SAVITRIBAI PHULE PUNE UNIVERSITY, PUNE

SYLLABUS

As per NEP 2020 guidelines

For University Department and affiliated colleges

Master of Science In Biochemistry

PART-I

(Semester I, and II, choice based Credit system) w. e. f. July 2023

Framework for MSc Biochemistry as per NEP Guidelines 2020

Sub. Code	Subject Title	Number of Credits
Core cours	es	
Major Cor	e-10 (T) + 4 (P)	
DBC-170	Biomolecules (T)	4
DBC-171	Enzymology and Biophysical Techniques (T)	4
DBC-172	Cell Biology (T)	2
DBC-178	Analytical Biochemistry (P)	4
Major Elec	ctive 2 (T) + 2 (T/P) (Theory Any one)	
DBC-175	Microbiology (T)	2
DBC-176	Nutrition Science (T)	2
DBC-179	Microbiology (P)	2
DBC-177	Research Methodology	4
	<u>Semester II</u>	
Core cours	es	
Major Cor	e- 10 (T) + 4 (P)	

<u>Semester I</u>

DBC-270	Bioenergetics and Metabolism (T)	4
DBC-271	Membrane Biochemistry and Genetics (T)	4
DBC-272	Techniques in Characterization of Biomolecules (T)	2
DBC-278	Enzymology and Biophysical Techniques (P)	4
Major Ele	ctive 2 (T) + 2 (T/P) (Theory any one)	
DBC-275	Bioinformatics (T)	2
DBC-276	Entrepreneurship development program (T)	2
DBC-279	Bioinformatics (P)	2
Internship	/ On job Training (OJT)	
DBC-277	OJT- After completion of Sem II exam (One month: Full Time)	4

Exit option: Award PG Diploma in Biochemistry on completion of 44 credits after Three Year UG degree **OR** continue with PG second

			Semester III			
Core cours	ses					
Major Cor	re- 10 (T)	+ 4 (P)				
DBC-370	Molecu	lar Biolog	y (T)			4
DBC-371	Immuno	ology and	Biochemistry of spec	cialized tissues (T))	4
DBC-372	Medical	Biochem	istry (T)			2
DBC-378	Molecu	Molecular Biology and Clinical Biochemistry (P)			4	
Major Ele	ctive 2 (T)) + 2 (T/P)) Any two courses			
DBC-373	Toxicol	ogy (T)				2
DBC-374	Develop	omental Bi	ology (T)			2
DBC-375	Plant Bi	ochemistr	y (T)			2
DBC-376	Neuroch	nemistry (Γ)			2
DBC- 379	Researc	ch Project	- I (P)			4
			Semester IV			
Core cours	es					
Major Cor	•e-8(T)+	- 4 (P)				
DBC-470 Genetic Engineering (T)			4			
DBC-471	Endocrinology and Tissue Culture (T)				4	
DBC-478	DBC-478 Special Experiments (P)				4	
Major Ele	ctive 2 (T)) + 2 (T/P) Any two courses			
DBC-472	Ferment	tation tech	nology (T)			2
DBC-473	Food Te	echnology	(T)			2
DBC-474	Drug di	scovery ar	nd development (T)			2
	Proteomics and genomics (T)			2		
DBC-476	Proteom	nics and ge	enomics (1)	Research Project- II (P)		
DBC-476 DBC-479		U				6
		U		Internship on Job Training (OJT)	Research Project (RP)	6 Total Credits

- Notes: Abbreviations: T- Theory, P- Practical.
 1. Wherever require the BOS can choose theory or practical course as per the need and within the given structure.2. Each course should be designed with the minimum 2 or maximum 4 credits.

M. SC. BIOCHEMISTRY PART-I SEMESTER – I

Course Code:	Course Title:	
DBC-170	BIOMOLECULES	
Course objectives: T	o make students understand the basics of biomolecules like carbohydrates,	protein
ipids, vitamins, DNA, H	RNA etc. To make student understand via study of their classifications, types, p	propertie
etc. and their importan	ce for life because they help organisms to grow, stay alive, and ha	ve mor
offspring. By interacti	ng with each other, they help build organisms from single cells to comple	ex livin
hings like human bein	gs.	
Course Credit: 4	Total contact hours: 60	Hrs
Cour	se Contents (Topics & subtopics)	Reqd.
		Hours
Biomolecules I: Car	bohydrates, Lipids and Vitamins	30 Hrs
1 The molecular logi	c of life: The chemical unity of diverse living organisms, composition	
0	acromolecules and their monomeric subunits.	
•	: With interactions in aqueous systems. Ionization of water, weak acid	
	assification, basic chemical structure, general reactions and properties,	
•	ince, Sugar derivatives, deoxy sugars, amino sugars, and sugar acids.	
	on, structure and function of major lipid sub Classes- acylglycerols,	
-	omicrons, LDL, HDL and VLDL, rancidity. Formation of micelles,	
monolayers, bilaye	-	
• •	-enzymes: Classification, water soluble and fat-soluble vitamins.	
	requirements, deficiency conditions, coenzyme forms and their	
mechanism.	requirements, deficiency conditions, coordigine forms and alon	
Biomolecules II: Am	ino acids, Proteins and Nucleic acids	30 Hr
1 Amino acids: Cla	ssification, Properties, reactions, rare amino acids.	
2 Protein classificat	tion: Reactions, functions, properties and Solid phase synthesis,	
	of protein: Primary, Secondary, Tertiary and Quaternary Structure, oglobin and Keratin	
	is, sequencing and peptide synthesis	
• • •	ypes and structure of nucleosides, nucleotides. Types of DNA and RNA.	
Watson and Crick	x Model	
	Suggested readings	
-	iples of Biochemistry by D. L. Nelson and M. M.Cox.	
2. Biochemistry by L	•	
3. Biochemistry by Z	-	
4. Biochemistry by C	Garrett and Grisham.	
5. Biochemistry by V	Voet and Voet.	
	Course outcomes	

After studying this course students should be able to get the knowledge about structure and function of biomolecules and how they work, interact, and their importance in all living systems. Several of the functions of these biological molecules are still a mystery, and scientists are using cutting-edge techniques to find more molecules and figure out what role they play in keeping life going.

Course Code: Course Title: DBC-171 ENZYMOLOGY AND BIOPHYSICAL TECHNIQUES

Course objectives: To acquire fundamental knowledge on enzymes and their importance in biological reactions. To understand the kinetics and mechanisms of action of enzymes. To help students to understand methods used in the laboratory to study biochemical processes. These techniques can be used to identify the biomolecules involved in a biochemical reaction, separation of biomolecules based on their size and other properties, or separate and determine molecular weight of a protein.

Co	urse Credit: 4 Total contact hours: 60 Hrs	
	('ourse ('ontents (l'onics X subtonics)	Reqd. Hours
Enz	ymology	30 Hrs
2.	Basic aspects: Remarkable properties, cofactors, nomenclature, classification, isoenzymes and multienzymes. Enzymes kinetics: One-substrate reactions, effect of pH, temperature, inhibitions, two substrate reactions: theory, order analysis, pre-steady state kinetics, stopped flow relaxation methods Mechanism of enzymes action: Theoretical background, factors leading to rate enhancement of enzyme catalyzed reactions, acid-base catalysis, proximity and	
	orientation effects, covalent catalysis, strain or distortion and change in environment. Experimental approaches of determination of enzymes mechanism: Kinetics studies, detection of intermediates, X-ray crystallographic studies, chemical modification of amino acid side chain and affinity labeling. Examples of chymotrypsin, triose phosphate isomerases, Lysozymes and Ribonuclease Regulation of Enzyme activity: Control of activities of single enzyme: Inhibitor	
	molecules, availability of substrate or cofactor and changes in covalent structure of enzymes. Zymogen activation and phosphorylation, dephosphorylation, ligand binding and induced changes, allosteric enzymes, theoretical models, Hill equation, Adair equation, M.W.C. and K.N.F. Models, usefulness of the models. Significance of allosteric and cooperative behavior in enzymes	
	Enzyme turnover: Kinetics of enzyme turnover, measurement of enzyme turnover, Ks and Kd, correlation between the rates of enzyme turnover and structure and function of enzymes, mechanism of enzyme degradation, significance of enzyme turnover.	
Bio	physical Techniques	30 Hrs
	UV and visible Spectophotometry	
2.	Membrane filtration and dialysis: Nitrocellulose, fibre glass, Polycarbonate filters, dialysis	

- and Concentration, reverse dialysis, freeze drying and lyophilization.
- 3. Chromatography techniques: Partition and adsorption Chromatography- paper, TLC,

GLC, gel filtration, ion exchange chromatography: properties of ion exchangers, choice, HPLC, HPTLC, affinity chromatography, hydrophobic interaction chromatography, metal chelate chromatography, covalent chromatography. Special chromatographic techniques for nucleic acids: DNA cellulose chromatography, MAK hydroxyl-apatite chromatography, separation of DNA fragments according to their base composition.

- 4. Electrophoretic techniques: Types of electrophoresis: moving boundary electrophoresis and zone electrophoresis (paper, cellulose-acetate electrophoresis, gel Electrophoresis (starch gel, native PAGE, disc PAGE, gradient PAGE, SDS-PAGE, agarose gel electrophoresis, Isoelectric focusing, 2D gel electrophoresis)
- 5. Isolation, purification of proteins and enzymes & other biomolecules.

Suggested readings

- 1 Fundamentals of Enzymology by Price and Stevens, 3rd edition (1999).
- 2 Enzymology by Dixon and Webb, 2nd edition (1964).
- 3 Enzymes by Palmer
- 4 Physical biochemistry by D. Freifelder IInd edition (1982)
- 5 Biochemical techniques by Wilson and Walker, Seventh edition, Cambridge University Press 2010.
- 6 Biophysical techniques by Upadhye and Upadhye, Himalaya Pub. House, (2009).

Course outcomes

After studying this course, the student should understand that enzymes are essential for life and are one of the most important types of protein in the human body. Acquired theoretical and experimental knowledge in enzymology and biophysical techniques will enable students to find appropriate employment in different development, scientific-research laboratories, or to continue their further studies in biochemistry or related disciplines.

Course Code:		Course Title:		
DBC 172		CELL BIOLOGY		
Course objectives: To impart the knowledge of structure and functioning of basic unit of life,			e, cell	
organelles and their	organelles and their detail functions, cell cycle and cell division, cytoskeleton and the cell-cell			
interactions in eukaryotic cells. Also, to make students familiar with how cell division plays an			iys an	
important role in all	important role in all living organisms, and its functional significance.			
Course Credit: 2		Total contact hours: 30 Hrs		
Course Confents (Tonics & subtonics)			Reqd. Hours	

Cell	B1010	gy	

- 1 Cell classification, cell variability, size, shape and complexity, function
- 2 Animal cells: Structure, sub cellular components: Nucleus, chromosomes, plasma membrane, endoplasmic reticulum, lysosomes, peroxisomes, Golgi apparatus, mitochondria, cytoskeleton, sub-cellular fractionation: Differential and density gradient centrifugation, specific staining of organelles and marker enzymes
- 3 Cell division: mitosis, meiosis and cell cycle
- 4 Plant cells: Cell wall and its function, chloroplast, xylem, phloem and epidermal cells. The

30 Hrs

interaction and communication between the cells, cell-cell reorganization in plants.

- 5 Fungi: Cell structure, classification and biological importance.
- 6 Cell-cell adhesion and the extracellular matrix, intercellular recognition, specific cell aggregation in sponges, cell junctions, extracellular matrix and role of collagen, elastin and fibronectin.
- 7 Germ cells and fertilization, stem cells, cell differentiation, organogenesis, functional and biochemical maturation of tissues.

Suggested readings

- Molecular Biology of the cell– Bruce Alberts J.D. Watson et al Garland publishing Inc., N.Y., 4th edition (2002) and recent edition.
- 2. Cell and Molecular Biology DeRobertis and Saunders, 8th edition (2017).
- 3. The cell C.P. Swanson, Prentice Hall (1989)
- 4. Cell Biology C.J. Avers, Addision Wesley Co. (1986).
- 5. Molecular biology by Lodish and Baltimore, 4th edition (2000). Cell Structure and Function by Loewy and Gallant.

Course outcomes

After studying this course, the student should understand How cells work by examining the machinery inside of them, investigating how they communicate and determining how they form larger structures.

Course Code: DBC 175

Course Title: MICROBIOLOGY

Course objectives: Students will study the growth and control of microbes such as bacteria, viruses, etc. They try to understand how these organisms live, grow, and interact with their environments. Also study different bacteriological techniques involved in microbiology.

Co	ourse Credit: 2	Total contact hours: 30 Hrs	
	Course Contents (To	pics & subtopics)	Reqd.Ho
			urs
Mi	icrobiology		30 Hrs
1	Cell structure and components, cha	racterization and classification of microorganisms.	
2	Microscopy: Theory, phase con-	trast microscopy, fluorescence microscopy and	
	electron microscopy: Theory, spec	eimen preparation, freeze etching, freeze fracture,	
	shadow casting, electron microscop	by of nucleic acids, TEM, SEM.	
3	Cultivation of Bacteria, nutritio	n, physiology and growth of microbial cells,	
	reproduction and growth, synchron	ous growth, continuous culture of microorganisms.	
4	Pure cultures and their characterist	ics.	
5	Fundamentals of control of microb	ial growth control by physical agents and chemical	
	agents.		
6	Production of mutants by chemical	and physical agents and their characterizations.	

- 7 Host microbe interactions, endotoxins, exotoxins, enzymatic and other factors, tissue affinity, resistance and immunity.
- 8 Viruses of bacteria, plant and animal cells: Structure, classification and life cycle, mycoplasma and viriods, diseases.
- 9 Industrial microbiology: production of lysine, glutamic acid, alcohol, vinegar, citric acid
- 10 Nitrogen fixation: Historical background, nitrogen cycle in nature, symbiotic nitrogen fixation, nitrogenase system, nitrate reductase.

- Microbiology, M.S. Pelczar, R.D. Reid, E.C.S. Chan, Mc Graw Hill, New York, 5th edition (2001).
- 2. General Microbiology (Vth Edition), R.Y. Stanier, Prentice Hall (1986)
- 3. Biology of Microorganisms by Brocks, 12th edition (2009)
- 4. Introductory Microbiology, F.C. Ross, Charles Merril Publication (1983).

Course outcomes

After studying this course, the student should understand the General bacteriology and microbial techniques for isolation of pure cultures of bacteria, fungi and algae. Demonstrate theory and practical skills in microscopy and their handling cultural techniques, various physical and chemical means of sterilization and staining procedures. To know various Culture media and their applications and effectively comprehend the various methods for identification of unknown microorganisms and get equipped with various methods of bacterial growth measurement.

Course Code: Course Title: **DBC 176** NUTRITION SCIENCE **Course objectives:** To enable students to 1. Explain nutrients in foods and the specific functions in maintaining health 2. Familiarize nutritional assessment, RDA and Recommendations & Guidelines. 3. Apply knowledge of the role of nutrition and healthy eating for disease prevention and wellness. Course Credit: 2 Total contact hours: 30 Hrs Regd. **Course Contents (Topics & subtopics)** Hours 30 Hrs **Nutrition Science** 1. Basic Concepts: Nutritional value and functions of food, 2. Food in relation to health, Balanced diet, ICMR. Food groups, My Pyramid 3. Energy content and its measurement in foods, Thermic effect of food, BMR, RDA 4. Role of Macro and micronutrients 5. Protein nutritional quality determination and Scoring system 6. Sensory evaluation of food 7. Major nutrition related community health problems – PEM, starvation, obesity, anemia, iodine deficiency, vitamin A deficiency, scurvy, Beri Beri, Pellagra, fluorosis etc.

8. Functional foods and Nutraceuticals, Dietary fiber- chemical composition and importance.

Reference books:

- 1. Essentials of food and nutrition M Swaminathan Vol. II, Applied aspects (1974), Ganesh Pub, Madras
- 2. Human biochemistry James Orten and Otto Neuhaus, 10th ed , CV Mosby co London
- 3. Human nutrition and dietetics-Davidson and Passmore
- 4. Nutrition science by B. Srilakshmi

Course outcomes

After studying this course, the student should understand -

- 1. To develop skill and confidence to make informed decisions about healthy diet in health and disease.
- 2. To learn composition and chemistry of different foods and study the fundamentals of the science of nutrition in relation to macro and micro nutrients.
- 3. To understand the working and management of the dietary departments of the various organizations.

Course Code: **DBC 177**

Course Title: RESEARCH METHODOLOGY

Course objectives:

- 1. To help students to understand methods used in the laboratory to study good laboratory practices and lab safety.
- 2. To introduce the concepts of research objectives, methodology, research data analysis and significance of the research.
- 3. To impart skills of statistical treatment & statistical analysis of biological data.

Course	e Credit: 4 Total contact hours: 60 Hrs	
	Course Contents (Topics & subtopics)	Reqd. Iours
Resear	rch Methodology	
1. Funda	amental Laboratory Techniques: (1 credit)	
a. 1	Basic laboratory procedures, Basic principles, working with liquids 15 l	5 Hrs
b. 1	Making and recording measurements, SI units and their use.	
2. Chem	nical safety and Disaster Management: (1 credit)	
a. (General safety: General safety and operational rules, safety equipment, personal	
]	protective equipment, safety practices for disposal of broken glass wares, centrifuge	
:	safety, treated biomedical wastes and scientific ethics. How to extract the safety 15 l	5 Hrs
i	information from MSDS.	
b.]	Emergency response: chemical spills, radiation spills, biohazard spills, leaking	
	compressed gas cylinders, fires, medical emergency accident reporting	
3. Resea	arch Analysis, Presentation of data and Statistics: (1 credit)	
a. U	Using graphs, presenting data in tables, drawing chemical structures, Hints for	5 Hrs
S	solving numerical problems.	5 1115
b. I	Descriptive statistics, choosing and using statistical tests.	
4. Infor	mation technology and Library resources and Intellectual Property right: (1 credit)	5 Hrs
a. I	Internet resources for chemistry/biochemistry, spread sheets, word processors,	5 1115

databases and other packages, Search engines, Scifinder

b. IPR: Introduction to IPR, Types of IPR, Criteria for patentability and novelty, patent filling.

Suggested readings

Reference books:

- 1. Laboratory Safety for Chemistry Students Robert H. Hill, Jr., David C. Finster A John Wiley & Sons, Inc., Publication
- 2. Vogel's Textbook of Practical Organic Chemistry, 5th Ed., A. Vogel, et al., ed., Prentice Hall
- 3. Chemical Laboratory Safety and Security A Guide to Developing Standard Operating Procedures, By National Academies of Sciences, Engineering, and Medicine, Division on Earth and Life Studies, Committee on Chemical Management Toolkit Expansion: Standard Operating Procedures, Board on Chemical Sciences and Technology, 2016
- 4. Chemical Safety in the Laboratory, By Stephen K. Hall 1994 CRC-Press
- 5. School Chemistry Laboratory Safety Guide, By Centers for and Prevention, Department of Human Services, National Institute Health and Safety 2014, Publisher: Create Space Independent Publishing Platform
- 6. Research Methodology in Chemical Sciences Experimental and Theoretical Approach Edited By Tanmoy Chakraborty, Lalita Ledwani, 1st Edition, eBook Published10 March 2017, New York, Apple Academic Press. DOI https://doi.org/10.1201/9781315366616
- 7. Statistical Methods in Analytical Chemistry, Author(s): Peter C. Meier, Richard E. Zünd, 2000, DOI:10.1002/0471728411, 2000 John Wiley & Sons,
- 8. Fundamentals of Intellectual Property Rights For Students, Industrialist and Patent Lawyers By B. Ramakrishna, H. S. Anil Kumar, 2017
- 9. Intellectual Property Law by Avtar Singh Publisher: Eastern Book Company ISBN: 9789350289853

Course outcomes

At the end of the course student should be able to formulate research objectives using literature review, conduct research with good lab practices and safety, use data analysis tools and interpret results. Students will understand the significance of statistical treatment of biological data and understand the data from the statistical point of view.

Also, on successful completion of this course the student should be able to:

- 1. Distinguish and Explain various forms of IPRs.
- 2. Identify criteria to fit one's own intellectual work in particular form of IPRs.
- 3. Apply statutory provisions to protect particular form of IPRs.

Course Code: DBC 178	ANALYTICAL BIOCHEMISTRY PRACTICALS	
Course objectives: T	This course will enable to understand and get accustomed with the basic la	boratory
analytical estimation n	nethods which will be used routinely in the Biochemistry laboratories.	
Course Credit: 4	Total contact hours:	
Cour	rse Contents (Topics & subtopics)	Reqd. Hours
ANALYTICAL BIO	CHEMISTRY PRACTICALS	
1. Separation of an	nino acid mixture by Paper chromatography	
2. Estimation of an	nino acid by Ninhydrin method	
3. Estimation of pr	rotein by Biuret method	
4. Estimation of pr	rotein by Lowry method.	
5. Estimation of pr	rotein by Bradford method	
6. Specific reaction	ns for Amino acids	
7. Estimation of su	ıgar by Folin-wu method	
8. Estimation of su	igar by Ferricyanide method	
9. Estimation of su	igar by DNSA method	
10. Identification of	f carbohydrate mixture with suitable tests.	
11. Isolation of amin	no acid cystine from hair hydrolysate.	
12. Isolation of Egg	albumin and globulin.	
13. Isolation of milk	k casein by isoelectric pH precipitation.	
14. Isolation of Star	ch and characterization.	
15. Alpha and Beta	amylolysis.	
16. Isolation of Cho	lesterol and lecithin from egg.	
17. Estimation of V	itamin C from lemon fruits.	
18. Determination o	of alpha amino nitrogen of amino acid.	
	organic phosphorus by Fiske-Subbarow method.	
	of saponification value of fat	
21. Determination o	•	
22. Determination o	of iodine number of fat	

Reference books:

- 1 Practical Biochemistry: Principles and techniques: K. Wilson and J. Walker. (2006) 5th Edition
- 2 Practical Biochemistry by David Plummer (2015) 3rd Edition
- 3 Introductory Practical Biochemistry by S.K. Sawhney and R.Singh.
- 4 Practical Biochemistry by J. Jayaraman
- 5 Biochemical methods by S. Sadasivam and A. Manickam (2010) New Age International. New Delhi

Course outcomes

After studying this course, the student will acquire the laboratory skills in handling different biochemical equipment's needed for various estimations and preparations. The students will be able to plan the experiments which will help them in their research projects

_			
(Course Code:	MICROBIOLOGY PRACTICALS	
	DBC 179	MICRODIOLOGI I RACTICALS	
Cou	rse objectives:	Students will study the growth and control of bacteria. They will	learn the
tech	niques needed fo	or cultivation of microbes. They will try to understand how these or	ganisms
live	and grow under	different conditions.	
Cou	rse Credit: 2	Total contact hours:	
	Cour	se Contents (Topics & subtopics)	Reqd. Hours
MICI	ROBIOLOGY I	PRACTICALS	
1.	Media prepara	tion, pour plate and streak plate techniques,	
2.	Microscopic ex	xamination (motility, monochrome staining and gram staining).	
3.	Sterilization: S	steam, Dry heat and filter.	
4.	Detection of an	mylase, caseinase, catalase activity	
5.	Preservations of	of bacterial cultures.	
6.	Phosphatase te	est for the quality of milk	
7.	Methylene blu	e reduction test (MBRT) for quality of milk	
8.	Growth curve	of <i>E. coli</i> .	
9.	Total viable co	ount determination (pour plate and spread plate).	
10.	Ultraviolet irra	idiation and survival curve.	
11.	Isolation of au	xotrophic mutants.	
12.	Plaque assay f	or phage.	
13.	Immobilization	n of yeast cells	
14.	Microbial assa	y of vitamin and antibiotic.	
15.	Transformation	n	
16.	Lac operon by	studying β-galactosidase	
		Suggested readings	
Refer	ence books:		

- 1. Microbiology, M.S. Pelczar, R.D. Reid, E.C.S. Chan, Mc Graw Hill, New York, 5th edition (2001).
- 2. Microbial methods J. Collins and lynes 8th edition.
- 3. Medical Microbiology, Vol. II Cruickschank, 12th edition (1980)
- Textbook of Practical Microbiology by S.C. Parija, Ahuja Publishers, New Delhi (2006) 4.

Course outcomes

After studying this course, the student will acquire the laboratory skills in handling microorganisms. This training will help the students to plan and execute various experiments related to microorganisms.

M. SC. BIOCHEMISTRY PART-I, SEMESTER II

Course Code DBC 270	Course Title: BIOENERGETICS AND METABOLISM	
understanding lipids, protein	tives: The primary objective of this course is for the student to go the metabolic pathways involving catabolism and anabolism in carbohy, nucleic acids and how errors in metabolic processes lead to diseases. A the sum of all chemical reactions required to support cellular function.	drates,
Course Credit:	4 Total contact hours: 60 Hrs	
	Course Contents (Topics & subtopics)	Reqd. Hours
Bioenergeti	s and Metabolism - I	30 Hrs
 Bioenerge concept o potentials Glycolysi Citric acid Electron t Alternate glyoxalate effect. Polysacch metabolis Gluconeo Lipid met energetics oxidation Biosynthe fatty acid 	on of metabolism and overview. ics: Basic low of thermodynamic, internal energy, enthalpy, entropy, free energy, standard free energy change of a chemical reaction, redox high energy compounds, structure and significance of ATP : Detailed study, energetics, regulation and significance. cycle: Detailed study, energetics, regulation and significance. ansport and oxidative phosphorylation, AIP synthase and mechanism pathways of carbohydrate metabolism: Pentose phosphate pathway, cycle, glucuronic acid pathway, inter conversion of hexoses, Pasteur aride metabolism: Biosynthesis, degradation and regulation of glycogen, n starch and cellulose, inborn error of carbohydrate metabolism. enesis bolism: Beta oxidation of even and odd number carbon atoms fatty acids, and regulation. Formation of ketone bodies, other types of fatty acid sis of lipids: Requirements of carbon dioxide and citrate for biosynthesis, synthase complex, regulation of biosynthesis. Biosynthesis of es, cholesterol and phospholipids	
8	tics and Metabolism -II	30 Hrs
deamination and oxaload 2. Biosynthes acids, biosy folic acid (1	legradation of amino acids: Proteolysis, transamination, oxidative , acetyl CoA, alpha ketoglutarate, acetoacetyl CoA, succinate, fumarate etate pathway. Decarboxylation, urea cycle, ammonia excretion. s of amino acids: Amino acid biosynthesis, precursor functions of amino athesis of aromatic amino acids, Histidine, one carbon atom transfer by iosynthesis of glycine, serine, cysteine, methionine, threonine.) s of amino acid metabolism	

- 4. Peptides, polyamines, porphyrins, gamma glutamyl cycle, glutathione biosynthesis, nonribosomal protein biosynthesis.
- 5. Purine and pyrimidine degradation.
- 6. Biosynthesis of purine and pyrimidine nucleotides, regulation and biosynthesis of nucleotide coenzymes

Reference Books

- 1. Biochemistry Lehninger, 7th edition (2017)
- 2. Metabolic Pathways Greenberg, 3rd edition (1970).
- 3. Biochemistry G. Zubay, Addision Wesley Publ. (1983).
- 4. Biochemistry Stryer (2002) 5th Edition W.H. Freeman and Co.
- 5. Harper's Biochemistry- 30th edition, (2015)

Course outcomes

After studying this course, the student should understand the basic concepts of bioenergetics and how they influence biochemical processes. How metabolism transforms the matter of macronutrients into substances a cell can use to grow and reproduce and also into waste products.

Course Code:	Course Title:	
DBC 271	MEMBRANE BIOCHEMISTRY AND GENETICS	
Course objectives	: To enable students to	
1. Get a deeper ins membranes.	ight into the diverse biological functions that take place at different cellular	
2. Understand how biophysical forces control the membrane structures and the arising biological functions.		
3. To understand M	Aendelian inheritance and to learn the concepts of Linkage. To know the signifi	cance
of organellar inl genetic disorder	neritance and to know the concept of sex-linked inheritance as well as basis of s.	
Course Credit: 4	Total contact hours: 60 Hrs	
Ca	urse Contents (Tenies & subtenies)	Reqd.
	ourse Contents (Topics & subtopics)	Hours
Membrane Bioche	emistry	30 Hrs
1 Biological mem	brane, structure, and assembly: Constituents, asymmetry, flip flop,	
protein lipid inte	eraction, factors affecting physical properties of membranes. Membrane	
models: biologic	al and physical model, membrane associated diseases	
	port: Diffusion, passive, active and facilitated, transport role of proteins	
-	cceptor mediated endocytosis, osmoregulation and ATP-ADP exchanger.	
-	t processes and phosphotransferase synthesis, specialized mechanism for	
-	cromolecules, gap junctions, nuclear pores, toxins, control of transport	
processes and bi		
	ATPase and passive permeability of the plasma membrane to Na^+ , K^+	
-	and ligand gated ion channels, and propagation of nerve impulse, action	
potential, Na ⁺ ar	nd K ⁺ channels	

5 Molecular mec gramicidin, grou	hanisms, ionophores, ion translocating antibiotics, valinomyci p translocation.	n,
Genetics		30 Hrs
nearest neighbo 2 Laws of Hered 3 Basis of Bioch complementati 4 Auxotroph, p Transformation 5 Sex factors an Cloning vector 6 Genetic Code:	c material, double helix, semi conservative mechanism of replication, or analysis, denaturation and renaturation. ity: Genotype, Phenotype and Mendelian Laws of inheritance. memical genetics: Concept of gene by Benzer, One gene one cistron, on tests and Co-linearity. rototroph, conditional mutants, mutant isolation and selection n, conjugation and transduction. d Plasmids: Fertility factor, Hfr, mapping of <i>E. coli</i> chromosome. s: Plasmids, phages, cosmids. Introduction to Operon. Biochemical and genetic analysis of the genetic code. ers: Chromosomal origin, gene origin mutation, human teratogenesis.	
	Suggested readings	
 Biochemistry Principles of Membranes a Blackwell sci Genetics – St Molecular Bio (2008). 	-G Zubay, Addison Wesley, 1983 , L Stryer, 3rd/4th/5th ed, 1989, Freeman and Co. NY Biochemistry –Lehninger, 7th edition (2017) nd their cellular functions- IB Filnean, R. Coleman and RH Michell, 1 entific publishers, Oxford, 3rd ed. rickberger M.W., Macmillan Pub;. Inc., 3rd edition (1995). ology of the Gene- Watson Benjamin / Cummings Publ. Company 6th E lysis and Principles: R.J. Brooker Addison-Wesley, 4th edition (2012).	
	Course outcomes	
regulated by th 2. Acquire a deep is an important	ber knowledge on how the structures and properties of membranes are defined beir lipid, protein and carbohydrate constituents. Der knowledge on how parents pass some of their characteristics to their child a part of biology, and gives the basic rules on which evolution acts. Genes that can cause problems. A group of rare diseases are caused when a single gene	ren. It it do not
Course Code:	Course Title:	
DBC 272	TECHNIQUES IN CHARACTERIZATION OF BIOMOLECULES	
-	To enable students to familiarize with the basic concepts and applications of	modern
Course Credit: 2	Biochemistry, Biophysics, Cell and Molecular Biology Total contact hours: 30 Hrs	
	urse Contents (Topics & subtopics)	Reqd. Hours

30 Hrs

- 1 Sedimentation: Differential and density gradient centrifugation, Theory, Preparatory and analytical ultracentrifuges, factors affecting sedimentation velocity, sedimentation coefficient, measurement of S, Zonal centrifugation, DNA analysis, Determination of molecular weight by sedimentation, diffusion and sedimentation equilibrium methods. Specific examples of application.
- 2 Partial specific volume and the diffusion coefficient, Measurement of partial specific volume and diffusion coefficients.
- 3 Viscosity: Theory, effect of macromolecules on the viscosity of a solution, measurement, molecular weight determination.
- 4 Radioactivity, Measurement and autoradiography
- 5 X-ray diffraction, Ramachandran Plot
- 6 Spectroscopic methods: NMR, IR, Fluorescence, and CD
- 7 Mass Spectrometry: LCMS, GCMS, MALDI-MS, MALDI-TOF-MS

Reference books:

- 1 Physical Biochemistry by D. Freifelder IInd Edition Freeman publication (1982)
- 2 Biochemical techniques by Wilson and Walker, Seventh edition, Cambridge University press (2010)
- 3 Biophysical techniques by Upadhye and Upadhye, Himalaya Pub. House, (2009).
- 4 Biochemistry by L. Stryer 4th edition (1995).
- 5 Molecular biology of gene by J. D. Watson, 5th edition (2004).
- 6 Fundamentals of biochemistry by D. Voet, J. Voet and C.W. Prott, 5th edition, 2016.
- 7 7. Molecular cell biology 4th ed. Lodish B., Zipursky Matsudaira, Ball, 4th edition (2000).

Course outcomes

After studying this course, the student will acquire a deeper knowledge on working on molecular level of biomolecules and their interactions and its application in biochemical fundamentals and translational research.

Course Code:	Course Title:		
DBC 275	BIOINFORMATICS		
Course objectives	3:		
1. To utilize a	1. To utilize and understand biological databases to gather, store, retrieve, manage, analyze a		
integrate biological data for generating new knowledge			
2. To develop and implement computational logic, learning programming languages, algorithms			
software for	progressive life science solutions.		
Course Credit: 2 Total contact hours: 30 Hrs			
Course Contents (Topics & subtopics)		Reqd.	
		Hours	
Bioinformatics		30 Hrs	
1. Introduction			
2. Scientific literature search: Pubmed, Scopus, google scholar. Measures of scientific			
import assessment import forter hinder :10 inder at			

impact assessment: impact factor, h-index, i10-index etc.Computational biology resources: EBI, ExPASY, NCBI

- 4. DNA sequence databases: GenBank, EMBL, DDBJ, dbEST, RefSeq, dbSTS, Probe Database
- 5. RNA sequence databases: Relevant microRNA, long non-coding RNA, siRNA, tRNA and UTR databases
- 6. Protein sequence database- GenPept, UniProtKB, UniRef, UniParc, Proteomes, NextProt
- 7. Sequence alignment: Pair-wise and Multiple Sequence Alignment (MSA) and analysis, Global and Local alignment. Alignment based tools: BLAST, BLAT, CLUSTALW
- 8. Phylogenetic analysis
- 9. Protein structure database: PDB
- 10. Structure visualization

Reference books:

- 1 Essential Bioinformatics **Jin Xiong** Cambridge University Press; 1st edition, Cambridge.
- 2 A text book of bioinformatics (2008) **Sharma, Munjal and Shankar**. Rastogi Publications, Meerut.
- 3 Introduction to Bioinformatics (2008) Arthur M. Lesk OUP, Oxford.

Course outcomes

A student completing a major in Bioinformatics shall be able to apply: knowledge and awareness of the basic principles and concepts of biology, computer science and mathematics. existing software effectively to extract information from large databases and to use this information in computer modeling.

Course Code:Course Title:DBC 276BIO-ENTERPREUNERSHIP DEVELOPMENT PROGRAM

Course objectives: The program is designed to provide students with a broad coverage of key areas of modern biotechnology and a basic understanding of business and finance issues. Suitable for students who are interested in early stage technology companies and/or aspire to start industry.

Course Credit: 2

Total contact hours: **30 Hrs**

	Reqd.
Course Contents (Topics & subtopics)	Hours
1. Introduction to bio-business, from the Indian context, SWOT analysis of bio-business,	30 Hrs
Development of Entrepreneurship.	
2. Building Biotech business challenges in Indian context-biotech partners (BICEPS,	
BIRAC, DBT, Incubation centers. Etc.,), operational biotech parks in India.	
3. Scope-with case study: Herbal bulk drug production, Nutraceuticals, value added	
herbal products. Pollution monitoring and Bioremediation for Industrial pollutants.	
Pesticides, Herbicides etc. Fermented products-probiotic and prebiotics. Bioethanol	
production using Agri waste, Algal source.	
4. Regulatory affairs in Bio business-regulatory bodies and their regulations (eg. FDA,	
EU, DSIR, AYUSH, FSSAI etc.)	

- 5. Ethical concerns of biotechnology research and innovation-Interference with nature fear of unknown, unequal distribution of risks.
- 6. Identification of business opportunities: Market Feasibility Study; Technical Feasibility Study; Financial Feasibility Study & Social Feasibility Study.

- 1. Principles of Management P. C. Tripathi, P.N. Reddy Tata McGraw Hill Fifth Edition, 2012
- 2. Entrepreneurship Development S.S. Khanka S. Chand & Co 2006
- 3. Practical Approach to IPR Rachana Singh Puri IK Intl. Ltd 2009
- 4. Bioethics & Biosafety R Rallapalli & Geetha Bali APH Publication 2007

Course outcomes

After studying this course, the student should be able to demonstrate knowledge for in-depth analytical and critical thinking to identify, formulate and solve the issues related to Biotechnology, Pharma and Agri industry, Regulatory Agencies, and Academia.

Course Code:	
DBC 278	

ENZYMOLOGY AND BIOPHYSICAL TECHNIQUES PRACTICALS

Course objectives: To enable students to familiarize with the basic concepts and applications of modern techniques used in Biochemistry, Biophysics, Cell and Molecular Biology

Course Credit: 4

Total contact hours:

	Course Contents (Topics & subtopics)	Reqd. Hours
ENZ	YMOLOGY PRACTICALS (2 credit)	
1.	Detection of some common enzymes. Extraction and enzyme activities of the	
	enzymes invertase/amylase/peroxidase/catalase/ alkaline phosphatase.	
2.	Study of specific activity and progress curve.	
3.	To assess effect of substrate conc. (Vmax and Km) on enzyme activity.	
4.	To assess the effect of pH on enzyme activity.	
5.	To assess effect of enzyme conc.	
6.	To assess temperature stability of the enzyme.	
7.	To assess effect of activator on enzyme activity.	
8.	To assess effect of inhibitor on enzyme activity.	
9.	Effect of enzyme immobilization and determination of its activity.	
10.	Statistical analysis of data	
BIO	PHYSICAL TECHNIQUES PRACTICALS (2 credit)	
1.	Concept of pH, preparation of buffer of desired pH and molarity and measurement	
	of pH.	
2.	pH metry: Acid base titration curves. Measurement of pKa of amino acids.	
3.	Ion exchange chromatography: Nature of ion exchanger, capacity of column,	
	Separation of amino acids.	
4.	Gel filtration: Determination of void volume, Determination of partition	
	coefficient, and Separation of two components in a sample.	

- 5. Viscosity: Viscosity of hydrolyzed, partially hydrolyzed and unhydrolyzed starch. Determination of relative viscosity, Specific viscosity and intrinsic viscosity.
- 6. Electrophoresis: Separation of serum proteins by paper or agarose gel electrophoresis/Polyacrylamide Gel electrophoresis (PAGE).
- 7. UV and Visible Spectrophotometry: Absorption spectra, Varification of Lamberts-Beer's Law, absorption spectrum of proteins and amino acids, Absorption spectra of hemoglobin derivatives – oxyhemoglobin, carboxyhemoglobin and methemoglobin.
- 8. Dialysis, reverse dialysis and membrane filtration.
- 9. RBC membrane fragility

Reference books:

- 1. Biochemical Techniques Theory and Practice: J.R. Robyt and B.J. White (1987).
- Practical Biochemistry: Principles and techniques: K. Wilson and J. Walker, 5th edition (2006).
- 3. Practical Biochemistry by David Plummer, 3rd edition (2015).
- 4. Introductory Practical Biochemistry by S.K. Sawhney and R.Singh, (1990).
- 5.

Course outcomes

After studying this course, the student will acquire a deeper knowledge on working on molecular level of biomolecules and their interactions and its application in biochemical fundamentals and translational research.

Course Code: DBC 279

BIOINFORMATICS PRACTICALS

Course objectives:

- 1. To utilize and understand biological databases to gather, store, retrieve, manage, analyze and integrate biological data for generating new knowledge
- 2. To develop and implement computational logic, learning programming languages, algorithms and software for progressive life science solutions.

Course Credit: 2	Total contact hours:

Course Contents (Topics & subtopics)	Reqd. Hours
BIOINFORMATICS PRACTICALS (2 credit)	
1. To explore the NCBI resource and to query PUBMED, GenBank, dbEST, RefSeq,	
dbSTS and Probe databases using the various search strategies. To know and use	
ENTREZ search engine	
2. To explore EMBL-EBI resource and to know various computational tools available at	
ExPASY	
3. To explore and query microRNA, long non-coding RNA, siRNA, tRNA and UTR	
databases	
4. To explore, query PDB and to perform structural visualization	
5 To avalora UniDrot KP protain acquance detabases	

5. To explore UniProtKB protein sequence databases

6. To know sequence file formats

7. To perform pair-wise and multiple sequence alignments. To construct and analyze phylogenetic tree. To perform alignment-based searches in various databases

Suggested readings

Reference books:

- 1 Essential Bioinformatics Jin Xiong Cambridge University Press; 1st edition, Cambridge.
- 2 A text book of bioinformatics (2008) Sharma, Munjal and Shankar. Rastogi Publications, Meerut.
- 3 Introduction to Bioinformatics (2008) Arthur M. Lesk OUP, Oxford.

Course outcomes

A student completing a major in Bioinformatics shall be able to apply: knowledge and awareness of the basic principles and concepts of biology, computer science and mathematics. existing software effectively to extract information from large databases and to use this information in computer modeling.
