Savitribai Phule Pune University, Pune

Revised Syllabus 2020-21

Course Design

CBCS: 2020-2021

T. Y. B. Sc. Environmental Science

Course Structure

a	a		a	N. C.I. C	C 1
Course	Course	Name of the Course	Course	Name of the Course	Credit
	Code		Code		
Semester V			Semester VI		
DSEC	EVS-351	Terrestrial Ecosystem	EVS-361	Aquatic Ecosystem	2+2
		and Management		and Management	
DSEC	EVS-352	Wildlife biology and	EVS-362	Nature Conservation	2+2
		Management			
DSEC	EVS-353	Water and Soil quality	EVS-363	Air and Noise quality	2+2
DSEC	EVS-354	Atmoshpheric and	EVS-364	Issues in	2+2
		Global Climate change		Environmental	
				Science	
DSEC	EVS-355	Environmental	EVS-365	Environmental	2+2
		legislation and policy		governance: EMS,	
				EIA & ISO14000	
DSEC	EVS-356	Environmental	EVS-366	Environmental	2+2
		Biotechnology-I		Biotechnology-II	
DSEC	EVS-357	Practical-I	EVS-367	Practical-I	2+2
DSEC	EVS-358	Practical-II	EVS-368	Practical-II	2+2
DSEC	EVS-359	Practical-III	EVS-369	Project	2+2
SEC	EVS3511	Remote sensing, GIS	EVS3613	Solid Waste	2+2
		and modeling		Management	
SEC	EVS3512	Soil Health Management	EVS3614	Urban Ecosystem	2+2

Savitribai Phule Pune University, Pune

Semester – V, Paper –I

EVS -351 Terrestrial Ecosystem and Management

Credits - 02

Lectures	-	30
----------	---	----

Unit.	Course contents	Number of
No.		lectures
1	Terrestrial Ecology	5
	 Introduction to Terrestrial Environment 	
	Parameters of terrestrial environment	
	The terrestrialbiotaand biogeographic regions of India	
	The Soil subsystem	
	Hotspots in India: Western Ghats, Eastern Himalaya, Andaman	
	Nicobar	
2	Terrestrial Biodiversity	5
	Introduction, concept, types of Biomes	
	Biogeographic regions of the world	
	General structure of terrestrial communities	
	Distribution, Patterns	
	Structure, Classification	
	Keystone species	
	Interspecies relationships	
3	Terrestrial ecosystem services	4
	• Aestheticbenefits	
	• Cultural benefits,	
	 Tourism and recreation, industry, drugs and medicines, 	
	Carbon pool and sequestration potential	
4	Methods of terrestrial ecosystem management	6
	• Remote sensing,	
	 Geographical information system, 	
	 Community based forest management, traditional methods, 	
	Forest fire: reasons, effects, control measures and management	
5	Methods of vegetation sampling and data analysis	5
	 Sampling approaches, 	
	• Quadrate methods,	
	• Line and belt transect,	
	Point frame method	
6	Exploitation and Sustainable Utilisation	5
	 Reasons, Threats of exploitation 	
	Sustainable management methods	
	Role of People, NGO's Community and LocalGovernment	
	Community Based terrestrial ecosystem management methods	
	Case studies related	

1. Groom. B. & Jenkins. M. 2000. *Global Biodiversity: Earth's Living Resources in the 21st Century*. World Conservation Press, Cambridge, UK, Gurevitch, J., Scheiner, S. M., & Fox, G. A. 2002.

2. The Ecology of Plants. Sinauer Associates Incorporated. Loreau, M. & Inchausti, P. 2002.

3. *Biodiversity and Ecosystem Functioning: Synthesis and Perspectives*. Oxford University Press, Oxford, UK, Odum, E. P. 1971.

4. *Fundamentals of Ecology*. W. B. Sounders, Pandit, M. K., White, S. M. & Pocock, M. J. O., 2014. The Contrasting Effects of Genome Size, Chromosome Number and Ploidy Level on Plant Invasiveness: A Global Analysis. 5. *New Phytologist* 203: 697-703. Pimentel, D. (Ed.). 2011.

6. Biological Invasions: Economic and Environmental Costs of Alien Plant, Animal and Microbe Species. CRC Press. Singh, J. S., Singh, S. P. & Gupta, S. R. 2006.

7. Ecology, Environment And Resource Conservation. Anamaya Publications.

8. Wilson, E. O. 1985. The Biological Diversity Crisis. Bioscience 35: 700-706.

Semester – V, Paper –II

Credit -2

EVS –352 Wildlife Biology and Management

Sr.No.	Name of Unit	Content	Lecture	
1	Introduction to	Introduction to wildlife Biology		5
	Wildlife Biology	Definition of Wildlife Biology		
		• Study of Different characteristics of wildli	fe Habitat in	
		Biosphere:		
		1. Aquatic Habitat: Marine, Fresh water, ar	nd Estuaries.	
		2. Terrestrial Habitat: Forest, Grassla	ind, Desert,	
		Landscape.		
2	Groups of wildlife	Plant Classification:		5
	species	Algae, Bryophytes, Pteridophytes, Gymnosperm	IS,	
	-	Angiosperms (Monocot and Dicot)		
		Animal Classification:		
		1.Arthropods (Insect, Arachnids, Crustaceans, M	lillipedes,	
		Centipedes), 2. Vertebrates (Mammals, Birds, Fis	sh, Reptiles,	
		Amphibians)	•	
3	Threats to wildlife	Habitat Destruction, Developmental projects, Ur	banization,	5
		Agriculture expansion, Poaching, Human Wildli	fe conflict,	
		Deforestation, Ecploitation of animals and plants	3	
4	Habitat Analysis and	• Standard Evaluation processes for habitat: H	HEP & HIS.	5
	Population	• Population Assessment technique (wildlife s	sensus)	
	Assessment	1. Direct count : Block count, Transect methods,	Point count,	
	Techniques	Visual encounter survey, Waterhole survey		
		2. Indirect count: Pugmark, camera trap, I	ONA finger	
		printing, Call count, track and sign, pellet count		
		3. Marking wildlife : Ringing, Tagging, Clipping	g, Colouring.	
5	Modern Wildlife	• Bio- telemetry;		5
	management	• Management practices :Monitoring	Wildlife	
	Techniques	Populations, Habitat Improvement,	Hunting	
		Regulations, Artificial Stocking, Cont	rolling or	
		Preventing Disease and Its Spread,	Management	
		Funds/Programs, captive breeding and propa	agation.	
6	Sustainable Wildlife	• Eco tourism / wild life tourism in forests;		5
	management	• Reasons for Biodiversity formation, cor	ntribution to	
		adaptive evolution,		
		Landraces of crop plants, conservation of genetic	c resources.	

	highly productive habitats.Various Environmental movements in India: Chipko	
	Movement, Appiko movement, Silent valley movement.	

1. Principles of Environmental science - Cunningham and Cunningham

2. Ecology, Environment and Resource Conservation (2006): Singh JS, Singh SP and Gupta SR; Anamaya Publ, New Delhi.

3. Fundamental of Ecology (1971): EP Odum; WB Saunders Company.

4. Plant Diversity Hotspots in India (1997): PK Hajra and V. Mudgal; Botanical Survey of India

5. Environmental Management (2005): Bala Krishnamoorthy; Prentice-Hall of India Pvt. Ltd., New Delhi.

Semester – V, Paper –III

Credit-2

EVS –353 Water and Soil quality

Unit	Course Content	e	Number
No.		0İ	Lectures
1	Introduction	05	
	Water cycle	05	
	• Characteristics of Water – Physical, Chemical and Biological		
	Water Inventory		
	• Sewage water –its characteristics and effects		
2	Water Pollution		
	• Water Pollution definition, types of water pollution based on Point and		
	Non- point sources		
	• Types of Water Pollution- Lake water pollution, River water pollution,		
	Groundwater pollution, Sea water pollution with Case studies	05	
	 Eutrophication process with Case study 		
	Water Pollution with respect to Indian Rivers		
	Water Borne diseases		
	Water stress Index		
3	Water Pollution Management		
	• Water Quality Standards for drinking water, different uses and by different agencies		
Ċ	• Water treatment Process- Primary, Secondary & Tertiary treatment, nutrient removal	05	
	Laws related to Water Pollution Control in India		
	• GAP (Ganga Action Plan)& National River Action Programme		
	 Role of National and International agencies in Water health and Sanitation 		
	 Application of GIS and Remote sensing for management of Water Resources 		
4	Soil		
	• Introduction to soil and its importance in ecosystem and Agriculture		
	Composition of soil		

	 Soil types and their formation Soil Horizons, Texture, Soil structure, fertility Factors influencing soil –Soil aeration, Soil temperature etc 	
		05
5	 Soil Reactions –Acid base reactions, Ion exchange, Micro and Macro nutrients, Nitrogen pathways, NPK in soil Soil Analysis –pH, Lime ,Silica ,phosphorous, Total nitrogen, Total Sulphur, Manganese, Soluble salts, Pesticides and Environmental friendly technologies 	05
6	 Soil Pollution and Management Soil sickness & Soil Toxicology Soil as waste disposal Remediation of Contaminated site GIS & Remote sensing application in soil resource management Soil Conservation techniques 	05

- 1. Principles of Environmental Science-Cunningham & Cunningham
- 2. Ecology ,Environment and Resource Conservation (2006) : Singh JS, Singh SP, Gupta SR, AnamayaPubl, New Delhi
- 3. Fundamentals of Ecology (1971) :EP Odum ,WB Saunders Company
- 4. RS Ramalho ,1983 Introduction to Waste water Treatment Process, Academic press, New York
- 5. Quanag, EAR ,Principles of Waste waster Treatment Vol I, Biological process,National Science Development Board ,Manila,Phillipines
- 6. Water pollution by Dr. AnuradhaSalpekar
- 7. Environmental pollution Analysis by S.M. Khopkar
- 8. Textbook of Practical Chemistry by Vogel, A.I Tatchell and Furnis
- 9. Dean, J. R., Jones, A. M., Holmes, D., Reed, R., Weyers, J., &Jones, A., (2011), Practical skills in Chemistry, 2nd Ed., Prentice Hall, Harlow
- 10. Hydrology Principles, analysis and Design H. M Ragunath, New age International Publications.(1996)
- 11. Standard Methods for the examination of water and waste water APHA (American Public Health Association), AWWA (American Water Works Association), WEF (Water Environmental Federation)
- 12. Low cost waste water treatment technologies R. K. Trivedy and SiddharthKaul
- 13. Pollution and Bioremediation- P. C. Trivedi
- 14. An Introduction to Environmental pollution- B. K. Sharma and H. Kaur
- 15. Environmental Chemistry A. K. De
- 16. Microbiology Micheal J. Pelczar, E. C. S. Chan, Noel R. Krieg.
- 17. Textbook of Microbiology R. Ananthanarayan and C. K. JayaramPaniker
- 18. Soils and soil fertility, Troch, F.R. And Thompson, L.M. Oxford Press.
- 19. Fundamentals of soil science, foth, H.D. Wiley Books. 3. Soil Science and Management, Plaster, Edward J., Delmar Publishers.
- 20. Principles of Soil Chemistry (2Wed.) Marcel Dekker Inc., New York. 5. Handbook of Agricultural Sciences, S.S.Singh, P.Gupta, A.k.Gupta, Kalyani Publication.

Unit No	Course Content	Number	of
		Lectures	
1	Evolution and development of Earth's atmosphere; atmospheric structure and composition; significance of atmosphere in making the Earth. Earth's energy balance: energy transfers in atmosphere: Earth's radiation budget:	6	
	green house gases (GHGs); greenhouse effect; global conveyor belt.		
2	Atmospheric circulation: Movement of air masses; atmosphere and climate; air and sea interaction; southern oscillation; western disturbances; El Nino and La Nina; tropical cyclone; Indian monsoon and its development, changing monsoon in Holocene in the Indian subcontinent, its impact on agriculture and Indus valley civilization; effect of urbanization on micro climate; Asian brown clouds.	6	
3	Meteorology and atmospheric stability Meteorological parameters (temperature, relative humidity, wind speed and direction, precipitation); atmospheric stability and mixing heights; temperature inversion; plume behavior; Gaussian plume model	6	
4.	Global warming and climate change:Earth's climate through ages; trends of global warming and climate change; drivers of global warming and the potential of different green house gases (GHGs) causing the climate change; atmospheric windows; impact of climate change on atmosphere, weather patterns, sea level rise, agricultural productivity and biological responses - range shift of species, CO2 fertilization and agriculture; impact on economy and spread of human diseases.	6	
5	Climate change and policy: Environmental policy debate; International agreements; Montreal protocol 1987; Kyoto protocol 1997; Convention on Climate Change; carbon credit and carbon trading; clean development mechanism.	6	

1.Barry, R. G. 2003. Atmosphere, Weather and Climate. Routledge Press, UK.

2. Gillespie, A. 2006. Climate Change, Ozone Depletion and Air Pollution: Legal Commentaries with Policy and Science Considerations. Martinus Nijhoff Publishers.

3. Hardy, J.T. 2003. Climate Change: Causes, Effects and Solutions. John Wiley & Sons.

4. Harvey, D. 2000. Climate and Global Climate Change. Prentice Hall.

5. Manahan, S.E. 2010. Environmental Chemistry. CRC Press, Taylor and Francis Group.

6. Maslin, M. 2014. Climate Change: A Very Short Introduction. Oxford Publications.

7. Mathez, E.A. 2009. Climate Change: The Science of Global Warming and our Energy Future. Columbia University Press.

8. Mitra, A.P., Sharma, S., Bhattacharya, S., Garg, A., Devotta, S. &Sen, K. 2004. Climate Change and India. Universities Press, India.

9. Philander, S.G. 2012. Encyclopedia of Global Warming and Climate Change (2nd edition). Sage Publications.

Semester – V, Paper –V

Credit-2

EVS –355 Environmental Legislation and policy

Unit No	Course Content	Number Lectures	of
1	Introduction to Law and Policy:	4	
	Concept of law and policy, environmental governance. Importance and		
	elements of environmental governance.	$ \rightarrow $	
2	Environmental Legislation:	4	
	Legal definitions: Environmental pollution, natural resource, biodiversity,		
	forest, sustainable development.	×	
	Article 48A: The protection and improvement of environment and		
	safeguarding offorests and wildlife.		
	Fundamental rights and duties as per the Constitution of India		
	Environmental Ethics: Introduction, Concept, Development of environmental		
	ethics.		
3	Government Institutions	4	
	Role of Ministry of Environment, Forests & Climate Change		
	Role of Central Pollution Control Board (CPCB)		
	Role of State Pollution Control Boards		
	Role of National Green Tribunal (NGT)		
4	International Laws and Policy	4	
	Stockholm Conference 1972, United Nations Conference on Environment and		
	Development 1992, Montreal Protocol 1987; Rio de Janeiro (Rio Declaration,		
	Agenda 21), Kyoto Protocol 1997, Copenhagen and Paris summits, Ramsar		
	convention.		
5	Environmental Acts	14	
	• The Environment (Protection) Act, 1986,		
	The Forests (Conservation) Act 1980		
	• The Wildlife (Protection) Act 1972		
	• The Water (Prevention and Controlof Pollution) Act 1974		
	• The Air (Prevention and Control of Pollution) Act 1981		
	Motor Vehicle Act 1988		
	The Public Liability Insurance Act 1991		
	Noise Pollution (Regulation and Control) Rules 2000		

The BiologicalDiversity Act 2002	
Hazardous Waste Management Rules, 2016.	
1	

1. Abraham, C.M. 1999. Environmental Jurisprudence in India. Kluwer Law International.

Agarwal, V.K. 2005. Environmental Laws in India: Challenges for Enforcement. Bulletin of theNational Institute of Ecology 15: 227-238.
 Divan, S. &Rosencranz, A. 2001. Environmental Law and Policy in India. Oxford UniversityPress.

4. Divan, S. &Rosencranz, A. 2002. Environmental Law and Policy in India: Cases, Materialsand Statues (2nd edition). Oxford University Press.
5. Gupta, K.R. 2006. Environmental Legislation in India. Atlantic Publishers and Distributors.
6. Leelakrishnan, P. 2008. Environmental Law in India (3rd edition). LexisNexis India.
7. Naseem, M. 2011. Environmental Law in India Mohammad. Kluwer Law International.

8. P. Leelakrishnan. 2016. Environmental Law in India. 4th edition. Publisher: Lexis Nexis

9. T S Doabia. 2017. Environmental and Pollution Laws In India. (3rdEdition). Publisher: Lexis

10. Venkat, A. 2011. Environmental Law and Policy. PHI Learning Private Ltd.

Semester – V, Paper – VI

Credit-2

EVS -356 Environmental Biotechnology-I

Unit No	Name of Unit	Content	Lectures
1	Introduction	 Introduction and Meaning of Environmental 	5
		Biotechnology,	
		• Necessity and scope,	
		• History and objectives,	
		 Importance and Applications. 	
2	Composting Technology	 Classification, 	5
		 Manufacturing, 	
		• Formulation,	
		• Mode of action of composting technology.	
		• Vermicomposting.	
3	Genetically Modified	• Introduction,	5
	Organisms	 Principles and Advanages, 	
		• Measures,	
		• Examples,	
		• Risk to Environment.	
		Biosafety (Cartagena Protocol)	
4	Agricultural	• Introduction,	5
	biotechnology,	• Detection and diagnosis,	
	Biofertilizers	• Micropropagation.	
		• Types and Role	
		Waste and Uses	
5	Microbes	• Collection and Enumeration of microbes,	10
		• Ecological Relation of microbes,	
		• Nutritional requirements,	
		• Nutrient media,	

	 Growth conditions, Nutritional types, Types of microbes. Xenobiotic components. 	
		30

1. Erickson, LE and DY Fung. 1988. Handbook on Anaerobic fermentations. Marcel and Dekker Inc. New York.

2.. Holland, KT, JS Knapp and JG Shoesmith. 1990. Anaerobic bacteria. Blackie Publications. New York.

3. Ramasamy, K., G. Kalaichelvan and B. Nagamani. 1992. Working with anaerobes: Methanogens. Fermentation Laboratory, TNAU, Coimbatore.

4. Gerhardt, P., RGE Murray, WA Wood and NR Krieg. 1994. Methods for General and Molecular Bacteriology. ASM Publications, Washington.

5. Jogdand, SN 1995. Environmental Biotechnology. Himalaya Publishing House, Mumbai.

6.. Erickson, LE and DY Fung. 1988. Handbook on Anaerobic fermentations. Marcel and Dekker Inc. New York.

7. Ramasamy, K, G Kalaichelvan and B Nagamani. 1992. Working with anaerobes: Methanogens. Fermentation Laboratory, TNAU, Coimbatore.

8. Crawford, RL and DLCrawford. 1996. Bioremediation - Principles and Applications. Cambridge University Press, London

Semester – V, Paper –VII

EVS –357 Practicals based on ENV- 351 and 352

Sr. No.	Title	No. of practical
1	Study of Flora of Urban terrestrial ecosystem	1
2	Study of Fauna of Urban terrestrial ecosystem	1
3	Estimation of Biomass of Grassland by harvest method	1
4	Study of various types of Interspecies relationships in ecosystem	1
5	Estimation of Chlorophyll content	1
6	Study of threat assessment model for an ecosystem	1
7	Estimation of Grassland by harvest method	1
8	To find out the diversity within an ecosystem using Shannon and	1
	Simpson's diversity indices	
9	Study of any one population assessment technique for	1
	Animal/plant/bird	
10	Identification of different groups of wild species (Flora and	1
	Fauna)	
11	Study of different Ecotourism activities	1
12	Vegetation mapping by using aerial photographs	1
13	Interpretation techniques for aerial photographs and satellite	1
	imageries	
14	Vegetation mapping by using satellite imageries	1

Semester – V, Paper –VIII

EVS –358 Practicals based on ENV- 353 and 354

Sr No	Name of Practical	No. of Practical
1	Sampling of Waste water from different polluted sites	01
2	Sampling of Soil from different polluted sites	01
3	Analzing p H, Temperature and EC of different waste	01
	water	
4	Estimation of DO &free CO2	01
5	Determination of COD in water sample	01
6	Determination of BOD in water sample	01
7	Visit to Sewage Treatment Plant/ETP	01
8	Determination of Nitrates from Water sample	01
9	Determination of Phosphates from Water sample	01
10	Determination of MPN from drinking water	01
11	Determination of Soil Bulk density	01
12	Determination of Sludge Volume Index	01

semester – V, Paper –IX EVS –359 Practicals based on ENV- 355 and 356

Unit No	Course Content	Number of Lectures
1	Determining the factors influencing the composting process, nutrients, moisture, temperature and air, microbial populations	1
2	Study of micro organisms by Standard Plate Count (SPC) method	1
3	Microbial analysis of flocs in activated sludge system	1
4	Biological de-colorization using microbial columns	1
5	Isolation of bacteria from soil and decaying matter	1
6	Survey of plants in and around air polluted sites	1
7	Determination of hydrogen sulfide (H2S) from sewage sample	1
8	Analysis of residual pesticides in agricultural land and crops	1
9	Study of Eutrophication parameters & its effects on water bodies	1
10	Study of instrumentation and safety standards in microbial laboratory	1
11	Isolation and characterization of soil microgarinsm from polluted sites	1
12	Analysis of residual pesticides in agricultural land and crops	1
13	Study of Eutrophication parameters & its effects on water bodies	1
14	Survey of plants in and around air polluted sites	1

Semester – V, Paper – IV,

SEC-3511 Remote sensing, GIS and modeling

Unit No	Course Content	Number of
		Lectures
1	Remote Sensing: definitions and principles; electromagnetic (EME) spectrum;	4
	interaction of EMR with Earth's surface; spectral signature; satellites and sensors	
	Types of platform; Geostationary orbit and Sun-synchronous Polar orbit; Multi	
	spectral scanning	
2.	Interaction of EMR with the earth's surface and atmosphere,	4
	Energy response mechanism: Reflection, Absorption, Transmission, Scattering,	

	Refraction, Reflectance, Emission and scattering, Atmospheric windows.	
3.	Aerial photography and Air Photo Interpretation: Basic geometric characteristics of	6
	aerial photographs. Scale, resolution, overlaps, flight planning, Measurement of	
	height on aerial photograph, Principle of relative tonality, minimum mapping unit,	
	Photo interpretation elements for visual interpretation.	
4	Geographical Information Systems: definitions and components; spatial and non-	6
	spatial data; raster and vector data; database generation; database management	
	system; land use/ land cover mapping; overview of GIS software packages; GPS	
	survey, data import, processing, and mapping.	
5	Applications and case studies of remote sensing and GIS in geosciences, water	4
	resource management, land use planning, forest resources, agriculture, marine and	
	atmospheric studies.	
6	Basic elements of statistical analyses: sampling; types of distribution - normal,	6
	binomial, poisson; measurements of central tendency and dispersion; skewness;	
	kurtosis; hypothesis testing; parametric and non-parametric tests; correlation and	
	regression; curve fitting; analysis of variance; ordination.	

- 1. Lillisand, T. M. and Keifer, R. W. (1990): Remote Sensing and Image interpretation, John Willey and Sons, New York
- 2. Joseph G. (2003): Fundamentals of Remote Sensing, Universities Press, Hyderabad.
- 3. Haywood, Ian (2000): Geographical Information Systems, Longman
- 4. Chang, Kang-taung (2002): Introduction to Geographic Information Systems, Tata McGraw-Hill.
- 5. Burroughs, P. A (1986): Principles of Geographical Information Systems for land Resource Assessment, Oxford University Press.
- 6. Edmondson, A. & Druce, D.1996.Advanced Biology Statistics. Oxford University Press.
- 7. Demers, M.N. 2005. Fundamentals of Geographic Information System. Wiley & Sons. 8
- 8. Richards, J. A. & Jia, X. 1999. Remote Sensing and Digital Image Processing. Springer.
- 9. 9. Sabins, F. F. 1996. Remote Sensing: Principles an Interpretation. W. H. Freeman

Semester – V, Paper – IV,

SEC-3512 Soil Health Managment

Unit	Course Content	Number of
No		Lectures
1	Composition of soil, Soil Fertility – Concept and Evaluation	4
	• Nutrition & Essential Plant Nutrient Elements and their deficiency.	
	• Concept of Integrated Plant Nutrient Management(IPNM),	
2.	1.Biological measures – contour cultivation – strip cropping – cropping systems –	8
	vegetative barriers - windbreaks and shelterbelts - shifting cultivation -	
	2.Mechanical measures - contour bund - graded bund - broad beds and furrows - basin	
	listing – random tie ridging	
	3.Mechanical measures for hill slopes – contour trench – bench terrace – contour stone	
	wall - Rain water harvesting - insitu soil moisture conservation - runoff water harvesting	
	• Farm ponds and percolation ponds - storage and its use for domestic and ground	
	Irrigation Scheduling and Agriculture Drainage System.	
3.	• Concept of Plant Diseases & Pest, Classification of Plant Diseases & Disease	8
	Triangle,	

	• Methods of Pest Management-Biological, Cultural, Legislative, Physical &	
	Chemical, (Chlorinated Hydrocarbons, Organophosphates & Carbamates),	
	• Pesticide use & Environment, Organic Crop Production, Agroforestry, Integrated	
	Pest Management (IPM) & Bio-pesticides.	
	• Concept of Ecological Pest & Disease Management-Energy Crops,	
4	• Fertilizers, Classification of Fertilizers Effects due to use of excess fertilizer & Their	6
	Management.	
	• Concept & importance of Bio-fertilizers, Types and Use.	
	Calculation of Recommended dose of fertilizer	(
5	Schemes for water conservation	4
	Scheme for fertilizer, seed, and other material purchase	
	• Soil Health card	

Brady, N., and R. Weil. *The Nature and Properties of Soils*. 14th ed. Upper Saddle River, NJ: Prentice Hall, 2008.
 Clark, A., ed. *Managing Cover Crops Profitably*. 3rd ed. Handbook Series No. 9. Beltsville, MD: Sustainable Agriculture Network, 2007.

3. Coleman, D. C., D. A. Crossley Jr., and P. F. Hendrix. *Fundamentals of Soil Ecology*. 2nd ed. Burlington, MA: Elsevier Academic Press, 2004.

4.Gugino, B. K., O. J. Idowu, R. R. Schindelbeck, H. M. van Es, B. N. Moebius-Clune, D. W. Wolfe, J. E. Thies, and G. S. Abawi. *Cornell Soil Health Assessment Training Manual*. Edition 2.0. Ithaca: Cornell University, 2009.

5. Hall, M., and G. Roth, eds. The Penn State Agronomy Guide .

6. Hooper, D., et al. "Interactions between aboveground and belowground biodiversity in terrestrial ecosystems: Patterns, mechanisms, and feedbacks." *BioScience* 50 (20): 1049–61.

 Magdoff, F., and H. van Es. Building Soils for Better Crops: Sustainable Soil Management. 3rd ed. Handbook Series No. 10. Beltsville, MD: Sustainable Agriculture Network, 2009.

8 Tisdall, J. M., and J. M. Oades. "Organic matter and water-stable aggregates in soils." *Journal of Soil Science* 33 (1982): 141–63.

9 Tugel, A., A. Lewandowski, D. HappevonArb, eds. *Soil Biology Primer*. Rev. ed. Ankeny, Iowa: Soil and Water Conservation Society, 2000.

10 Zehnder, G. Farmscaping: Making Use of Nature's Pest Management Services

SEMESTER-6

Semester – VI, Paper –II

EVS –361 Aquatic Ecosystem and Management

Unit.	Course contents	Number of
No.		lectures
1	Limnology	5
	• Introduction, The Aquatic environment,	
	Aquatic Biota, Parameters	
	• Energy flow in aquatic ecosystem	
	 Major environmental factors and ecosystem processes 	
	Ramsar convention and Ramsar sites in India	
2	Distribution of major aquatic ecosystems	5
	Classification	
	• Structure	
	• Patterns	
	• Types of Interactions	
	Stratification and Zonation	
	Impact of Climate change on aquatic ecosystems	
3	Freshwater ecology	5
	• The freshwater environment: types	
	• Limiting factors;	
	• Ecological classification of freshwater organisms.	
	• the freshwater biota (flora and fauna), lentic (lakes and ponds) and	
	lotic (rivers, streams, springs, etc) communities, planktons.	
	• Biodiversity, negative and positive feedbacks and resilience.	
4	Marine and Estuarine ecology	5
	• The marine environment	
	• The marine biota(floraand fauna)	
	 Zonation in the sea study of planktons 	
	Communities in the marine environment	
	Food Production notential	
	Mangrove Vegetation	
	Coral reefs	
	Ecological significance	
5		5
	Methods of aquatic ecosystem management:	
	• Remote sensing,	
	• Geographical information system,	
	• Eco-development program,	
	• Traditional methods,	

	 Methods of aquatic sampling and data analysis: sampling approaches, species association. Case studies 	
6	 Exploitation and Consequences of wetlands, Sustainable management Role of Local Government and people in conservation, Impact of Tourism, Eco-tourism Conservation and Sustainable use of India's aquatic resources 	5

1. Groom. B. & Jenkins. M. 2000. *Global Biodiversity: Earth's Living Resources in the 21st Century*. World Conservation Press, Cambridge, UK, Gurevitch, J., Scheiner, S. M., & Fox, G. A. 2002.

2. The Ecology of Plants. Sinauer Associates Incorporated. Loreau, M. & Inchausti, P. 2002.

3. *Biodiversity and Ecosystem Functioning: Synthesis and Perspectives*. Oxford University Press, Oxford, UK, Odum, E. P. 1971.

4. *Fundamentals of Ecology*. W. B. Sounders, Pandit, M. K., White, S. M. & Pocock, M. J. O., 2014. The Contrasting Effects of Genome Size, Chromosome Number and Ploidy Level on Plant Invasiveness: A Global Analysis.

5. New Phytologist 203: 697-703. Pimentel, D. (Ed.). 2011.

6. Biological Invasions: Economic and Environmental Costs of Alien Plant, Animal and Microbe Species. CRC Press. Singh, J. S., Singh, S. P. & Gupta, S. R. 2006.

7. Ecology, Environment And Resource Conservation. Anamaya Publications.

8. Wilson, E. O. 1985. The Biological Diversity Crisis. Bioscience 35: 700-706.

Semester - VI, Paper - II

Credit-2

EVS –362 Nature Conservation

Sr.No.	Name of Unit	Content	Lecture
1	Introduction to	• Introduction,	5
	Nature Conservation	• Concept of nature conservation	
		Objectives	
		• Challenges	
2	In-situ Conservation	• Concept and principle of Insitu Conservation.	5
		• Types : Biosphere reserve, National Parks, Wildlife	
		sanctuaries, Biodiversity Hotspots, Gene Sanctuary,	
		Community reserves, Sacred groves	
		• Challenges, merits and Demerits	
3	Ex-situ conservation	Concept and principle	5
		• Types : Cryopreservation, Seed banks, Field gene	
		banking, Cultivation Collections	
		• Challenges, merits and Demerits	
4	International and	• Role if IUCN, WWF for naure conservation.	10
	National Efforts for	• Introduction to Protocol and Conventions for Nature	
	conservation	conservation.	
		• National Efforts: BNHS, Tiger, Crocodile, Reindeer,	
		Whaling mission.	
		• Administrative Setup: MoEFCC, SPCB, CPCB, etc	
		• Role of NGO	

		•	Species conservation efforts	
5	Awareness about	•	Need and Importance of awareness.	5
	conservation	•	State Symbols (Animal and Plants)	
		•	Role of NGO in Awareness	

1.Agrawal K. C., 2009. Biodiversity: Concept. Conservation and Management, Concept Publishing Company Pvt. Ltd, New Delhi.

2Ahluwalia V. K., Malhotra S. 2008. Environmental Science, doi, 13: 978-1-42007-069-9.

3.Anderson A., David .,2010. Environmental economics and Natural resource Management. The USA and Canada by Routledge 270 Madison Avenue, New York.

4.Balvanera P., Daily G. C., Ehrlich P. R., Ricketts T. H., Bailey S. A., Kark S., Kremen C., Pereira H., 2001. Conserving Biodiversity and Ecosystem Services. Science, 291, 5511: 2047

5.Botkin D. B., Keller E. A., 2010. Envionmental Science.

6.Central Zoo Authority (CZA) report., 2011. Important zoo in India. <u>www.cza.nic.in</u>

7. Chaturvedi, Mahendra, .2010. Biodiversity and Conservation. D.P.S. Publishing House ,New Delhi,

8. Convention on International Trade in Endangered Species of Wild Fauna and For a (CITES) www.cites.org

9ENVIS. Environmental Information system. www.envis.nic.in

10. Gadgll M., Berkes F., Folke C., 1993. Indigenous knowledge for biodiversity conservation. Biodiversity: Ecology, Economics, Policy, 22 (2/3), 151-156

Semester – VI, Paper –III

EVS –363 Air and Noise Quality

Total Lectures- 30

Credit-2

Unit No.	Course Content	Number of
-	A tax configure and its notions	Lectures
1	Atmosphere and its nature Atmosphere: Composition of Atmosphere, Chemical and photochemical reactions in the atmosphere, Human Activities and meteorology, factors influencing the pollutant mix in the atmosphere and the resultant impacts of pollution, Transport of Pollution in Atmosphere Global Warming, Ozone Hole, El Nino, La Nina Phenomenon.	05
2	Air pollution Air pollution: Meaning and definition, Sources and Types of air pollutants, major air pollutants; types of air pollution – indoor air pollution, vehicular pollution, industrial pollution; Status of Air pollution in India, Effects of air pollution on plants; animals; human; and materials, Smog and Acid rains, Control of air pollution. Emission Standards Air quality Index (AQI) and air pollution tolerance index (APTI)	05
3	Analytical Methods for Monitoring Air Pollutants Analytical Methods for Monitoring Air Pollutants; Sampling, : Stack sampling, instrumentation and methods of analysis of SO2, CO etc, Monitoring, and, Hydrogen Sulphide, Hydrocarbons, Methane ,Particulate	

	Matter,	05
4	Air Pollution control Air Pollution control- at source-equipment for control of air pollution-For particulate matter-Settling chambers-Fabric filters-Scrubbers-Cyclones Electrostatic precipitators, For Gaseous pollutants-control by absorption- adsorption scrubbers-	05
5	Noise pollution Basics of acoustics and specification of sound; sound power, sound intensity and sound pressure levels; plane, point and line sources, multiple sources; causes of noise, outdoor and indoor noise propagation; psycho-acoustics and noise criteria	05
6	Effects of noise on health, annoyance rating schemes; special noise environments: Infra-sound, ultrasound, impulsive sound and sonic boom; noise standards and limit values; noise instrumentation and monitoring procedure. Noise indices	05

- Rao and Rao: Air Pollution Control Engineering.
- Environmental Pollution Control Engineering-CS Rao, Wiley Eastern Ltd., New Delhi, 1996.
- C.S. Rao, Air pollution and control
- Environmental Noise Pollution-PE Cunniff, McGraw Hill, New York, 1987

Semester – VI, Paper – IV,

EVS -364 Environmental Issues

Total Lectures-30

Credit-2

Unit	Course Content	Number
110		Lectures
1	Global Environmental issues - ozone depletion, global warming and climatic	4
	change., Energy crisis and conservation, Biodiversity conservation, Hotspots,	
	Bio-resources and their impact on local economy.	
2	The green revolution, food crisis and population explosion,	6
	Pastoralism.Rehabilitating degraded lands, The Gender and environment debate	
3	Ecological conflicts and the environmental movements in India: Narmada Bachao	4
	Andolan, Appiko Movement, Chipko movement, Silent Valley Movement, Tehri	
	Dam conflicts, Almatti dam, Bhopal gas tragedy, Soil Erosion, Formation and	
	reclamation of Usar, Alkaline and Saline Soil	
4.	Waste lands and their reclamation. Desertification and its control. Vehicular	6
	pollution and urban air quality. Depletion of Nature resources	
5	Waste disposal, recycling and power generation. Fly ash utilization. Water Crises-	6
	Conservation of water. Environmental Hazards. Eutrophication and restoration of	
	Indian lakes. Rain water harvesting. Wet lands conservation. Epidemiological	
	issues (e.g. Corona pandemic Goitre, Fluorosis, Arsenic)	
6.	Intermetional trade and economic reference on the environment	4
	industrial growth and economic reforms on the environment,	
	industrial growth, environmental and ecology in India, major issues in	
	sustaining growth and development	

1.Environmental Governance: The Global Challege; By Lamont C. Hempel; Island Press (1996) 72. 2.Environmental Issues in India – A Reader; By Mahesh Rangrajan; Pearson-Longman Publ. (2007)

3.Introduction to Environmental Biotechnology; by AK Chatterji (2002); Prantice-Hall of India.

4.. Handbook of Environmental Law, Acts, Guidelines, Compliances, and Standards: Vol. I and II; by R.K. Trivedy; BS publ (2004).

5. International Environmental Law, Fairness, Effectiveness and World Order; by Elli Louka, Cambridge, (2006)

6. Global Environmental Governance: A Reform Agenda; by Adil Najam, Mihaela Papa, and Nadaa Taiyab (2006), International Institute for Sustainable Development (IISD), Canada

7. Environmental Governance and Regulation in India: by Atiyah Curmally; (Environment and Rehabilitation) India Infrastructure Report 2002

Semester –VI, Paper –VI

Credit-2

EVS -365 Environmental Governance: EMS, EIA & ISO14000

Unit	Name of the Unit	Content	Lectures
No.			
1	Environmental Governance	 Introduction, Importance, objective and attributes of Governance Elements of governance :Institutional and structural, ,rules and regulation Environmental governance in India Issues and challenges 	5
2	ISO 14000 standards	Overview of ISO 14000- Management system benefits and scopes Implementation and certification ISO/207 TC function Environmental management and sustainability aspects	7
3	EIA and Audits	Introduction ,Needs and Goals ,Advantages and Disadvantages Life cycle assessment , Societal response and Responsibilities (Public participation),EIA Notification, 2006 Methods of data collection :Net work, Checklist, Matrix, Overlay & GIS , Cost –benefit analysis, Concept of Audit: Definition and Types, Benefits and objectives of environmental audit, onsite , offsite audit , report preparation	6
4	Basic of EMS and EMP	Elements of EMS andEMP Planning and selection of appropriate resources management Benefits of EMS and EMP system	4

5	Case studies based on Developmental Project	Assessment of impact on development activities on • vegetation and wildlife,	4
		deforesrtration and mining	

- EIA notification published by Ministry of Environment, Forests and Climate Change, Government of India
- Environmental Impact Assessment, Canter R.L., McGraw Hill International Edition.
- Environmental Impact Assessment: Practical Guide for Professional Practices by Rathi AKA, Publisher: Gujarat Akar Unlimited, 2016
- Preventive Environmental Management: An Indian Perspective by Dr. Shyam R. Asolekar& Dr. R. Gopichandran

Semester – V, Paper –VI

EVS -366 Environmental Biotechnology-II

Total Lectures- 30

Credit-2

Unit No	Name of Unit	Content	Lectures
	Bioremediation	Principles of bioremediation; Types of	6
		Bioremediation; Concept of bioaugmentation	
		and biostimulation.	
		(A) Microbial Remediation: - Factors	
		affecting bioremediation process: microbial	
		metabolism, environmental conditions and	
		nature of pollutant.	
		(B) Phytoremediation: - Concept and types of	
		phytoremediation, factors affecting on	
		phytoremediation, plants useful for	
		phytoremediation, removal of metals and	
		organic pollutants; phyto-extraction, phyto-	
		stabilization, Rizo-filtration, Phyto-	
		transformation, phyto-volatilization.	
		Current developments in the process of	
		bioremediation.	
	Biotechnology for the	Air and water pollution & its control through	6
	control of pollutants	biotechnology; methods of biofiltration;	
		Xenotiotics in environment; oxic and anoxic	
		degradation of xenobiotics; Biotechnological	
		approach to address environmental problems;	
	· ·	Wastewater treatment using aquatic plants;	
		Biotechnology of solid waste disposal; Use	
		of immobilized enzymes and microbes for	
		pollution abatement; improvement of	
		microbial strains by conventional and	
		molecular biological techniques.	
	Biodegradation		4
		History, advantages and disadvantages of	
		Bioleaching, microbes used for bioleaching;	
		Biochemical extraction from mixture types of	
		bioleaching, methods of bioleaching and	

	metal precipitation; Biosorption of metals	
Biomethanation	Anaerobic treatment for gas generation,	4
	microbiology and biochemistry, factors	
	affecting on biomethanation, design of	
	digester biomethanation in industries,	
	potential of biomethanation from MSW,	
	Biomass gasification, Problems in	
	Biomethanation	
Aerobic biological	activated sludge, biofilm reactors and	3
treatments	biological filters,	
	Anaerobic biological treatments UASB,	
	Removal of specific pollutants- nitrate,	
	phosphates, heavy metals, etc.; Biosorption	
	techniques for removal of pollutants.	
Biopolymers ,	Biopolymers: - concept and types of	07
Biosensors and	biopolymers/bioplastics and its applications.	·
Bioindicators	Biosensors: - concept and applications of	
	biosensors in environmental monitoring.	
	Bioindicators: - Concept of bioindicators,	
	Plankton community as indicators of water	
	pollution; microbiological quality of potable	
	waters, indicator organisms, coliforms and E.	
	coli, fecal streptococci, clostridia,	
	heterotrophic plate counts etc. lichens as air	
	pollution indictors, etc.	

- Environmental Biotechnology. M.H. Fulekar.
- Environmental Biotechnology: Basic Concepts and Applications. Indu Shekhar Thakur, I.K.InternationalPvt. Ltd.
- Sohal H.S (1994), Environment and biotechnology, Ashish Publishing house, New Delhi.
- T. Srinivas (2008), Environmental Biotechnology, New age International Publishers, New Delhi.
- H.K. Das (2017), Textbook of Biotechnology, Wiley Publications, New Delhi.
- Scragg Alan (2011), Environmental Biotechnology, Oxford University Press, New York
- Buddola Viswanath, Environmental Biotechnology, Narosa publication house, New Delhi.
- Colin R., Kristiansen B. (2001), Basic Biotechnology, Cambridge University press, UK.
- Bhattacharyya B. C., (2010), Environmental biotechnology, Oxford university press, New Delhi.
- Jha Ashwini (2017), Environmental Biotechnology Principles and applications, Anmol Publication Pvt. Ltd., New Delhi.
- A.K. Chatterji, (2011), Introduction to Environmental Biotechnology, PHI Private Ltd., New Delhi.

Semester – VI, Paper –VII

EVS -367 Practicals based on ENV- 361 and 362

Sr. No.	Title	No. of practical
1	Identification and Classification of phytoplankton and	1
	zooplankton from water sample	
2	Quantitative analysis of phytoplankton by Lackey's Drop count	1
	method	
3	Study of Wetland ecosystem	1
4	Study of swamp (Mangrove) ecosystem	1
5	Study of Aquatic Weeds, Insects, Birds	1
6	Study of Benthic fauna	1
7	Study of Macrophytes and microorganisms as Bioindicator of	1
	pollution	
8	Determination of pH, EC and temperature of waste water	1
9	Estimation of Dissolved oxygen and CO2 of water sample	1
10	Determination of BOD of waste water sample	1
11	Determination of COD of waste water sample	1
12	Testing the bacteriological quality of drinking water	1
13	Jar test for Coagulation and Flocculation	1
14	Determination of Sludge Volume Index	1
15	Study of various disinfection methods for water	1

Semester – VI, Paper –VIII

EVS –368 Practicals based on ENV- 363 and 364

Sr No	Name of Practical	No. of Practical
1	Principle and functioning of high volume air sampler	1
2	Sampling of waste water from different polluted sites	1
3	Estimation of SPM from atmosphere	1
4	Determination of SOx	1
5	Determination of NOx	1
6	Visit to pollution control laboratories	1
7	Determination of MPN from drinking water resource for potability	1
8	Study of phytoremediation techniques to remove pollutants	1
9	Study of Safety instructions	1
10	Testing the bacteriological quality of drinking water	1
11	Examination of sewage water for microbial pathogens	1
12	Methods of disinfection in waste waters	1
13	Use of macrophytes as bio-indicators for water/soil pollution	1
	monitoring	
14	Use of microorganisms as bio-indicators for water/soil pollution	1
	monitoring	

Semester – VI, Paper –IX

EVS –369 Project

Unit No	Name of Unit	Content	Lectures
1	Project	 Introduction Aim Objective Methodology Progress report Results Conclusion Progress report Final presentation 	

Semester – VI, Paper – IV,

SEC-3613 Solid Waste management

Credit-2

Total Lectures- 30

Unit	Course Content	Number	of
1N0	Commence and a commence of a liderate their destification and the mission entropy	Lectures	
1	Sources and generation of solid waste, their classification and chemical composition;	3	
	characterization of municipal solid waste; nazardous waste and biomedical waste.		
2.	Impact of solid waste on environment, human and plant health; effect of solid waste and	4	
	industrial effluent discharge on water quality and aquatic life; mining waste and land		
	degradation; effect of land fill leachate on soil characteristics and ground water pollution.		
3.	Different techniques used in collection, storage, transportation and disposal of solid	6	
	waste (municipal, hazardous and biomedical waste); landfill (traditional and sanitary		
	landfill design); thermal treatment (pyrolysis and incineration) of waste material;		
	drawbacks in waste management techniques.		
4	Types of industrial waste: hazardous and non-hazardous; effect of industrial waste on air,	6	
	water and soil; industrial waste management and its importance; stack emission control		
	and emission monitoring; effluent treatment plant and sewage treatment plant.		
5	4R- reduce, reuse, recycle and recover; biological processing - composting, anaerobic	4	
	digestion, aerobic treatment; reductive dehalogenation; mechanical biological treatment;		
	green techniques for waste treatment.		
6	Concept of energy recovery from waste; refuse derived fuel (RDF); different WTE	6	
	processes: combustion, pyrolysis, landfill gas (LFG) recovery; anaerobic digestion;		
	gasification Concept of Integrated waste management; waste management hierarchy;		
	methods and importance of Integrated waste management.		

References

^{1.} Asnani, P. U. 2006. Solid waste management. India Infrastructure Report 570.

2. Bagchi, A. 2004. Design of Landfills and Integrated Solid Waste Management. John Wiley & Sons.

3. Blackman, W.C. 2001. Basic Hazardous Waste Management. CRC Press.

4. McDougall, F. R., White, P. R., Franke, M., & Hindle, P. 2008. Integrated Solid Waste Management: A Life Cycle Inventory. John Wiley & Sons.

5. US EPA. 1999. Guide for Industrial Waste Management. Washington D.C.

6. White, P.R., Franke, M. & Hindle P. 1995. Integrated Solid waste Management: A Lifecycle Inventory. Blackie Academic & Professionals.

7. Zhu, D., Asnani, P.U., Zurbrugg, C., Anapolsky, S. & Mani, S. 2008. Improving Municipal Solid waste Management in India. The World Bank, Washington D.C..

Semester – V, Paper – IV,

SEC-3614 Urban Ecosystem

Total Lectures- 30

Credit-2

Unit	Course Content	Number	of
No		Lectures	
1	Introduction to urbanization; urban sprawl and associated environmental issues.	3	
2.	Environment in an urban setting: Man as the driver of urban ecosystem;	4	
	commodification of nature; metros, cities and towns as sources and sinks of resources;		
	resource consumption and its social, cultural, economic and ecological perspectives;		
	urban transformation; increasing challenges posed by modernity for the environment;		
	urban pollution (air, water, soil).		
3.	Urban dwelling : Housing scenario across a range of large-medium-small cities; poverty	6	
	and slums in an urban context; Town planning Acts and their environmental aspects;		
	energy consumption and waste disposal as well as accumulation; environmental costs of		
	urban infrastructure.		
4	Urban interface with the environment: Management of urban environment; alternative	6	
	resources; policy and management decisions; urban settings as loci of sustainability;		
	challenges associated with sustainability and urban future.		
5	Natural spaces in a city : Concept of 'controlled nature'; scope, importance and threats	4	
	to nature in the city; organization and planning of green spaces such as parks, gardens		
	and public spaces; concept of green belts; urban natural forest ecosystem as green lungs.		
6	Planning and environmental management: Urban planning and its environmental	6	
	aspects from historical and contemporary perspectives; benefits of environmental		
	management; introduction to green buildings; urban governance; political complexity of		
	applying ecological science to urban policy and planning, smart cities.		

References

1.D'Monte, Darryl. 1985. Industry versus Environment Temples or Tombs. Three Controversies, Delhi, CSE.

2. Ernstson, H. 2011. Re-translating nature in post-apartheid Cape Town: The material semiotics of people and plants at Bottom Road. In: Heeks, R., (Ed.) Conference on "Understanding Development through Actor-Network Theory", London School of Economics, 30 June, London.

3. Gaston, K.J. 2010. Urban Ecology. Cambridge University Press, New York.

4. Grimm, N. B., Faeth, S. H., et al. 2008. Global Change and the Ecology of Cities. Science 319: 756-760.

5. Hinchliffe, S. & Whatmore, S. 2006. Living cities: Towards a politics of conviviality. Science as Culture 15: 123–138.

6. McIntyre, N.E. 2000. Urban ecology as an interdisciplinary field: differences in the use of 'urban' between the social and natural sciences. Urban Ecosystems 4: 5-24.

7. Montgomery, M.R. 2009. Urban Transformation of the developing world. Science 319: 761-764.

8. Richter, M. & Weiland, U. (ed.). 2012. Applied Urban Ecology. Wiley-Blackwell, UK.