

Savitribai Phule Pune University

Three Year B.Sc. Degree Program in Aviation (Faculty of Science & Technology)

First Year B.Sc. (Aviation)

Choice Based Credit System Syllabus Proposed to be implemented from Academic Year 2023-2024

Title of the Course: B.Sc. (Aviation)

Preamble of the Syllabus:

The systematic and planed curricula from 1st year to 3rd years shall motivate and encourage the students pursuing the higher education in the aviation field.

Introduction:

At first year of under-graduation: The basic topics related to the workshop practice, Electrical Fundamental and maintenance concepts, building blocks, components, assembly techniques are dealt with. The practical course is designed to emphasize practical skills required for Aircraft Maintenance testing and trouble-shooting.

At second year under-graduation: The level of the theory and practical courses shall be one step ahead of the first year B.Sc. Courses based on content of first year. The course on Environment & Human Factor is introduced to understand its context in aviation. The Language Proficiency course is introduced to build the professional ability of students.

At third year under-graduation: Proportionate number of laboratory exercises will be included in the practical courses. In addition, project course I and II are included in third year at 5th & 6th Semester respectively in which students can independently think and carry out the project work. The list of activities is given in the syllabus. At 6th Semester, the student is expected to complete any 4 activities from the list.

Need for Launching B.Sc. Aviation Degree Course:

a) To provide capable and trained human resource to Aviation Industry.

b) To fulfil the minimum academic qualification requirement so as to enable the graduates to compete for higher studies/ Job Opportunities in the Aviation Industry.

The Aviation Industry is poised for substantial growth in India and this will go a long way for the country's overall development to be maintained at a high rate. The country has already witnessed the Open skies policy which led to significant increase in Air services which in turn required parallel growth in infra-structure. The need of the future therefore will be felt in much greater requirement of skilled manpower in all streams connected with Aviation like management of increased number of airplanes and their maintenance. The movement of goods and people will have to be quick and safe and this can only be achieved by an efficient, reliable and economic aviation industry. The industry therefore needs more and more aircraft and large workforce to keep them flying safely.

The Syllabus of B.Sc. (Aviation) degree is designed to enable the student to acquire the necessary qualification to enter into the Job market in any of the related fields of Aviation such as Traffic Control, Crew and Man power Scheduling, In-flight service department, Security, Civil Works department and Line and Major maintenance department of Engineering etc. The existing highly qualified work force of AMEs (Aircraft Maintenance Engineers) shouldering huge responsibility in the certification of an Aircraft carrying large number of passengers say 400 to 500 passenger capacity, are denied the higher positions in the Industry merely for not possessing Graduate degree in Aeronautics.

After obtaining B.Sc. degree in Aviation student may start his / her career as Trainee Technician with some stipend and then as Jr. Technician. Further promotional avenues could be Sr. Technician etc, depending on his / her achievements. The undergraduate study will significantly enhance the competency of the student to appear in the AME (Aircraft Maintenance Engineer) license examination conducted by DGCA (Director General of Civil Aviation). After acquiring License qualification, he / she can start his / her career as Aircraft Maintenance Engineer category. However, it is also possible that the graduates B. Sc. (Aviation) enter the field of Non-Technical streams in the Aviation Industry like Commercial Department, In-flight service Department, Ground Support Department and Security Department etc.

It is, therefore, in fitness of things that such a degree course would help the student to make his / her career in Aviation.

Objectives:

The systematic and planned curricula from first year to the third year is aimed at focusing attention to the skills required for practicing in the field of Aircraft Maintenance. This is expected that student become more confident in working and shall motivate and encourage the student for pursuing higher studies in Aviation Maintenance and for becoming self-employed. The B.Sc. Aviation course shall have the following objectives.

- To provide in-depth knowledge of technological aspects of aviation maintenance.
- To familiarize with current and recent technological developments in aviation industry.
- To enrich knowledge through programmes such as industrial visits, hobby projects, market survey, projects etc.
- To train students in skills related to aviation industry and market.
- To create foundation for perfecting practical skills in aircraft maintenance and operation.
- To develop analytical abilities towards real aviation problems.
- To help students build-up a progressive and successful career in Aircraft maintenance and operation.

Course Structure:

Course	Title of Course	Cre	dits	Lectures/ Week		Lectures/ Week Evalua		valuati	tion	
Code		Th.	Pr.	Th.	Tu.	Pr.	CA	UE	Total	
BAV 101	Mathematics-I	4		4			30	70	100	
BAV 102	Workshop Technology	4		4			30	70	100	
BAV 103	Electrical Fundamentals	4		4			30	70	100	
BAV 104	Physics of	4		4			30	70	100	
	Aerodynamics									
BAV 105	Lab-I (Electrical		3			6	30	70	100	
	Practical)									
BAV 106	Lab-II (Workshop		3			6	30	70	100	
	Practices)									
	Total=		6	16		12	180	420	600	

B.Sc. (Aviation) Semester-I

B.Sc. (Aviation) Semester-II

Course	Title of Course	Cre	dits	Lectu	ures/ V	Veek	E	valuati	luation	
Code		Th.	Pr.	Th.	Tu.	Pr.	CA	UE	Total	
BAV 201	Mathematics-II	4		4			30	70	100	
BAV 202	Aviation Legislation	4		4			30	70	100	
BAV 203	Material Science &	4		4			30	70	100	
	Metallurgy									
BAV 204	Analog Electronics	4		4			30	70	100	
BAV 205	Lab-I (Electronics		3			6	30	70	100	
	Practical)									
BAV 206	Lab-II (Aircraft		3			6	30	70	100	
	Maintenance)									
	Total=	16	6	16		12	180	420	600	

Course Structure:

Course	Title of Course	Cre	dits	Lectu	ures/ V	Veek	Evaluation		
Code		Th.	Pr.	Th.	Tu.	Pr.	CA	UE	Total
BAV 301	Environment & Human	4		4			30	70	100
	Factor								
BAV 302	Fundamentals of	3		3			30	70	100
	Computer &								
	Programming								
	Languages								
BAV 303	Thermodynamics	3		3			30	70	100
BAV 304	Aircraft Ground	4		4			30	70	100
	Handling								
BAV 305	Aircraft Hardware	3		4			30	70	100
BAV 306	Lab-I (Computer		3			6	30	70	100
	Programming)								
BAV 307	Lab-II (Aircraft		2			4	20	30	50
	Hardware)								
	Total=	17	5	18		10	200	450	650

B.Sc. (Aviation) Semester-III

B.Sc. (Aviation) Semester-IV

Course	Title of Course	Cre	dits	Lectu	Lectures/ Week		Evaluation		on
Code		Th.	Pr.	Th.	Tu.	Pr.	CA	UE	Total
BAV 401	Digital Electronics	4		4			30	70	100
BAV 402	Basic Radar & Radio	3		3			30	70	100
	System								
BAV 403	Communication and	4		4			30	70	100
	Navigation System								
BAV 404	Propulsion-I (Jet	3		3			30	70	100
	Engines)								
BAV 405	Lab-I (Digital		3			6	30	70	100
	Electronics Practical)								
BAV 406	Lab-II (Communication		3			6	30	70	100
	& Navigation)								
BAV 407	Language Proficiency	2		2			20	30	50
	Total=	16	6	16		12	200	450	650

Course Structure:

Course	Title of Course	Cre	dits	Lect	ures/ V	Veek	E	valuati	on
Code		Th.	Pr.	Th.	Tu.	Pr.	CA	UE	Total
BAV 501	Aircraft Structure	4		4			30	70	100
BAV 502	Aircraft System-	3		3			30	70	100
	Electrical &								
	Instruments								
BAV 503	Aircraft Modular	3		3			30	70	100
	Avionics & Digital								
	System								
BAV 504	Engineering Graphics	4		4			30	70	100
BAV 505	Lab-I (Flight		3			6	30	70	100
	Structures)								
BAV 506	Lab-II (Aircraft		3			6	30	70	100
	System- Electrical &								
	Instruments)								
BAV 507	Skill Enhancement		2			4	20	30	50
	Course Project-I								
	Total=	14	8	14		16	200	450	650

B.Sc. (Aviation) Semester-V

B.Sc. (Aviation) Semester-VI

Course	Title of Course	Cre	Credits Lectures/ Week		Evaluation				
Code		Th.	Pr.	Th.	Tu.	Pr.	CA	UE	Total
BAV 601	Aircraft System-	4		4			30	70	100
	Mechanical								
BAV 602	Propulsion-II	3		3			30	70	100
BAV 603	Airport Planning and	3		3			30	70	100
	Operations								
BAV 604	Soft Skills and	4		4			30	70	100
	Organisational								
	Behaviour								
BAV 605	Lab-I (Aircraft		3			6	30	70	100
	Systems- Mechanical)								
BAV 606	Activity		2			4	20	30	50
BAV 607	Skill Enhancement		3			6	30	70	100
	Course Project-II								
	Total=	14	8	14		16	200	450	650

Semester-I

Course Code: BAV 101

Total Contact Hours: 60 hrs Total Credits: 04 Total Marks: 100 Teaching Scheme: Theory – 04 Lectures/ Week

Course Objectives:

- 1. This course aims to provide students with the mathematical knowledge and skills.
- 2. It supports their concurrent and subsequent studies.
- 3. Providing a thorough grounding in mathematics and laying a foundation for further studies in aviation.

Learning Outcomes:

- 1. Students who successfully complete this course will be able to use tables of derivatives and integrals for simple functions.
- 2. Students can identify and use appropriate techniques to differentiate and integrate more complicated functions.
- 3. Students can apply the rules of differentiation and integration to classify stationary points.
- 4. Also to identify the nature of the function.
- 5. Apply integration to study Work and Fluid Forces.

Unit-I: Functions:

- Functions and Their Graphs. a.
- b. Combining Functions; Shifting and scaling Functions and Their Graphs.
- c. Combining Functions; Shifting and Exponential Functions, Inverse Functions and Logarithms.

Unit-II: Limits and Continuity:

- Rates of Change and Tangents to Curves. a.
- Limit of a Function and Limit Laws. b.
- The Precise Definition of a Limit, One-Sided Limits, Continuity, Limits Involving Infinity, c. Asymptotes of Graphs.

Unit-III: Derivatives:

- a. Tangents and the Derivative at a Point.
- b. Derivative as a Function.
- Differentiation Rules, the Derivative as a Rate of Change. c.
- d. Derivatives of Trigonometric Functions.
- The Chain Rule, Implicit Differentiation, Linearization and Differentials. e.

Unit-IV: Applications of Derivatives and Integrals:

- a. Extreme Values of Functions.
- The Mean Value Theorem, Monotonic Functions and the First Derivative Test Concavity and Curve b. Sketching.
- Indeterminate Forms and L'Hopital's Rule. c.
- The Definite Integral (Only Problems), Indefinite Integrals and the Substitution Method. d.
- Work and Fluid Forces. e.

Course Title: Mathematics-I

(15 hrs)

(15 hrs)

(15 hrs)

(15 hrs)

- 1. George B. Thomas, Jr., Thomas'Calculus, Thirteenth Edition, Pearson Education.
- 2. Shantinarayan and S.K. Mittal, Integral Calculus, S. Chand and Co. Publication.
- 3. Robert G. Bartle and Donald R. Sherbert, Introduction to Real Analysis, Third Edition, Jhon Wiley and Sons 2002.
- 4. W. Rudin, Principles of Mathematical analysis, Third Edition, Mc Graw Hill 1976.

Semester-I

Course Code: BAV 102

Course Title: Workshop Technology

 Total Contact Hours: 60 hrs
 Total Credits: 04
 Total Marks: 100

 Teaching Scheme: Theory – 04 Lectures/ Week
 Total Marks: 100

Course Objectives:

- 1. To study workshop safety norms, precaution and Fire safety.
- 2. To get familiar with Hand tool, Power tool, Precision Measuring equipment's and their use.
- 3. To understand Aircraft welding, Brazing, Soldering.

Learning Outcome:

Through this course, the students will be able to

- 1. Understand applications of hand tools and power tools.
- 2. Select the appropriate tools required for specific operation.
- 3. Comprehend the safety measures required to be taken while using the tools.
- 4. Identify and use the precision measuring instruments.
- 5. Compare welding, brazing, soldering and riveting.

Sl.	Description	Allotted
No.		hours
Unit	I: Basics of Workshop Practice	
1.	Safety Precautions-Aircraft and Workshop	5 hrs
	Aspects of safe working practices including precautions to take when working with	
	electricity, gases especially oxygen, oils and chemicals. Also, instruction in the	
	remedial action to be taken in the event of a fire or another accident with one or more	
	of these hazards including knowledge on extinguishing agents.	
2.	Workshop Practices	5 hrs
	• Care of tools, control of tools, use of workshop materials;	
	• Dimensions, allowances and tolerances, standards of workmanship;	
	• Calibration of tools and equipment, calibration standards.	
Unit	II: Basics Tools	
3.	Tools	30 hrs
	• Common hand tool types;	
	• Common power tool types;	
	• Operation and use of precision measuring tools;	
	• Lubrication equipment and methods.	
	• Operation, function and use of electrical general test equipment;	
4.	Avionic General Test Equipment	5 hrs
	• Operation, function and use of avionic general test equipment.	
Unit	III: Fits and Clearances	
5.	• Drill sizes for bolt holes, classes of fits;	5 hrs
	• Common system of fits and clearances;	
	• Schedule of fits and clearances for aircraft and engines;	
	• Limits for bow, twist and wear;	
	• Standard methods for checking shafts, bearings and other parts.	

Sl.		Description	Allotted			
No.			hours			
Unit-IV: Welding, Brazing, Soldering and Bonding						
6.	•	Soldering methods; inspection of soldered joints.	10 hrs			
	•	Welding and brazing methods;				
	•	Inspection of welded and brazed joints;				
	•	Bonding methods and inspection of bonded joints.				

Sl.	Author / Publisher	Nomenclature of Book
No.		
1.	Aircraft Tech Book Co	EASA Module-07A Maintenance Practices
2.	CAIP I	Civil Aircraft Inspection Procedure - Part I
3.	CAIP II	Civil Aircraft Inspection Procedure - Part II
4.	Dale Crane	Aviation Maintenance technician Series- General
5.	FAA H 8083-30	Aviation Maintenance Technician Handbook- General
6.	J. A Enderson & Tatro	Shop Theory
7.	Jeppesen	A & P Technician General Text Book
8.	Lalit Gupta	Aircraft General Engineering

Semester-I

Course Code: BAV 103

Course Title: Electrical Fundamentals

 Total Contact Hours: 60 hrs
 Total Credits: 04
 Total Marks: 100

 Teaching Scheme: Theory – 04 Lectures/ Week
 Total Marks: 100

Course Objectives:

- 1. To get familiar with basic electricity, passive components
- 2. To understand DC and AC circuit theorems and their use in circuit analysis
- 3. To introduce Electromagnetism and Transformer.
- 4. To understand the construction of DC, AC Motor and Generator

Learning Outcome:

Through this course, the students will be able to

- 1. Identify electrical symbols and measuring instruments.
- 2. Find resistor, capacitor values with a color code and meter.
- 3. Use an electrical meter to measure voltage, current, Power in the circuit.
- 4. Simplify electrical circuit using, network theorems.
- 5. Understand leading/ lagging phase relationship, power factor
- 6. Understand the DC/ AC Generator and Motor.

Sl.	Description	Allotted				
No.		hours				
Unit-I: Passive Components						
1.	Electron Theory	2 hrs				
	• Structure and distribution of electrical charges within: atoms, molecules, ions,					
	compounds;					
	Molecular structure of conductors, semiconductors and insulators.					
2.	Static Electricity and Conduction	2 hrs				
	• Static electricity and distribution of electrostatic charges;					
	• Electrostatic laws of attraction and repulsion; Units of charge, Coulomb's Law;					
	• Conduction of electricity in solids, liquids, gases and a vacuum.					
3.	Electrical Terminology	2 hrs				
	• The following terms, their units and factors affecting them:					
	 Potential difference, 					
	 electromotive force, 					
	 voltage, current, 					
	 resistance, conductance, 					
	 Charge, conventional current flow, electron flow. 					
4.	Generation of Electricity	2 hrs				
	• Production of electricity by the following methods:					
	 Light, heat, 					
	 Friction, pressure, 					
	 Chemical action, magnetism and motion. 					

Sl.	Description	Allotted
No.	Desigtanes/Desistan	hours
5.	Resistance/ Resistor	4 nrs
	Resistance and affecting factors; Specific resistence:	
	 Specific resistance, Resistor colour code, values and tolerances, preferred values, wattage ratings 	
	 Resistor colour code, values and colorances, preferred values, wattage ratings Resistors in series and parallel: 	
	 Calculation of total resistance using series parallel and series parallel 	
	combinations;	
	• Operation and use of potentiometers and rheostats;	
	• Operation of Wheatstone bridge.	
	• Positive and negative temperature coefficient conductance;	
	• Fixed resistors, stability, tolerance, limitations, methods of construction	
	• Variable resistors, thermistors, voltage dependent resistors;	
	• Construction of potentiometers and rheostats;	
	Construction of Wheatstone Bridge	
6.	Power	2 hrs
	• Power, work and energy (kinetic and potential);	
	• Dissipation of power by a resistor;	
	• Power formula;	
	• Calculations involving power, work and energy.	
7.	Capacitance/ Capacitor	3 hrs
	• Operation and function of a capacitor;	
	• Factors affecting capacitance area of plates, distance between plates, number of	
	plates, dielectric and dielectric constant, working voltage, voltage rating;	
	Capacitor types, construction and function;	
	Capacitor colour coding;	
	• Calculations of capacitance and voltage in series and parallel circuits;	
	• Exponential charge and discharge of a capacitor, time constants;	
	• Testing of capacitors.	
8.	Inductance/Inductor	3 hrs
	• Faraday's Law;	
	• Action of inducing a voltage in conductor moving in a magnetic field;	
	• Induction principles;	
	• Effects of the following on the magnitude of an induced voltage: magnetic field	
	strength, rate of change of flux, No. of conductor turns;	
	• Mutual induction;	
	• The effect the rate of change of primary current and mutual inductance has on	
	Eastern offesting mutual inductor and mutual of turne in a 1 showing bit.	
	• Factors affecting mutual inductance: number of turns in coll, physical size of coll, permeability of coll, position of coll with respect to each other.	
	• Lenz's Lew and polarity determining rules:	
	 Lenz's Law and polarity determining rules; Back amf, solf induction; 	
	Dack effit, self filduction, Seturation point:	
	Saturation point, Dringiple uses of inductors:	
	Principle uses of inductors;	

Sl.	Description	Allotted
No.		hours
Unit	-II: DC and AC Circuits	1
9.	DC Sources of Electricity	5 hrs
	• Construction and basic chemical action of: primary cells, secondary cells, lead acid	
	cells, nickel cadmium cells, other alkaline cells; Cells connected in series and	
	parallel; Internal resistance and its effect on a battery;	
10	• Construction, materials and operation of thermocouples; Operation of photo-cells.	4 1
10.	DU Circuits	4 nrs
	• Onms Law, Kirchoff's Voltage and Current Laws;	
	• Calculations using the above laws to find resistance, voltage and current;	
11	• Significance of the internal resistance of a supply.	2.1
11.	AC Theory	3 hrs
	• Sinusoidal waveform: phase, period, frequency, cycle; Instantaneous, average, root	
	mean square, peak, peak to peak current values and calculations of these values, in	
	Trian cultures waves	
	• Thangular/Square waves;	
12	Single/5 phase principles. Design (D) Consolitive (C) and Industive (L) Circuits	2 hrs
12.	• Dhase relationship of voltage and current in L C and B circuits perallel series and	5 11 5
	• Flase relationship of voltage and current in L, C and K circuits, parallel, series and series parallel; concept of Resonance	
	• Power dissipation in L. C and P circuite:	
	 Fower dissipation in L, C and K circuits, Impedance, phase angle, power factor and current calculations; 	
	True power, enperant power and reactive power calculations,	
Unit	The power, apparent power and reactive power calculations. III: Magnetism and Transformer	
13		5 hrs
15.	Theory of magnetism including Right Hand Thumb rule Cork Screw Rule	5 11 5
	Properties of a magnet	
	 Action of a magnet suspended in the Earth's magnetic field: 	
	 Magnetization and demagnetization: 	
	Magnetic shielding:	
	 Wagnetic sincluing, Various types of magnetic material: 	
	 Flootromagnets construction and principles of operation; 	
	 Hand alean rules to determine: magnetic field around current corruing conductor. 	
	• Hand clasp fules to determine. Inaghetic field around current carrying conductor. (Eleming's Left Hand Rule, Faraday's Law)	
	• Magneto motive force field strength magnetic flux density permeability	
	hysteresis loop retentivity coercive force reluctance saturation point eddy	
	currents'	
	 Precautions for care and storage of magnets 	
14	Transformers	5 hrs
	• Transformer construction principles and operation:	2 110
	• Transformer losses and methods for overcoming them:	
	 Transformer action under load and no-load conditions: 	
	 Power transfer, efficiency, polarity markings; 	
	 Calculation of line and phase voltages and currents: 	
	 Calculation of nower in a three phase system. 	
	 Primary and Secondary current voltage turns ratio power efficiency. 	
	 Auto transformers. 	
14.	 Transformers Transformer construction principles and operation; Transformer losses and methods for overcoming them; Transformer action under load and no-load conditions; Power transfer, efficiency, polarity markings; Calculation of line and phase voltages and currents; Calculation of power in a three phase system; Primary and Secondary current, voltage, turns ratio, power, efficiency; Auto transformers. 	51

Sl.	Description	Allotted
No.		hours
Unit	IV: Electrical Machines	
15.	DC Motor/ Generator Theory	5 hrs
	• Basic motor and generator theory;	
	• Construction and purpose of components in DC generator;	
	• Operation of, and factors affecting output and direction of current flow in DC generators;	
	• Operation of, and factors affecting output power, torque, speed and direction of	
	rotation of DC motors;	
	• Series wound, shunt wound and compound motors;	
	• Starter Generator construction.	
16.	Filters	1 hr
	• Operation, application and uses of the following filters: low pass, high pass, band	
	pass, band stop.	
17.	AC Generators	5 hrs
	• Rotation of loop in a magnetic field and waveform produced;	
	• Operation and construction of revolving armature and revolving field type AC	
	generators;	
	• Single phase, two phase and three phase alternators;	
	• Three phase star and delta connections advantages and uses;	
	• Permanent Magnet Generators.	
18.	AC Motors	4 hrs
	• Construction, principles of operation and characteristics of: AC synchronous and	
	induction motors both single and polyphase;	
	• Methods of speed control and direction of rotation;	
	• Methods of producing a rotating field: capacitor, inductor, shaded or split pole.	

Sl.	Author / Publisher	Nomenclature of Book
No.		
1	Aircraft Tech Book Co.	EASA Module-03 Electrical Fundamental
2	B. L. Theraja (Vol-I)	Electrical Technology
3	Bernard Grob	Basic Electronics
4	Dale Crane	Basic Electricity for A & P Mechanics
5	E.H.J. Pallett	Aircraft Electrical System
7	FAA H 8083-30	Aviation Maintenance Technician Hand Book-General
9	Thomas K Eismin	Aircraft Electricity & Electronics

Semester-I

Course Code: BAV 104

Course Title: Physics of Aerodynamics

Total Contact Hours: 60 hrsTotal Credits: 04Total Marks: 100Teaching Scheme: Theory – 04 Lectures/ Week

Course Objectives:

- 1. To understand the physics of Atmosphere.
- 2. To understand the physics of Aerodynamics, airflow over body of aircraft at low and high speed, forces generated on body.
- 3. To understand the shape of aerofoils and wing and how they affect lift and drag, effect of boundary layer on flow around the body.
- 4. To understand the different types of flights and calculate basic performance in steady, straight, climbing, turning, gliding and diving flight.
- 5. To understand the concept of stability and control.

Learning Outcome:

After learning this course, the students will be able to

- 1. Understand basic physics of fluid flow and generation of forces on bodies in air in particular.
- 2. Apply Newton's laws of motion to calculate the flight path under various flight conditions.
- 3. Determine how aerodynamic lift, drag and pitching moment are generated from the pressure and stress distributions on aerofoils.
- 4. Understand various devices used in connection with flight to augment or obtain required performance.

Sl.		Description	Allotted
No.			hours
Unit	-I: I	Physics of the Atmosphere	
1.	•	Basic Aerodynamics	6 hrs
	•	Physics of Atmosphere:	
		Pressure, Density, Humidity, Temperature & Altitude	
	•	International Standard Atmosphere (ISA)	
Unit	Unit-II: Physics of Aerodynamics		
2.	•	Airflow around a body;	25 hrs
	•	Boundary layer, laminar and turbulent flow, free stream flow, relative airflow,	
		upwash and downwash, vortices, stagnation;	
	•	The terms: camber, chord, mean aerodynamic chord, profile (parasite) drag,	
		induced drag, centre of pressure, angle of attack, wash in and wash out, fineness	
		ratio, wing shape and aspect ratio; Thrust, Weight, Aerodynamic Resultant;	
		Generation of Lift and Drag: Angle of Attack, Lift coefficient, Drag coefficient,	
		polar curve, stall; Aerofoil contamination including ice, snow, frost.	

Sl.	Description	Allotted
No.		hours
Unit	III: Theory of Flight	
3.	• Relationship between lift, weight, thrust and drag;	20 hrs
	• Glide ratio;	
	• Steady state flights, performance;	
	• Theory of the turn;	
	• Influence of load factor: stall, flight envelope and structural limitations;	
	• Lift augmentation.	
Unit	IV: Flight Stability and Dynamics	
4.	Concept of Static and Dynamic Stability	6 hrs
	• C G of airplane & neutral point	
	• Longitudinal, lateral and directional stability (active and passive).	
Unit-IV: Introduction to Drones		
5.	Principles of operation	3 hrs
	• Types of Drones	
	Classification/ Characteristics	

Sl.	Author / Publisher	Nomenclature of Book
No.		
1.	AC Kermode	Mechanics of Flight
2.	Aircraft Tech Book Co.	EASA Module- 08 Basic Aerodynamics
3.	L. J. Clancy	Aerodynamics
4.	Jeppesen	A & P Technician Airframe Text Book
5.	Garvit Pandya	Basics of Unmanned Aerial Vehicle
6.		

Semester-I

Course Code: BAV 105

Course Title: Lab I (Electrical Practical)

Total Contact Hours: 90 hrs

Total Credits: 03 Teaching Scheme: Practical – 06/ Week **Total Marks: 100**

Learning Outcome:

After successfully completing this laboratory course, the students will be able to:

- 1. Understand the fundamental of DC/AC circuits.
- 2. Identify the electrical component
- 3. Understand the basic use and working of the electrical related components.
- 4. To understand various types of operation characteristics and applications of Motor/ Generator/ Transformer.

Students have to perform minimum 12 Practical listed below:

SI.	Basic Practical Tasks
No.	
1.	To verify the ohm law & Kirchhoff law using resistive network.
2.	Familiarize with construction of primary cells, secondary cells, leads acid cells, nickel cadmium
	cells. Conduct connections in series and parallel
3.	Identify various types of resisters and make calculations to find the value of resistance, voltage
	and current. Demonstrate the resisters in series, parallel and in combination. Measure the value
	of resisters
4.	Operation and use of potentiometers and rheostats
5.	Application of Wheatstone Bridge to find out unknown resistance value
6.	Identify various types of capacitors, color code, and practice the value of capacitor. Connect the
	capacitors in series, parallel and in combination. Measure the value of capacitors through
	capacitor meter
7.	Identify the various type of Inductor, Connect the Inductor in series, parallel and in combination.
	Measure the value of inductor through Inductor meter
8.	Test the armature in Growler and through multimeter/ test lamp
9.	Show the constructional part of DC Generator & perform the inspection and operation of DC
	Generator
10.	Show the constructional part of DC motor and perform the inspection and operation of DC motor
11.	Compare the behavior with load of the series, shunt and compound DC motor. Perform the
	direction reversing method and speed control of DC motor
12.	Show the constructional part of various transformers. Check value of input & output. Perform
	the application of current and voltage transformer by simple circuit
13.	Show the constructional part of single phase, two phase and three phase AC generator
14.	Show the constructional part of single phase and three phase Induction & synchronous motor
15.	Measure the high resistance by megger.
16.	To demonstrate the process of Magnetization & Demagnetization
17.	To demonstrate the Faradays Law of Electromagnetic induction

Semester-I

Course Code: BAV 106

Course Title: Lab-II (Workshop Practices)

Total Contact Hours: 90 hrs

Total Credits: 03 Teaching Scheme: Practical – 06/ Week Total Marks: 100

Learning Outcome:

After successfully completing this Workshop course, the students will be able to

- 1. Use tools and measuring instruments.
- 2. Perform operation like drilling, welding soldering and brazing, turning.
- 3. Work in workshop environment while following standard procedure and safety practices.

Students have to perform minimum 12 Practical listed below:

Sl.	Basic Practical Tasks
No.	
1.	Safe working practices and precautions to be taken when working with electricity, gases
	especially oxygen, oils and chemicals. Instruction in the remedial action to be taken in the event
	of a fire
2.	Care of tools, control of tools and use of workshop materials. Use of common tools, tool safety
	and storage
3.	Cutting practice with Hacksaw. To make a square shape of 48 mm sides for given M.S. piece
4.	Drilling a hole by either hand tool or power tool and threading in 48 mm square MS Piece
5.	External threading practice with Dies and Die – holder. Tapping practice (Internal Threading)
6.	Procedure of taking measurement by using Vernier Caliper. Taking the measurement with
	external micrometre
7.	Use of torque wrench and measurement of torque value
8.	Use of dial test indicator. Use of callipers, feeler gauge, radius gauge, telescopic gauges
9.	Perform simple soldering tasks and inspect
10.	Perform electric arc welding (Stick Welding)
11.	Perform oxy Acetylene welding (Gas Welding)
12.	Perform tungsten inert gas welding (TIG)
13.	Perform Inspection of welded joints
14.	Perform Bonding and insulation tests
15.	Perform wire splicing methods, use of crimp tools
16.	Identification of wire types, their inspection criteria

Semester-II

Course Code: BAV 201

Total Contact Hours: 60 hrs Total Credits: 04 Total Marks: 100 Teaching Scheme: Theory – 04 Lectures/ Week

Course Objectives:

- 1. Reflecting the broad nature of the subject and developing mathematical tools for continuing further study in Aviation.
- 2. Students will develop skill and understanding in the meaning of planes, cones and cylinder.
- 3. Also able to do the classification of conic sections.
- 4. Use matrices to represent a system of equations.
- 5. To solve linear system of equations using matrices.

Learning Outcomes:

Students who successfully complete this course will be able to:

- 1. Use reflections and rotation to transform the given second degree equation to its standard form and identify the conic section.
- 2. Determine planes satisfying different conditions.
- 3. To state equation of cone and cylinder with given vertex.
- 4. Write given system of equations in matrix form.
- 5. To find solution of given linear system of equations using matrices.

Unit-I: Analytical Geometry of two dimensions

- a. Change of axes, Translation and rotation.
- General equation of second degree. b.
- Centre of conic, Nature of conic, Reduction to standard form. c.

Unit-II: Planes in 3-Dimension

- a. Equations of the first degree in x, y, z.
- b. Transformation to the normal form, determination of plane under given conditions.
- c. Systems of planes, two sides of a plane.
- d. Length of the perpendicular from a point to a plane, bisectors of angles between two planes.

Unit-III: Cones and Cylinders

- a. Definition of cone and cylinder.
- b. Equation of cone and cylinder with a given vertex.
- c. The right circular cone, the equation of a right circular cone.
- d. The right circular cylinder, the equation of a right circular cylinder.

Unit-IV: Matrices and System of linear equations

- a. Echelon and Reduced echelon form of a matrix, Reduction of matrix to its echelon form.
- b. Rank of a matrix, System of linear equations, Matrix form of system of linear equations.
- c. Homogeneous and non-homogeneous system of linear equations.
- d. Gauss Elimination and Gauss Jordan Methods.
- e. Consistency of a system of linear equations, condition of consistency.
- f. Eigen values, Eigen vectors, characteristic equation of a matrix of order up to 3x3.
- g. Cayley Hamilton theorem and its use to find the inverse of a matrix.

Course Title: Mathematics-II

(15 hrs)

(15 hrs)

(15 hrs)

(15 hrs)

- 1. Shantinarayan, Analytical Solid Geometry, S. Chand and Company Ltd.
- 2. H. Anton and C. Rorres, Elementary Linear Algebra with Applications.
- 3. P. K. Jain and Khalil Ahmed, A Text Book of Analytical Geometry of Three Dimensions.
- 4. K.B. Datta, Matrix and Linear Algebra, Prentice hall of India Pvt.Ltd.

Semester-II

Course Code: BAV 202

Course Title: Aviation Legislation

 Total Contact Hours: 60 hrs
 Total Credits: 04
 Total Marks: 100

 Teaching Scheme: Theory – 04 Lectures/ Week
 Total Marks: 100

Course Objectives:

- 1. To get familiar with Aircraft Act 1934.
- 2. To Understand Aircraft Rules.
- 3. To study Aircraft Rules 2003, AIC, AAC.

Learning Outcomes:

Through this course:

1. Students will be able to refer and follow rules and regulations laid down in connection with aircraft operations and maintenance in particular.

No. Unit-I: Regulatory Framework 1. • Role of International Civil Aviation Organization; • The Aircraft Act and Rules made there under • Role of the DGCA; • Relationship between CAR-21, CAR-M, CAR-145, CAR-66, CAR 147 • The Aircraft Rules (Applicable to Aircraft Maintenance and Release) • Aeronautical Information Circulars (Applicable to Aircraft Maintenance and Release) • CAR Sections 1 and 2 Unit-II : Approved Maintenance/Management Organization 2. CAR-145 — Approved Maintenance Organisations • Detailed understanding of CAR-145 and CAR M Subpart F 3. CAR-66 Certifying Staff – Maintenance	
Unit-I: Regulatory Framework 1. • Role of International Civil Aviation Organization; • The Aircraft Act and Rules made there under • Role of the DGCA; • Relationship between CAR-21, CAR-M, CAR-145, CAR-66, CAR 147 • The Aircraft Rules (Applicable to Aircraft Maintenance and Release) • Aeronautical Information Circulars (Applicable to Aircraft Maintenance and Release) • CAR Sections 1 and 2 Unit-II : Approved Maintenance/Management Organization 2. CAR-145 — Approved Maintenance Organisations • Detailed understanding of CAR-145 and CAR M Subpart F 3. CAR-66 Certifying Staff – Maintenance	hours
 Role of International Civil Aviation Organization; The Aircraft Act and Rules made there under Role of the DGCA; Relationship between CAR-21, CAR-M, CAR-145, CAR-66, CAR 147 The Aircraft Rules (Applicable to Aircraft Maintenance and Release) Aeronautical Information Circulars (Applicable to Aircraft Maintenance and Release) CAR Sections 1 and 2 Unit-II : Approved Maintenance Organisations Detailed understanding of CAR-145 and CAR M Subpart F CAR-66 Certifying Staff – Maintenance 	-
 The Aircraft Act and Rules made there under Role of the DGCA; Relationship between CAR-21, CAR-M, CAR-145, CAR-66, CAR 147 The Aircraft Rules (Applicable to Aircraft Maintenance and Release) Aeronautical Information Circulars (Applicable to Aircraft Maintenance and Release) CAR Sections 1 and 2 Unit-II : Approved Maintenance/Management Organization CAR-145 — Approved Maintenance Organisations Detailed understanding of CAR-145 and CAR M Subpart F CAR-66 Certifying Staff – Maintenance 	10 hrs
 Role of the DGCA; Relationship between CAR-21, CAR-M, CAR-145, CAR-66, CAR 147 The Aircraft Rules (Applicable to Aircraft Maintenance and Release) Aeronautical Information Circulars (Applicable to Aircraft Maintenance and Release) CAR Sections 1 and 2 Unit-II : Approved Maintenance/Management Organization CAR-145 — Approved Maintenance Organisations Detailed understanding of CAR-145 and CAR M Subpart F CAR-66 Certifying Staff – Maintenance Detailed understanding of CAR-66 	
 Relationship between CAR-21, CAR-M, CAR-145, CAR-66, CAR 147 The Aircraft Rules (Applicable to Aircraft Maintenance and Release) Aeronautical Information Circulars (Applicable to Aircraft Maintenance and Release) CAR Sections 1 and 2 Unit-II : Approved Maintenance/Management Organization CAR-145 — Approved Maintenance Organisations Detailed understanding of CAR-145 and CAR M Subpart F CAR-66 Certifying Staff – Maintenance Detailed understanding of CAR-66 	
 The Aircraft Rules (Applicable to Aircraft Maintenance and Release) Aeronautical Information Circulars (Applicable to Aircraft Maintenance and Release) CAR Sections 1 and 2 Unit-II : Approved Maintenance/Management Organization CAR-145 — Approved Maintenance Organisations Detailed understanding of CAR-145 and CAR M Subpart F CAR-66 Certifying Staff – Maintenance Detailed understanding of CAR-66 	
 Aeronautical Information Circulars (Applicable to Aircraft Maintenance and Release) CAR Sections 1 and 2 Unit-II : Approved Maintenance/Management Organization CAR-145 — Approved Maintenance Organisations Detailed understanding of CAR-145 and CAR M Subpart F CAR-66 Certifying Staff – Maintenance Detailed understanding of CAR-66 	
Release) • CAR Sections 1 and 2 Unit-II : Approved Maintenance/Management Organization 2. CAR-145 — Approved Maintenance Organisations • Detailed understanding of CAR-145 and CAR M Subpart F 3. CAR-66 Certifying Staff – Maintenance • Detailed understanding of CAR-66	
 CAR Sections 1 and 2 Unit-II : Approved Maintenance/Management Organization CAR-145 — Approved Maintenance Organisations Detailed understanding of CAR-145 and CAR M Subpart F CAR-66 Certifying Staff – Maintenance Detailed understanding of CAR-66 	
Unit-II : Approved Maintenance/Management Organization 2. CAR-145 — Approved Maintenance Organisations • Detailed understanding of CAR-145 and CAR M Subpart F 3. CAR-66 Certifying Staff – Maintenance • Detailed understanding of CAR-66	
 CAR-145 — Approved Maintenance Organisations Detailed understanding of CAR-145 and CAR M Subpart F CAR-66 Certifying Staff – Maintenance Detailed understanding of CAR-66 Detailed understanding of CAR-66 	
 Detailed understanding of CAR-145 and CAR M Subpart F 3. CAR-66 Certifying Staff – Maintenance Detailed understanding of CAR-66 	9 hrs
 3. CAR-66 Certifying Staff – Maintenance Detailed understanding of CAR-66 	
• Detailed understanding of CAR-66	9 hrs
Detailed understanding of Critt 66.	
4. CAR-M	7 hrs
Detail understanding of CAR M provisions related to Continuing Airworthiness	
• Detailed understanding of CAR-M.	
5. Safety Management System	3 hrs
State Safety Programme	
Basic Safety Concepts	
Hazards & Safety Risks	
SMS Operation	
SMS Safety performance	
Safety Assurance	
6. Fuel Tank Safety	2 hrs
• Special Federal Aviation Regulations (SFARs) from 14 CFR SFAR 88 of the FAA and of JAA TGL 47	
Concept of CDCCL,	
Airworthiness Limitations Items (ALI)	

Sl. No.	Description	Allotted hours
Unit	-III: Aircraft Operations	
7.	Aircraft Operations	5 hrs
	Commercial Air Transport/Commercial Operations	
	• Air Operators Certificates;	
	• Operators Responsibilities, in particular regarding continuing airworthiness and maintenance;	
	• Documents to be carried on board;	
	• Aircraft Placarding (Markings);	
8.	Applicable National and International Requirements	8 hrs
	• Maintenance Programme, Maintenance checks and inspections;	
	• Master Minimum Equipment Lists, Minimum Equipment List, Dispatch Deviation Lists;	
	• Airworthiness Directives; Service Bulletins, manufacturers service information;	
	Modifications and repairs;	
	• Maintenance documentation: maintenance manuals, structural repair manual, illustrated parts catalogue etc.	
	Continuing airworthiness:	
	 Test flights: 	
	• FTOPS / FDTO maintenance and dispatch requirements:	
	 RVSM maintenance and dispatch requirements 	
	 RNP. MNPS Operations 	
	• All Weather Operations.	
	• Category 2/3 operations and minimum equipment requirements.	
Unit	-IV: Aircraft Certification	
9.	General	3 hrs
	• Aircraft Modifications and repairs approval and certification	
	• Permit to fly requirements	
	Documents	4 hrs
	• Certificate of Airworthiness;	
	• Certificate of Registration;	
	• Noise Certificate;	
	• Weight Schedule;	
	Radio Station Licence and Approval.	

Sl.	Author / Publisher	Nomenclature of Book
No.		
1	DGCA	Airworthiness Advisory Circulars
2	DGCA	Civil Aviation Requirements (CAR) relevant to CAR-66 Syllabus
3	DGCA	Civil Aviation Procedures (CAP) relevant to CAR-66 Syllabus
4	Govt. of India	Aircraft Act 1934
5	Govt. of India	Aircraft Rule 1937

Semester-II

Course Code: BAV 203

Course Title: Material Science And Metallurgy

Total Contact Hours: 60 hrsTotal Credits: 04Total Marks: 100Teaching Scheme: Theory – 04 Lectures/ Week

Course Objectives:

- 1. Introduction to material science.
- 2. To discuss the different types of ferrous and non-ferrous materials.
- 3. To discuss the different types of Composite and Non-Metallic materials.
- 4. To introduce corrosion.

Learning Outcomes:

- 1. Understand the basic concept of ferrous materials.
- 2. Understand the basic concept of non-ferrous materials.
- 3. Understand the Characteristic and application of Composite and Non- Composite aircraft materials.
- 4. Know importance of Corrosion and its prevention in Aviation.

Sl.	Description	Allotted
No.		hours
Unit	-I: Introduction to Material Science & Metallurgy	
1.	• Understanding of Engineering Materials and Importance of Aviation Materials.	5 hrs
	• Properties of Aviation Materials and its selection.	
	Classification of Materials	
	Introduction to Metallurgy:	
	• Phase diagram	
	• Time, temperature and Transformation (TTT) diagram	
Unit	-II: Aircraft Materials- Ferrous & Non Ferrous	
2.	• Characteristics, properties and identification of common alloy steels used in	17 hrs
	aircraft;	
	• Heat treatment and application of alloy steels;	
	• Testing of ferrous materials for hardness, tensile strength, fatigue strength and	
	impact resistance.	
	• Characteristics, properties and identification of common non-ferrous materials used	13 hrs
	in aircraft;	
	• Heat treatment and application of non-ferrous materials;	
	• Testing of non-ferrous material for hardness, tensile strength, fatigue strength and	
	impact resistance.	

Sl.	Description	Allotted
No.		hours
Unit	-III: Aircraft Materials - Composite and Non-Metallic	
3.	Composite and Non-Metallic	15 hrs
	• Characteristics, properties and identification of common composite and non-	
	metallic materials, other than wood, used in aircraft; Sealant and bonding agents.	
	Wooden Structures	
	Construction methods and wooden airframe structures.	
	• Characteristics, properties, Types of wood and glue used in aircraft	
	Fabric Covering	
	Characteristics, properties and Types of Fabric used in Aviation	
Unit	-IV: Corrosion	
4.	Chemical fundamentals;	10 hrs
	• Formation by, galvanic action process, microbiological, stress;	
	• Types of corrosion and their identification;	
	• Causes of corrosion;	
	• Material types, susceptibility to corrosion.	
	• Introduction to CPCP (Corrosion Protection and Corrosion Prevention).	
	Advanced material used in Jet Engines.	

SI.	Author / Publisher	Nomenclature of Book
No.		
1.	Aircraft Tech Book Co	EASA Module-06 Hardware And Materials
2.	CAIP I	Civil Aircraft Inspection Procedures - Part I, Basic
3.	Cindy Foreman	Advanced Composites
4.	FAA H 8083-30	Aviation Maintenance Technician Handbook- General
5.	George F. Titterton	Aircraft Materials and Processes
6.	J. A Enderson & Tatro	Shop Theory
7.	Jeppesen	A & P Technician Airframe Text Book

Semester-II

Course Code: BAV 204

Course Title: Analog Electronics

 Total Contact Hours: 60 hrs
 Total Credits: 04
 Total Marks: 100

 Teaching Scheme: Theory – 04 Lectures/ Week
 Total Marks: 100

Course Objectives:

1. To study semiconductor diodes & transistors.

- 2. To study Integrated Circuits and applications.
- 3. To study printed circuit boards.
- 4. To study servomechanism.

Learning Outcomes:

After learning this course, the students will be able to:

- 1. Acquire a basic knowledge of semiconductor diodes and transistors.
- 2. Acquire a basic knowledge of printed circuit boards.
- 3. Acquire a basic knowledge of servomechanism.

Sl.	Description	Allotted
No.		hours
Unit-I: Semiconductor Diodes		
1.	Diodes	20 hrs
	• Diode symbols;	
	• Diode characteristics and properties;	
	• Diodes in series and parallel;	
	• Main characteristics and use of silicon controlled rectifiers (thyristors), light emitting diode, photo conductive diode, varistor, rectifier diodes;	
	• Functional testing of diodes.	
	• Application of Diodes as Clippers, Clampers, Half & Full Wave rectifiers, Bridge	
	Rectifiers, Voltage Doublers and Triplers	
Unit-II: Transistor and Circuits		
2.	Transistors	10 hrs
	• Transistor symbols;	
	• Component description and orientation;	
	• Transistor characteristics and properties.	
	• Use of Transistor as Amplifier and Switch	
	Transistor Biasing	
	Integrated Circuits	5 hrs
	• Description and operation of logic circuits and linear circuits/ operational amplifiers.	

Sl.	Description	Allotted
No.		hours
Unit-III: Amplifiers		
3.	• Introduction to UJT, FET, MOSFET	5 hrs
	• Classes of Amplifier (A, B, AB and C types).	
	Push pull Amplifiers and Multivibrators	
	Block Diagram of OP AMP	
	Integrator circuit, differentiator circuit	
	Block diagram & application of IC 555	
Unit	-IV: Printed Circuit Boards & Servomechanisms	
4.	Printed Circuit Boards	5 hrs
	• Description and use of printed circuit boards.	
	Servomechanisms	
	• Understanding of the following terms: Open and closed loop systems, feedback,	
	follow up, analogue transducers;	
	• Principles of operation and use of the following synchro system components/	
	features: resolvers, differential, control and torque, transformers, Inductance and	
	capacitance transmitters.	

Sl.	Author / Publisher	Nomenclature of Book
No.		
1	Aircraft Tech Book Co.	EASA Module- 04 Electrical Fundamentals
2	B.L. Theraja	Electrical Technology
3	Bernard Grob	Basic Electronics
4	CAIP	Civil Aircraft Inspection Procedure (Part-I)
6	John M Ferrara	Aviation Electronics
7	Mike Tooley & David Wyatt	Aircraft Electrical & Electronic Systems
8	Millman and Halkias	Integrated Electronics
9	Sterling	Basic Synchros and Servomechanism Part – I & II
10	Thomas K Eismin	Aircraft Electricity & Electronics
11	V K Mehta	Principle of Electronics

Semester-II

Course Code: BAV 205

Course Title: Lab- I (Electronics Practical)

Total Contact Hours: 90 hrs

Total Credits: 03 Teaching Scheme: Practical – 06/ Week **Total Marks: 100**

Learning Outcomes:

After successfully completing this laboratory course, the students will be able to:

- 1. Understand the use and application of DMM/ AMM.
- 2. Understand the use and application and testing of diode & transistors.
- 3. Understand voltage doublers & voltage triplers.
- 4. Understand truth tables of various logic Gates.

Students have to perform minimum 12 Practical listed below:

Sl.	Basic Practical Tasks	
No.		
1.	Identify the electronic components and perform testing by DMM/ AMM	
2.	Study the characteristics of PN Junction by using trainer kit	
3.	Study Half wave in trainer kit	
4.	Study Full wave bridge rectifier circuit in trainer kit	
5.	Study the Zener Diode by using trainer kit	
6.	Study Bipolar Junction Transistor characteristics	
7.	Study the multivibrator circuit by using trainer kit	
8.	Study the clipper & clamper circuit by using trainer kit	
9.	Study the voltage doublers by using trainer kit	
10.	Study the voltage triplers by using trainer kit	
11.	Study of transistor biasing by using trainer kit	
12.	Study the truth tables of various logic Gates by using trainer kit	
13.	. Study LC oscillator circuit	
14.	. Study RC oscillator circuit	
15.	5. To verify adder and subtractor circuits using OPAMP.	
16.	To demonstrate Schmitt Trigger using op amp.	
17.	To verify Astable Multivibrator using IC 555	
18.	Use of multimeter (Analog and Digital) for:	
	• Measurement of AC/ DC voltage and Current – on different ranges Measurement of R & C	
	Testing of Diodes & Transistors	
	• Measurement of HFE	
	• Variation of Resistance of LDR.	
	• Thermistor	

Semester-II

Course Code: BAV 206

Course Title: Lab-II (Aircraft Maintenance)

Total Contact Hours: 90 hrs

Total Credits: 03 Teaching Scheme: Practical – 06/ Week **Total Marks: 100**

Learning Outcomes:

After successful completion, the students will be able to:

- 1. Learn safety precautions to be taken around aeroplane.
- 2. Learn the use of ground support equipment.
- 3. Learn jacking procedure of aircraft.
- 4. Learn tool control programme.
- 5. Learn aircraft operation procedures.

Students have to perform minimum 12 Practical listed below:

Sl.	Basic Practical Tasks
No.	
1.	Daily Inspection on aircraft:
	Fuel sampling and water Contamination checks
2.	Conversant with safety precautions around aircraft, protection at engine exhaust areas
3.	Conversant with use of fire extinguishers around the aircraft and shops
4.	Conversant with safety from noise, FOD, tools & equipment
5.	Perform the use of chocks, trestles. Check the tire pressure
6.	Perform the use of sling, ladder and other ground support equipment
7.	Perform parking procedures and use of protective covers of aircraft
8.	Perform marshalling practices
9.	Perform tie down procedures and mooring procedures
10.	Connection and uses of external electrical power supply. Perform grounding/ earthing of aircraft
11.	Perform jacking of nose or main wheel and/or complete aircraft
12.	Perform inspections after abnormal events
13.	Conversant with tool control programme
14.	Conversant with scheduled inspection procedure
15.	Swaging & Splicing of control cable