Student DROP COLUMN Age;
This command will drop particular column
Modifying Existing Table
Syntax:
ALTER TABLE <table_name> MODIFY (<column_name> <NewDataType>(<NewSize>))
Example:
ALTER TABLE Student MODIFY (Name Varchar2(40));
The Name column already exist in Student table, it was char and size 30, now it is modified by Varchar2 and size 40.

Restriction on the ALTER TABLE:

Using the ALTER TABLE clause the following tasks cannot be performed.

- Change the name of the table
- Change the name of the column

Decrease the size of a column if table data exists

DCL (Data Control Language):

DCL statements control the level of access that users have on database objects.
$>$ GRANT - allows users to read/write on certain database objects
$>$ REVOKE - keeps users from read/write permission on database objects

$>$ TCL (Transaction Control Language):

TCL statements allow you to control and manage transactions to maintain the integrity of data within SQL statements.
$>$ BEGIN Transaction - opens a transaction
$>$ COMMIT Transaction - commits a transaction
$>$ ROLLBACK Transaction - ROLLBACK a transaction in case of any error

> Fetching Data in the Table (Select Command)

Once data has been inserted into a table, the next most logical operation would be to view what has been inserted. The SELECT SQL verb is used to achieve this.

All Rows and All Columns

Syntax: SELECT * FROM Table_name;
eg: Select * from Student;
It will show all the table records.
SELECT First_name, DOB FROM STUDENT WHERE Roll_no = '101'; Cover it by single inverted comma if its datatype is varchar or char.

This Command will show one row. Because you have given condition for only one row and particular records. If condition which has given in WHERE Clause is true then records will be fetched otherwise it will show no records selected.

Eliminating Duplicates:

A table could hold duplicate rows. In such a case, you can eliminate duplicates.
Syntax: SELECT DISTINCT col, col, .., FROM table_name;
eg : SELECT DISTINCT * FROM Student;
or : SELECT DISTINCT first_name, city, pincode FROM Student;
It scans through entire rows, and eliminates rows that have exactly the same contents in each column.

> Sorting DATA:

The Rows retrieved from the table will be sorted in either Ascending or Descending order depending on the condition specified in select statement, the Keyword has used ORDER BY.

SELECT * FROM Student
ORDER BY First_Name;
it will in show records as alphabetical order from A to Z ascending order. If you want Descending order means Z to A then used DESC Keyword at last.
eg : SELECT first_name, city,pincode FROM Student
ORDER BY First_name DESC;

Aggregate Functions are all about

- Performing calculations on multiple rows
- Of a single column of a table
- And returning a single value.

Aggregate functions namely;

1) COUNT
2) SUM
3) AVG
4) MIN
5) MAX

Why use aggregate functions.

From a business perspective, different organization levels have different information requirements. Top levels managers are usually interested in knowing whole figures and not necessary the individual details.

Aggregate functions allow us to easily produce summarized data from our database.

- Least rented movies.
- Most rented movies.
- Average number that each movie is rented out in a month.

We easily produce above reports using aggregate functions.

Aggregate functions in details

COUNT Function:

The COUNT function returns the total number of values in the specified field. It works on both numeric and non-numeric data types. All aggregate functions by default exclude nulls values before working on the data.

COUNT (*) is a special implementation of the COUNT function that returns the count of all the rows in a specified table. COUNT (*) also considers Nulls and duplicates.

The table shown below shows data in movierentals table

reference_- number	transaction_ date	return_date	membership_ number	movie_id	movie_ returned
11	$20-06-2012$	NULL	1	1	0
12	$22-06-2012$	$25-06-$ 2012	1	2	0
13	$22-06-2012$	$25-06-$ 2012	3	2	0
14	$21-06-2012$	$24-06-$ 2012	2	2	0
15	$23-06-2012$	NULL	3	3	0

Let's suppose that we want to get the number of times that the movie with id 2 has been rented out SELECT COUNT(`movie_id`) FROM `movierentals` WHERE `movie_id` = 2;

Executing the above query in SQL

DISTINCT Keyword:

The DISTINCT keyword that allows us to omit duplicates from our results. This is achieved by grouping similar values together.

To appreciate the concept of Distinct, lets execute a simple query

SELECT `movie_id` FROM `movierentals`;

movie_id
1
2
2
2
3

Now let's execute the same query with the distinct keyword -
SELECT DISTINCT `movie_id` FROM `movierentals`;
As shown below, distinct omits duplicate records from the results.

movie_id
1
2
3

MIN function:

The MIN function returns the smallest value in the specified table field.
As an example, let's suppose we want to know the year in which the oldest movie in our library was released, we can use MIN function to get the desired information.

The following query helps us achieve that
SELECT MIN(`year_released`) FROM `movies`;
Executing the above query in SQL

MIN('year_released')
2005

MAX function:

Just as the name suggests, the MAX function is the opposite of the MIN function. It returns the largest value from the specified table field.

Let's assume we want to get the year that the latest movie in our database was released. We can easily use the MAX function to achieve that.

The following example returns the latest movie year released.
SELECT MAX(year_released`) FROM`movies`;

MAX('year_released')
2012

SUM function:

Suppose we want a report that gives total amount of payments made so far. We can use the SUM function which returns the sum of all the values in the specified column. SUM works on numeric fields only. Null values are excluded from the result returned.

The following table shows the data in payments table-

payment_ id	membership_ number	payment_ date	Description	amount__ paid	external__ reference _number
1	1	$23-07-2012$	Movie rental payment	2500	11
2	1	$25-07-2012$	Movie rental payment	2000	12
3	3	$30-07-2012$	Movie rental payment	6000	NULL

The query shown below gets the all payments made and sum them up to return a single result.
SELECT SUM(`amount_paid`) FROM `payments`;

SUM('amount_paid')
10500

AVG function:

AVG function returns the average of the values in a specified column. Just like the SUM function, it works only on numeric data types.

Suppose we want to find the average amount paid. We can use the following query SELECT AVG(`amount_paid`) FROM `payments`;

AVG('amount_paid')
3500

Normalization

Normalization is a process of organizing the data in database to avoid data redundancy, insertion anomaly, update anomaly \& deletion anomaly. Let's discuss about anomalies first then we will discuss normal forms with examples.

$>$ Anomalies in DBMS

There are three types of anomalies that occur when the database is not normalized. These are Insertion, update and deletion anomaly. Let's take an example to understand this.

Example: Suppose a manufacturing company stores the employee details in a table named employee that has four attributes: emp_id for storing employee's id, emp_name for storing employee's name, emp_address for storing employee's address and emp_dept for storing the department details in which the employee works. At some point of time the table looks like this:

emp_id	emp_name	emp_address	emp_dept
101	Rick	Delhi	D001
101	Rick	Delhi	D002
123	Maggie	Agra	D890
166	Glenn	Chennai	D900

The above table is not normalized. We will see the problems that we face when a table is not normalized.
Update anomaly: In the above table we have two rows for employee Rick as he belongs to two departments of the company. If we want to update the address of Rick then we have to update the same in two rows or the data will become inconsistent. If somehow, the correct address gets updated in one department but not in other then as per the database, Rick would be having two different addresses, which is not correct and would lead to inconsistent data.
$>$ Insert anomaly: Suppose a new employee joins the company, who is under training and currently not assigned to any department then we would not be able to insert the data into the table if emp_dept field doesn't allow nulls.
$>$ Delete anomaly: Suppose, if at a point of time the company closes the department D890 then deleting the rows that are having emp_dept as D890 would also delete the information of employee Maggie since she is assigned only to this department.

To overcome these anomalies we need to normalize the data. In the next section we will discuss about normalization.

* Normalization

Here are the most commonly used normal forms:

- First normal form(1NF)
- Second normal form(2NF)
- Third normal form(3NF)
- Boyce \& Codd normal form (BCNF)

> First normal form (1NF):

As per the rule of first normal form, an attribute (column) of a table cannot hold multiple values. It should hold only atomic values.
Example: Suppose a company wants to store the names and contact details of its employees. It creates a table that looks like this:

Emp_id	Emp_name	Emp_address	Emp_mobile
101	Herschel	New Delhi	8912312390
102	Jon	Kanpur	8812121212
9900012222			
103	Ron	Chennai	7778881212
104	Lester	Bangalore	9990000123
8123450987			

Two employees (Jon \& Lester) are having two mobile numbers so the company stored them in the same field as you can see in the table above.
This table is not in 1NF as the rule says "each attribute of a table must have atomic (single) values", the emp_mobile values for employees Jon \& Lester violates that rule.

To make the table complies with 1NF we should have the data like this:

Emp_id	Emp_name	Emp_address	Emp_mobile
101	Herschel	New Delhi	8912312390
102	Jon	Kanpur	8812121212
102	Jon	Kanpur	9900012222
103	Ron	Chennai	7778881212
104	Lester	Bangalore	9990000123
104	Lester	Bangalore	8123450987

$>$ Second normal form (2NF):

A table is said to be in 2NF if both the following conditions hold:

- Table is in 1NF (First normal form)
- No non-prime attribute is dependent on the proper subset of any candidate key of table.

An attribute that is not part of any candidate key is known as non-prime attribute.

Example: Suppose a school wants to store the data of teachers and the subjects they teach. They create a table that looks like this: Since a teacher can teach more than one subjects, the table can have multiple rows for a same teacher.

Teacher_id	Subject	Teacher_age
111	Maths	38
111	Physics	38
222	Biology	38
333	Physics	40
333	Chemistry	40

Candidate Keys: \{teacher_id, subject \}
Non prime attribute: teacher_age

The table is in 1 NF because each attribute has atomic values. However, it is not in 2NF because non prime attribute teacher_age is dependent on teacher_id alone which is a proper subset of candidate key. This violates the rule for 2 NF as the rule says "no non-prime attribute is dependent on the proper subset of any candidate key of the table".

To make the table complies with 2 NF we can break it in two tables like this: teacher_details table:

Teacher_id	Teacher_age
111	38
222	38
333	40

teacher_subject table:

teacher_id	Subject
111	Maths
111	Physics
222	Biology
333	Physics
333	Chemistry

Now the tables comply with Second normal form (2NF).

> Third Normal form (3NF)

A table design is said to be in 3NF if both the following conditions hold:

- Table must be in 2NF
- Transitive functional dependency of non-prime attribute on any super key should be removed.

An attribute that is not part of any candidate key is known as non-prime attribute.

In other words 3 NF can be explained like this: A table is in 3NF if it is in 2NF and for each functional dependency X -> Y at least one of the following conditions hold:

- $\quad X$ is a super key of table
- $\quad \mathrm{Y}$ is a prime attribute of table

An attribute that is a part of one of the candidate keys is known as prime attribute.

Example: Suppose a company wants to store the complete address of each employee, they create a table named employee_details that looks like this:

emp_idemp_name	emp_zip	emp_state	emp_city	emp_district	
1001	John	282005	UP	Agra	Dayal Bagh
1002	Ajeet	222008	TN	Chennai	M-City
1006	Lora	282007	TN	Chennai	Urrapakkam
1101	Lilly	292008	UK	Pauri	Bhagwan
1201	Steve	222999	MP	Gwalior	Ratan

Super keys: $\left\{e m p _i d\right\},\left\{e m p _i d\right.$, emp_name $\},\left\{e m p _i d, e m p _n a m e, e m p _z i p\right\} .$. so on Candidate Keys: \{emp_id\}
Non-prime attributes: all attributes except emp_id are non-prime as they are not part of any candidate keys.

Here, emp_state, emp_city \& emp_district dependent on emp_zip. And, emp_zip is dependent on emp_id that makes non-prime attributes (emp_state, emp_city \& emp_district) transitively dependent on super key (emp_id). This violates the rule of 3NF.

To make this table complies with 3NF we have to break the table into two tables to remove the transitive dependency:

employee table:

Emp_id	Emp_name	Emp_zip
1001	John	282005
1002	Ajeet	222008
1006	Lora	282007
1101	Lilly	292008
1201	Steve	222999

employee_zip table:

emp_zip	emp_state	emp_city	emp_district
282005	UP	Agra	Dayal Bagh
222008	TN	Chennai	M-City
282007	TN	Chennai	Urrapakkam
292008	UK	Pauri	Bhagwan
222999	MP	Gwalior	Ratan

$>$ Boyce Codd normal form (BCNF):

It is an advance version of 3 NF that's why it is also referred as 3.5 NF . BCNF is stricter than 3NF. A table complies with BCNF if it is in 3NF and for every functional dependency $\mathrm{X}->\mathrm{Y}$, X should be the super key of the table.

Example: Suppose there is a company wherein employees work in more than one department. They store the data like this:

emp_idemp_nationality	emp_dept	dept_type	dept_no_of_emp		
1001	Austrian	Production and planning	D001	200	
1001	Austrian	Stores	D001	250	
1002	American	design and technical support	D134	100	
1002	American	Purchasing department	D134	600	
Functional					
emp_id->emp_nationality emp_dept -> \{dept_type, dept_no_of_emp					

Candidate key: \{emp_id, emp_dept \}

The table is not in BCNF as neither emp_id nor emp_dept alone are keys.

To make the table comply with BCNF we can break the table in three tables like this:

emp_nationality table:

Emp_id	Emp_nationality
1001	Austrian
1002	American

emp_dept table:

Emp_dept	Dept_type	Dept_no_of_emp
Production and planning	D001	200
Stores	D001	250
design and technical support	D134	100
Purchasing department	D134	600

emp_dept_mapping table:

Emp_id	Emp_dept
1001	Production and planning
1001	Stores
1002	design and technical support
1002	Purchasing department

Functional dependencies:

> emp_id -> emp_nationality
emp_dept -> \{dept_type, dept_no_of_emp\}
Candidate keys:
For first table: emp_id
For second table: emp_dept
For third table: $\left\{e m p _i d\right.$, emp_dept $\}$

This is now in BCNF as in both the functional dependencies left side part is a key.

Exercise 1: DDL (Data Definition Language)

Creating Tables:

* Create table for the information given below by choosing appropriate data types and also specifying proper primary key constraint on fields which are underlined

1. Player (player_id , name, Birth_date ,Birth_place, game_name)
2. Student (roll_no, name,class, per,birth_date)
3. Project (project_id, project_name, project_description ,status)
4. Donor (donor_no, donor_name,blood_group,last_date)

* Create table for the information given below by choosing appropriate data types and also specifying proper primary key constraint on fields which are underlined.

1. Property (property_id, property_desc , area, rate, agri_status)
2. Actor (actor_id, Actor_name, birth_date)
3. Movie(movie-no, name, release-year)
4. Hospital(hno,hname,hcity)

* Create table for the information given below by choosing appropriate data types and also specifying proper primary key constraint on fields which are underlined.

1. Employee(ENo, EName, Joining_date,company_name,salary,Designation)
2. College(College_Code,College_Name,Address,Establish_year)
3. Doctor(Dno, Dname, Specialization,Qualification)
4. ClassRoom(CRoomNo,location, capacity)

Signature of the instructor \square Date \square Remark \square

Exercise 2: Alter Table and Drop Table

* Create table student(Roll_no, sname, date_of_birth). Add new column into student relation named address as a text data type and a column phone of data type integer.
* Create table driver (licence_no, Name, Address) and perform the following queries

1. Add new column age of data type integer.
2. Alter table by modifying driver_name to "Patil"
3. Alter table driver ,drop the column age.
4. Remove the driver table from the database.

* Create table Game (name, no-of-players, captain_name) and perform the following queries

1. Add new column game_no of data type integer.
2. Alter table by adding constraint uppercase to captain_name.
3. Modify table by adding the column game_duration.
4. Add column game_type with values cricket,hockey,tennis.
5. Remove game table from the database.

Signature of the instructor \square
Date \square Remark

Exercise 3: DML Commands

* Consider the following table Employee(ENo, EName, Salary, DOJ,Qualification) and answer the following query.

1. Insert at least five records into the table.
2. Update the salary of employee to 50000 whose ENo is 1 .
3. Delete the details of employee whose ENo is 5 .
4. Update the Qualification of employee to "MCS NET" whose Name is Mr.Satyavan.
5. Update the salary of employee to 40000 whose qualification is "MCS NET" and Name is "Ajay"

* Consider the following table Hospital (HNo, HName, Addr, Est_Year , speciality) and answer the following query.

1. Insert at least five records into the table.
2. Update an address of hospital to "Pimple Gurav" whose name is "Birla".
3. Update the specialty of hospital to "Multi" whose established year is between 1990 to 2000.
4. Delete the details of Hospital whose address is "Pimpri".

* Consider the following table Student (Roll_No, Name, class, DOB, college) and answer the following query.

1. Insert at least 10 records into the table.
2. Update the class of student to "TY" whose birth date is ' $18 / 03 / 1999$ '.
3. Delete the details of students whose college is "Dr.D Y Patil".
4. Update the college of student to "Dr. D Y Patil " whose name is "Yash".

Signature of the instructor \square Date \square Remark \square

Exercise 4: RDB without Constraints:

* Consider the following entities and their relationships. Create a RDB in 3 NF for the following and answer the queries:

Emp(eno ,ename ,designation ,salary,DOJ)
Dept(dno,dname ,loc)
The relationship between Dept \& Emp is one-to-many.

1. Insert at least five records into the tables.
2. Display the names of employees who are working in "Quality Department".
3. Display the name of employee who is 'Manager' of "Purchase Department".
4. Display the name of department whose location is "Baramati" and "Mr. Pawar" is working in it.
5. Display the names of employees whose salary is greater than 50000 and department is "Quality".

* Consider the following entities and their relationships. Create a RDB in 3 NF for the following and answer the queries:

Hospital(hno ,hname, city, Est_year)
Doctor(dno, dname, addr, Speciality)
The relationship between Hospital and Doctor is one - to - Many

1. Insert at least 10 records into the tables.
2. Display the names of hospitals which are located at "Pimpri" city.
3. Display the names of doctors who are working in "Birla" Hospital and city name is "Chinchwad".
4. Display the specialty and name of doctor who is working in "Ruby" hospital and his address is "Pimple Gurav".
5. Display the names of doctors whose speciality is "medicine"

* Consider the following entities and their relationships. Create a RDB in 3 NF for the

 following and answer the queries:Patient (PCode, PName, Addr, Disease)
Bed (Bed_No, RoomNo, loc)
Relationship: - A one-one relationship between patient and bed.

1. Insert at least five records into the tables.
2. Display the names of patients who are admitted in room no 101.
3. Display the disease of patient whose bed_No is 1 .
4. Give the roon_no and bed_no of patient whose name is "Mr Ajay".

Signature of the instructor \square Date \square
\square

Exercise 5: Table Creation with Constraints:

* Consider the following tables and integrity constraints given and create the tables accordingly:

1. Machine(Mid, MName NOT NULL, MType, MPrice, MCost)

Constraints: 1. MName should be in uppercase.
2. MType can be ('drilling', 'milling', 'lathe', 'turning', 'grinding').
3. MPrice should be greater than zero.

Table level constraint: MCost less than MPrice.
2. Policy(No, Name NOT NULL, Type, Sale_Date, Intro_date)

Constraints: 1. Name should be in lowercase.
2. Type can be ('life', 'vehicle', 'accident')

Table level constraint: Sale_date should be greater than Intro_date.
3. Employee (EmpNo, Emp_Name NOT NULL, Emp_desig, Emp_sal , Emp_uid)

Constraints:

1. Emp_name should be in uppercase.
2. Emp_desg can be ('Manager', 'staff', 'worker').
3. Emp_sal should be greater than zero.

Table level constraint: Emp_uid not equal to Emp_id
3 Room(room_no, type, price);
Constraints:

1. Room type must be one of single, double, family.
2. Price must be between Rs.500/- and 1000/-.
3. Room no must be between 1 and 100 .

Signature of the instructor \square Date \square Remark \square

Exercise 6: RDB with Constraints:

* Consider the following Entities and Relationships

Sales_order(ordNo, ordDate)
Client (clientNo, ClientName, addr)
Constraint: Primary key, ClientName should not be NULL.
A client can give one or more sales_orders ,but a sales_order belongs to exactly one client. Create the relations accordingly, so that the relationship is handled properly and the relations are in normalized form $(3 \mathrm{NF})$ and perform the following tasks.

1. Insert two client records into client table.
2. Insert 3 sales records for each client.
3. Change order date of client_No 'C004' to 18/03/2019
4. Delete all sale records having order date before $10 / 02 / 2018$.
5. Display date wise sales_order given by clients.

* Consider the following Entities and Relationships
 Customer (cust_no, cust_name, address, city)
 Loan (loan_no, loan_amt)
 Relation between Customer and Loan is Many to Many

Constraint: Primary key, loan_amt should be > 0 .

Create a Database in 3NF \& write queries for following.

1. Find details of all customers whose loan is greater than 10 lakhs.
2. List all customers whose name starts with 'sa'.
3. List names of all customers in descending order who has taken a loan in Pimpri city.
4. Display customer details having maximum loan amount.
5. Calculate total of all loan amount.

* Consider the following Entities and Relationships

Department (dept_no, dept_name, location)
Employee (emp_no, emp_name, address, salary, designation)
Relation between Department and Employee is One to Many
Constraint: Primary key, salary should be >0.
Create a Database in 3NF \& write queries for following.

1. Find total salary of all the employees from computer science dept.
2. Find the name of department whose average salary is above 10000 .
3. Count the number of employees in each department.
4. Display the maximum salary of each department.
5. Display department wise employee list.
6. Increase Salary of "Managers" by 15%
7. Delete all Employees who are working as "clerk".

* Consider the following Entities and Relationships

Project (pno, pname, start_date, budget, status)
Department (dno, dname, HOD)
Relation between Project and Department is Many to One
Constraint: Primary key.
Project Status Constraints: C - completed, P-Progressive, I-Incomplete
Create a Database in 3NF \& write queries for following.

1. List the project name and department details worked in projects that are 'Complete'.
2. Display total budget of each department.
3. Display incomplete project of each department
4. Find the names of departments that have budget greater than 50000 .
5. Display all project working under 'Mr.Desai'.

* Consider the following Entities and Relationships

Room (roomno, desc, rate)
Guest (gno, gname, no_of_days)
Relation between Room and Guest is One to One.
Constraint: Primary key, no of days should be >0.

Create a Database in 3NF \& write queries for following.

1. Display room details according to its rates in ascending order.
2. Find the names of guest who has allocated room for more than 3 days.
3. Find no. of AC rooms.
4. Display total amount for NON-AC rooms.
5. Find names of guest with maximum room charges.

* Consider the following Entities and Relationships

Book (Book_no, title, author, price, year_published)
Customer (cid, cname, addr)
Relation between Book and Customer is Many to Many with quantity as descriptive attribute.

Constraint: Primary key, price should be >0.

Create a Database in 3NF \& write queries for following.

1. Display customer details from 'Mumbai'.
2. Display author wise details of book.
3. Display all customers who have purchased the books published in the year 2013.
4. Display customer name that has purchased more than 3 books.
5. Display book names having price between 100 and 200 and published in the year 2013.

Consider the following Entities and Relationships
Property (pno, desc, area, rate)
Owner (owner_name, addr, phno)
Relation between owner and Property is One to Many.
Constraint: Primary key, rate should be >0

Create a Database in 3NF \& write queries for following.

1. Display area wise property details.
2. Display property owned by 'Mr.Patil' having minimum rate.
3. Display all properties with owner name that having highest rate of properties located in Chinchwad area.
4. Display owner name having maximum no. of properties.
5. Delete all properties from "pune" owned by " Mr. Joshi".
6. Display all the properties from Mumbai owned by "Mr. Patil".

7 Update the phone Number of "Mr Talure" to 9923323366 who having property at Pimpri.

* Consider the following Entities and Relationships

Employee (emp_no, name, skill, payrate)
Position (posting_no, skill)
Relation between Employee and Position is Many to Many with day and shift as descriptive attribute.

Constraint: Primary key, payrate should be >0.

Create a Database in 3NF \& write queries for following.

1. Find the names and rate of pay all employees who allocated a duty.
2. Give employee number who are working at posting_no. 201, but don't have the skills of waiter.
3. Display a list of names of employees who have skill of chef and who has assigned a duty.
4. Display emp_no and dates for all employees who are working on Tuesday and at least one other day.
5. Display shiftwise employee details.

* Consider the following Entities and Relationships

Bill (billno, day, tableno, total)
Menu (dish_no, dish_desc, price)
Relation between Bill and Menu is Many to Many with quantity as descriptive attribute.
Constraint: Primary key, price should be >0.

Create a Database in 3NF \& write queries for following.

1. Display receipt which includes bill_no with Dish description, price, quantity and total amount of each menu.
2. Find total amount collected by hotel on date $08 / 01 / 2013$
3. Count number of menus of billno 301 .
4. Display menu details having price between 100 and 500 .
5. Display total number of bills collected from each table on $01 / 12 / 2013$.

Exercise 7: Demonstration of Select Command

* Create the following tables (primary keys are underlined).
 $\operatorname{Emp}($ eno,ename,sal,address,ph_no)
 Dept(dno, name, loc)

Emp and Dept are related with many to one with each other. Create the Relations accordingly, so that the relationship is handled properly and relations are in normalized form (3NF).

Execute following select queries \& write the business task performed by each query.

1. Select * from emp;
2. Select empno, name from emp;
3. Select distinct deptno from emp;
4. Select $*$ from emp where deptno $=$ \qquad ;
5. Select * from emp where address = 'pune' and sal > \qquad ;
6. Select $*$ from emp where address $=$ 'pune' and salary between \qquad and \qquad ;
7. Select $*$ from emp where name like '--- $\%$ '
8. Select * from emp where name like ' $\%$ and $\%$ '
9. Select * from emp where salary is null;
10. Select * from emp order by eno;
11. Select * from emp order by deptno, eno desc;
12. Select deptno as department, sum(salary) as total from emp group by deptno order by deptno;
13. Select deptno as department, count(eno) as total_emp from emp group by deptno having count(eno) > \qquad order by deptno;
14. select avg(salary) from emp;
15. select max(salary),deptno from emp group by deptno having $\max (\mathrm{sal})>$
\qquad ;
16. select deptno, \min (salary) from emp order by deptno;
17. update emp set salary $=$ salary $+0.5 *$ salary where deptno $=($ select deptno from department where dname $=$ 'finance');
18. update emp set deptno $=$ (select deptno from department where dname $=$ 'finance') Where deptno $=$ (select deptno from department where dname = 'inventory');

* Create the following tables (primary keys are underlined).

Person (pnumber, pname, birthdate, income)
Area(aname, area_type)
An area can have one or more person living in it, but a person belongs to exactly one area. The attribute 'area_type' can have values as either urban or rural.
Create the Relations accordingly, so that the relationship is handled properly and the relations are in normalized form (3NF).
Assume appropriate data types for all the attributes. Add any new attributes as required, depending on the queries. Insert sufficient number of records in the relations / tables with appropriate values as suggested by some of the queries.

Execute following select queries \& write the business task performed by each query.

1 List the names of all people living in ' \qquad ' area.
2 List details of all people whose names start with the alphabet ' _ \& contains maximum _alphabets in it.
3 List the names of all people whose birthday falls in the month of \qquad .
4 Give the count of people who are born on ' \qquad ,
5 Give the count of people whose income is below \qquad
2. List names of all people whose income is between \qquad and \qquad ;
3. List the names of people with average income
4. List the sum of incomes of people living in ' \qquad ,
5. List the names of the areas having people with maximum income (duplicate areas must be omitted in the result)
6. Give the count of people in each area
7. List the details of people living in '___ '_ and having income greater than
\qquad ;
8. List the details pf people, sorted by person number
9. List the details of people, sorted by area, person name
10. List the minimum income of people.
11. Transfer all people living in 'pune' to 'mumbai'.
12. Delete information of all people staying in 'urban' area

* Create the following tables (primary keys are underlined).

Emp (eno,name,dno,salary)
Project (pno,pname,control_dno,budget)
Each employee can work on one or more projects, and a project can have many employees working in it. The number of hours worked on each project by an employee also needs to be stored.
Create the Relations accordingly, so that the relationship is handled properly and the relations are in normalized form (3 NF).
Assume appropriate data types for the attributes. Add any new attributes, new relations as required by the queries.
Insert sufficient number of records in the relations / tables with appropriate values as suggested by some of the queries.

Write the queries for following business tasks \& execute them.

1. list the names of departments that controls projects whose budget is greater than \qquad
2. list the names of projects, controlled by department No , whose budget is greater than atleast one project controlled by department No \qquad
3. list the details of the projects with second maximum budget
4. list the details of the projects with third maximum budget.
5. list the names of employees, working on some projects that employee number \qquad is working.
6. list the names of employees who do not work on any project that employee number \qquad works on
7. list the names of employees who do not work on any project controlled by
' , department
8. list the names of projects along with the controlling department name, for those projects which has atleast employees working on it.
9. list the names of employees who is worked for more than 10 hrs on atleast one project controlled by " \qquad , dept.
10. list the names of employees, who are males, and earning the maximum salary in their department.
11. list the names of employees who work in the same department as ' \qquad ,
12. list the names of employees who do not live in \qquad or \qquad .

* Create the following tables (primary keys are underlined).
 Movies (M_name,release_year,budget)
 Actor (A_name,role,charges,A_address)
 Producer (producer_id,name, $\mathrm{P} _$address)

Each actor has acted in one or more movie. Each producer has produced many movies but each movie can be produced by more than one producers. Each movie has one or more actors acting in it, in different roles.

Create the Relations accordingly, so that the relationship is handled properly and the relations are in normalized form (3NF).

Assume appropriate data types for the attributes. Add any new attributes, new relations as required by the queries.

Insert sufficient number of records in the relations / tables with appropriate values as suggested by some of the queries.

Write the queries for following business tasks \& execute them.

1. List the names of actors who have acted in at least one movie, in which 'shahrukh' has acted.
2. List the names of movies with the highest budget.
3. List the names of movies with the second highest budget
4. List the names of actors who have acted in the maximum number of movies.
5. List the names of movies, produced by more than one producer.
6. List the names of actors who are given with the maximum charges for their movie.
7. List the names of producers who produce the same movie as ' \quad.
8. List the names of actors who do not live in \qquad .

Exercise 8: SQL Set operations

You can combine multiple queries using the set operators UNION, UNION ALL, INTERSECT and Except. ALL set operators have equal precedence.

1. Union: Returns the union of two sets of values, eliminating duplicates.

$$
\begin{array}{lc}
\text { Syntax: } \quad \text { <select query> } \\
& \text { Union } \\
& \text { <select query> }
\end{array}
$$

2. Union all: Returns the union of two sets of values, retaining all duplicates.

Syntax: <select query>
Union all
<select query>
3. Intersect: Returns the intersection of two sets of values, eliminating duplicates.

Syntax: <select query> intersect
<select query>
4.Intersect all: Returns the intersection of two sets of values, retaining duplicates.

Syntax: <select query>
Intersect all
<select query>
5. Except: Returns the difference between two set of values, I.e returns all values from set1, not contained in set2 .eliminates duplicates.

Syntax: <select query> except
<select query>
6. Except all: Returns the difference between two set of values, i.e. returns all values from set1, Not contained in set2 .Retains all duplicates.

Syntax: <select query>
Except all
<select query>

* Create the following tables. (Primary Keys are underlined)
 Emp(emp_id ,emp_name, address, bdate)
 Investor (inv_name, inv_no, inv_date, inv_amt)

An employee may invest in one or more investments; hence he can be an investor. But an investor need not be an employee of the firm.

Create the Relations accordingly, so that the relationship is handled properly and the relations are in normalized form (3NF).

Assume appropriate data types for the attributes. Add any new attributes, as required by the Queries. Insert sufficient number of records in the relations / tables.

Write the following queries \& execute them.

1. List the distinct names of customers who are either employees, or investors or both.
2. List the names of customers who are either employees, or investors or both.
3. List the names of employees who are also investors.
4. List the names of employees who are not investors.

* Create the following tables. (Primary Keys are underlined)

Student (rno,sname,address,class)
Subject (subno,subname)
Student and Subject are related with many-to-many relationship with attribute marks and status. Create the Relations accordingly, so that the relationship is handled properly and the relations are in normalized form (3NF).

Write the following queries \& execute them.

1. List the distinct names of students who have either Electronics, or Statistics or both subjects.
2. List the names of students who are either passed or failed.
3. List the students who have "Database" subject and they are not in "TY" class.
4. List the names of students who are not failed in any subject.
5. List the names of students not staying at "Uruli Kanchan".
\square Date \square Remark

Exercise 9: Joins

* Consider the following relations to understand the use of joins.

Student (s_id, sname, level ,age, subject)
Class (cname , meetat ,room, fid)
Enrolled (s_id i, cname)
Faculty (fid ,fname ,deptid)
The meaning of above relationship is enrolled has one record per student _class pair such that the student is enrolled in the class. Read the query carefully and insert sufficient number of records in the relations / tables with appropriate values to perform the following queries.

1. Find the names of all classes that either meet in room R128 or have five or more students enrolled.
Sql>Select c.name from class c where c.room ='r128' or c.name in (select e.cname from enrolled e group by e.name having count(*)>=5);
2. Find the name of the oldest student who is either a history subject or enrolled in a course taught by I.teach.
Sql> Select max(s.age) from student s where (s.subject='history') or s.num in (select e.num from class c ,enrolled e ,faculty f where e.name =c.name and c.fid=f.id and f.fname ='I.teach);
3. Find the names of students enrolled in the maximum number of classes.

Sql> Select distinct s.name from student s where s.num in (select e.num from enrolled e group by e.num having $\operatorname{count}\left({ }^{*}\right)>=$ all $\left(\right.$ select $\operatorname{count}\left({ }^{*}\right)$ from enrolled e2 group by e2.num));

4. Find the names of student not enrolled in any class.

Sql> Select distinct s.name from student s where s.num not in (select e.num from enrolled e);
5. Find the names of faculty members who teach in every room in which some class is taught.
Sql> Select distinct f.name from faculty f where not exists ((select * from class) except (select c1.room from class c1 where c1.fid = f.fid));

Remark

Exercise 10: Case Study

* Consider the following case study:

A housing society needs to manage the administrative information related to the society. The society is made up of different types of flats like 2BHK, 1BHK, 3BHK. Each type has a well defined square-feet area. The outright sale rate \& the rental value of the flat depends on the type of the flat. Each flat has a single owner. Each owner can have one or more flats in his name. The name, address , phone etc of the owner need to be maintained. For each flat, its type, the floor no, any internal specifications needs to be maintained.

The society also contains a club-house, which is rented out to flat owners, at a nominal rate for conducting various functions / programmes. Society would like to print reports like number of functions held in the club-house during a month / period etc.

Every month maintenance amount is collected from the owners of the flats. Society needs to maintain this finance information, like how much amount collected for a month, whether any defaulters for a month, sending reminders to the defaulters etc. The expenditure information includes money spent on maintenance of the society like paying the sweepers, cleaners of the common area of the society, any emergency expense, salaries of the security etc. Every month the society would like to print a report of expenditure versus collection.

Design the relational database for the above, so that the following queries can be answered:

1. List the flats of 2bhk type.
2. List the 3bhk flats that are currently vacant.
3. List the functions held in clubhouse during the month of " \qquad $"$
4. List the names of owners, who have never conducted any functions in the clubhouse.
5. List the payment defaulters for the month of "April"
6. List the total expenditure for the month of \qquad
7. List the month with the least expenditure.
8. Transfer the flat in the name of \qquad to \qquad
9. List the names of owners, who own both a 2 bhk and a

* Consider the following case study :

A 4-wheeler rental company needs to develop a database to store the following information : the information about the cars, like the registration number, the chassis number, the type of the vehicle (car, jeep, SUV etc). The vehicles may have one or more luxurious features like AC, Stereo, tape, DVD player etc).

The company also needs to maintain the information about its drivers like driver license no, name, address, age etc.

A car is driven by different drivers on different days, a driver may drive different cars on different days. The company also needs information regarding the different places to which the car had been driven down, the names of drivers who have driven it to these places along with the name of customers who had booked the car to that place. The information of the different destinations to which the cars from this company can be driven down, also needs to be stored. Regarding customers, customers can book more than one car to a place. The customers are allowed to book multiple cars to different places, in a single booking transaction. The name,
address, no of passengers travelling in the car, the destination ,the rental cost etc needs to be stored.

The following constraints are to be defined for the vehicles, drivers, and destination places:

1. The vehicle make should be after the year 2000.
2. Only vehicles of maruti, Tata are used by the company
3. Drivers should be above 20 years of age
4. Drivers should be staying in "pune" city
5. The destination places should be within 500 km radius from Pune.

Design the relational database for the above company, so that the following queries can be answered:

1. List the names of drivers who have driven a car to "Mumbai"
2. List the name of customers who have booked a "SUV" to "satara"
3. List the names of customers who have booked cars to pune or Mumbai or Lonavla
4. List the details of cars that have never driven down to "Mumbai"
5. List the details of the place to which maximum number of customers have driven down.
6. List the details of the driver who have driven all the vehicles of the company.
7. List the names of the drivers who have driven atleast two cars to "Mumbai
8. List the names of drivers who have also driven some vehicles to "Mumbai"
9. List the details of customers who have booked more than two vehicles to "solapur"
10. List the names of customers who have booked maximum number of vehicles

Section-III

PPA

* DOS Commands, Windows Accessories and MS-Office:

1. DIR - Displays directory of files and directories stored on disk.
2. DATE - Displays and/or sets the system date.
3. CLS - Clears the screen.
4. MD - Creates a new directory.
5. CD - Displays the name of or changes the current directory.
6. COPY CON- Used to create new file.
7. TYPE- Used to view the content of file.
8. COPY - Copies and appends files.
9. DEL - Deletes files from disk.
10. MOVE - Moves one or more files to the location you specify. Can also be used to rename directories.
11. ECHO - Displays messages or turns on or off the display of commands in a batch file.
12. EDIT - Starts the MS-DOS editor, a text editor used to create and edit ASCII text files.
13. FIND - Finds and reports the location of a specific string of text characters in one or more files.
14. LABEL - Creates or changes or deletes a volume label for a disk.
15. PATH - Sets or displays directories that will be searched for programs not in the current directory.
16. RENAME - Changes the filename under which a file is stored.
17. RD - Removes a subdirectory.

* Windows Accessories:

1. Calculator.
2. Snipping Tool.
3. Character Map.
4. Notepad.
5. WordPad.

Windows operating system ships with some handy applications known as Windows accessories. Calculator, Notepad, Paint, Explorer, WordPad is some of the most frequently used accessories.

Apart from above mentioned applications, Windows has a few tools for Ease of Access and some System Tools. We'll be briefly talking about them here.

1. Calculator:

Windows Calculator is a calculating application included in all the versions of Windows. It can be used to perform simple calculation, scientific calculation and Programming calculation.

- Choose Start >> Programs >> Accessories >> Calculator to start Calculator application, or
- Alternately you can open Run dialog box (Start >> Run) dialog box then type calc and hit enter.
- From View menu choose the required type of calculator - Standard, Scientific, Programmer, Statistical
- Edit >> Copy and Paste commands can be used to input the numbers into calculator or paste the result to other applications

Calculator was first included with Windows 1.0 as a simple arithmetic calculator. In Windows 3.0, a scientific mode was added, which included exponents and roots, logarithms, factorial-based functions, trigonometry (supports radian, degree and gradians angles), base conversions ($2,8,10$, and 16), logic operations, Statistic functions such as single variable statistics and linear regression.

In Windows 7, Statistics, Unit Conversion, Date Calculation, and Worksheets modes were added. Calculator's interface was revamped for the first time since its introduction.

On the right of the main Calculator, one can add a panel with Date Calculation, Unit Conversion, and Worksheets. The included Worksheets allow one to calculate a result of a chosen field based on the values of other fields. Pre-defined templates include calculating a car's fuel economy (mpg and $\mathrm{L} / 100 \mathrm{~km}$), a vehicle lease, and a mortgage. In pre-beta versions of Windows 7, Calculator also provided a Wages template.

2. Snipping Tool:

Snipping Tool is another useful tool of Windows accessories included in Windows 7, Windows Vista, and Experience Pack for Windows XP Tablet PC Edition 2005. It was originally released as a power toy for the Tablet PC. The program is a screen-capture tool that allows taking screenshots (called snips) of an open window, rectangular areas, a free-form area, or the entire screen. Snips can then be annotated using a mouse or a tablet, saved as an image file (PNG, GIF, or JPEG file) or an HTML page, or e-mailed.

The Snipping Tool captures all or part of the computer display screen as a picture. You can save the picture and attach it to an e-mail or paste the picture into a document. Click the Start button, type snip, and click the Snipping Tool from the search results. The screen fades slightly, and the Snipping Tool toolbar appears. Snipping tool can be used to Print Screen, annotate and use in other applications.

3. Paint:

Paint (formerly Paintbrush for Windows) is a simple graphics painting program that has been included with all versions of Microsoft Windows. It is often referred to as MS Paint or Microsoft Paint. The program opens and saves files as

Windows bitmap (24-bit, 256 colors, 16 color, and monochrome) .BMP, JPEG, GIF. Paintbrush supports GIF without animation or transparency. Since Windows 98 Paint supports GIF with transparency. It also supports PNG (without alpha channel), and TIFF (without multiple page support).

The program can be in color mode or two-color black-and-white, but there is no grayscale mode. For its simplicity, it rapidly became one of the most used applications in the early versions of Windows-introducing many to painting on a computer for the first time-and still has strong associations with the immediate usability of the old Windows workspace.

4. Character Map:

Character Map is a utility included with Microsoft Windows operating systems and is used to view the characters in any installed font, to check what keyboard input (Alt code) is used to enter those characters, and to copy characters to the clipboard in lieu of typing them. The tool is usually useful for entering special characters. It can be opened via the command line or Run Command dialog using the 'char map' command.

5. Notepad:

Notepad is a common text-only (plain text) editor. The resulting files-typically saved with the .txt extension-have no format tags or styles, making the program suitable for editing system files that are to be used in a DOS environment

Notepad supports both left-to-right and right-to-left based languages, and one can alternate between these viewing formats by using the right or left Ctrl+Shift keys to go to right-to-left format or left-to-right format, respectively.

6. WordPad:

Microsoft WordPad is a free rich text editor included with Microsoft Windows 95 and the later. Earlier to Windows 95 there used to be an application called Write for the same task. Although capable of doing much more than Notepad, WordPad is not as advanced as Microsoft Word.

WordPad can format and print text, but lacks intermediate features such as a spell checker, thesaurus, and support for tables. As such, it is suitable for writing letters or short pieces, but underpowered for work that relies heavily on graphics or typesetting.

* System Tools:

For a smooth performance of a system, periodic maintenance is necessary. Tools like Disk Check, Disk Derangement, etc., helps in system maintenance. Windows includes some of the system utilities such as Disk Cleanup, Disk Defragment, System Restore, Control Panel and so on.

* Disk Cleanup:

In Windows 7, Vista, and XP, Disk Cleanup frees disk space by cleaning areas that gather unneeded files. Using Disk Cleanup regularly, along with ScanDisk, DEFRAG, and up-to-date virus patterns, will help keep your computer running smoothly.

To run Disk Cleanup:

- From the Start menu, select Programs or All Programs, then Accessories, then System Tools, and then Disk Cleanup.
- Select the drive on which you would like to clear disk space (usually your C: drive), and click OK.
- Select from the four areas that Disk Cleanup will check and clean up:

Temporary Internet Files: Files stored on your local drive that allow web pages to load more quickly.

Downloaded Program Files: A storage location for programs downloaded when you visit specific web sites that use ActiveX and Java applets.

Recycle Bin: Files that have been marked as deleted.

Temporary Files: Items in the TEMP folder.

* Disk Defragment:

Disk Defragmenter consolidates files so that each is saved in contiguous physical space on the hard drive. When your computer crashes or freezes, the drive becomes fragmented. This means the files may be broken up and stored in different locations in your computer. This causes programs and files to run more slowly.

To run Disk Defragmenter:

- Close all programs.
- Choose Start menu | All Programs | Accessories | System Tools | Disk Defragmenter.
- Select the drive you want to clean and click OK.
- Click Analyze. This may take several minutes.
- Click Close or Defragment. If the drive needs defragmented and you choose Defragment, this may take several minutes to several hours, depending on the number of files to consolidate.

System Restore:

System restore is a feature of Windows that allows you to roll back the system to the same configuration it had at an earlier time. If this feature is turned on (which it is by default) Windows will take periodic snapshots (called restore points) of your installation. It can use the information gathered in these snapshots to restore your system to a previous configuration. It is a good idea to create a restore point before you make major changes to your system, such as before installing new hardware or doing any major updates.

To run System Restore:

- Go to Start > Programs > Accessories > System Tools > System Restore.
- The System Restore screen will come up.
- Follow the on screen instructions

Format:

There are times when Windows becomes so damaged or so compromised by hackers and Trojan programs that the only through solution is to essentially start all over. This is accomplished by formatting your hard drive, which means erasing all of the programs and the data on your machine, and re-installing Windows.

The format creates a new root directory and file system for the disk. It can also check for bad areas on the disk, and it can delete all data on the disk. To be able to use a new disk, you must first use this command to format the disk.

* Control Panel:

The Control Panel is a part of the Microsoft Windows graphical user interface. It allows users to view and manipulate basic system settings and controls via applets. You can use control panel for the tasks such as adding hardware, adding and removing software, controlling user accounts, and changing accessibility options. Additional applets can be provided by third party software.

In recent versions of Windows, the Control Panel has two views, Classic View and Category View, and it is possible to switch between these through an option that appears on either the left side or top of the window.

The classic view consists of shortcuts to the various control panel applets, usually without any description (other than the name). The categories are seen if the user uses "Details" view.

The category view consists of categories, which when clicked on display the control panel applets related to the category. In Windows Vista, the category used applets below the name of the category.

Microsoft Office:-

MS Word:

- Introduction
- File Creations.
- File Operations

Save As, Open, Find and Replace, Cut, Copy, and Paste etc.

- Word Art
- Mail Merge
- Table
- Font
- Page Layout

MS Excel:

- Introduction
- Features of Excel
- Formula's
- Charts
- Working with multiple sheets.

MS PowerPoint:

- Introduction
- New slide insertion, Deletion
- Working with multiple slides
- Slide Show

MS Access:

- Introduction
- Database Creation
- Table creation
- Query

DDL, DML

- Form Creation
- Report Generation

Exercise 1: DOS and MS-Office

1. Read and executes DOS commands given in this booklet.
2. Create your resume and send it to the multiple companies by using Mail Merge in MS Word.
3. Create mark sheet of student who is studying in FYBBA(CA).
4. Create MS PowerPoint Presentation for birthday party celebration.
5. Create a power point presentation for advertisement of College admission process.
6. Create a database DPU with two tables Teacher (tno,name,sal,desg,sub) and student(rollno,name,class,per). Establish one to many relationship between them with appropriate keys.
7. Design a form in MS Access for Email ID Registration with appropriate fields.
8. Generate a report of teacher who is having salary more than 15000 Rs. Assume Teacher table is already created.
9. Create sunrise view by using Paintbrush.

Date: \square

Exercise 2: Scratch Programming

Assignments:

1. Write a scratch script for dancing girls.
2. Write a scratch script for flying butterfly.
3. Write a scratch script for racing cars.
4. Write a scratch script for bouncing balls.
5. Write a scratch script for walking man.
6. Write a scratch script for blinking stars.
7. Write a scratch script for sunset.
8. Write a scratch script for sunrise.
9. Write a scratch script for birthday party celebration.
10. Write a scratch script for flag hoisting ceremony.
11. Write a scratch script for playing instrumental national anthem.

Exercise 3: Mini Project using Scratch

