

SAVITRIBAI PHULE PUNE UNIVERSITY, PUNE

(Formerly University of Pune)

Two-Year Post Graduate Programme in Geography Faculty of Science and Technology Choice Based Credit System (CBCS)

Syllabi for

M.Sc. Geoinformatics

Department of Geography, Savitribai Phule Pune University

Syllabi as per guidelines of National Education Policy 2020 To be implemented from Academic Year 2023-2024

SAVITRIBAI PHULE PUNE UNIVERSITY, PUNE

Department of Geography

Syllabi as per NEP 2020 for M.Sc. Geoinformatics

Title of the Programme: M.Sc. Geoinformatics

Preamble:

National Education Policy 2020 lays particular emphasis on the development of creative potential of each individual. It is based on the principle that education must develop not only cognitive capacities - both the foundational capacities of literacy and numeracy and higher order cognitive capacities, such as critical thinking and problem solving - but also social, ethical, and emotional capacities and dispositions. On behalf of new education policy Savitribai Phule Pune University has decided to change the syllabi of various faculties from June 2023. Taking into consideration the rapid changes in science and technology and new approaches Geographical Information System and Remote Sensing, Board of Studies in Geography after a discussion with the teachers of Geoinformatics in Geography Department, Savitribai Phule Pune University and all stakeholders has prepared the syllabus of M.Sc. Semester-1 and Semester-II (w.e.f. 2023-2024) Geoinformatics programme under the Choice Based Credit System (CBCS). The model curriculum as developed by NEP 2020 is used as a guideline for the present syllabi. The syllabi focus on credits related to major core, major elective, research methodology, internship/On job training and research projects.

Aims and Objectives of the new curriculum:

- 1. To update the curriculum as per the NEP 2020.
- 2. To incorporate recent development in the field of GIS and Remote Sensing.
- 3. To enhance the quality and standards of knowledge of geospatial technology.
- 4. To provide a broad common framework, for exchange, mobility, free dialogue across the global GIS and Remote sensing Community.
- 5. To provide students with a comprehensive understanding of these two interconnected fields and equip them with the necessary knowledge and skills to apply remote sensing and GIS technologies in various applications.
- 6. To maximize the efficiency of decision making and planning using GIS and Remote Sensing.

Department of Geography, Savitribai Phule Pune University

- 7. To introduce students to spatial programming as a way to automate common GIS tasks as a way to increase accuracy and reduce drudgery.
- 8. To strive to strike a balance between proprietary and all-open-source technologies in GIS.
- 9. Provide job-oriented skills to the students with multiple entry and exit option.
- 10. To enhance employability and entrepreneurship skill among the students in local and global market.
- 11. To develop research and innovative skill among the students blended with the use of geospatial technology.
- 12. Reinforce the theoretical knowledge, to work on real-world projects and gain practical experience in data collection, analysis, and interpretation.
- 13. Emphasize the importance of staying updated with the latest developments in GIS programming and explore emerging trends in the field.
- 14. Introduce students to the basics of programming languages commonly used in GIS, such as C, Python, JavaScript, R, .NET and their application in spatial data manipulation and analysis.
- 15. Teach students how to write scripts and programs that automate repetitive tasks in GIS, allowing for more efficient and consistent data processing.

Program Outcomes:

By the end of the program the students will be able to:

- 1. explain relevant terms and concepts of GIS and Remote Sensing including definitions.
- 2. give better explanation about relevant principles, theories and models in Geoinformatics.
- 3. understand the basic principles and concepts of GIS, including spatial data representation, coordinate systems, map projections, and spatial analysis techniques.
- 4. handle GIS software packages such as ArcGIS, QGIS, or other relevant tools. They should gain hands-on experience with data input, data management, cartography, and geospatial analysis using these tools.
- 5. show clear knowledge and identify the importance of application of GIS and RS in various disciplines.
- 6. identify the importance of spatial scale and time scale.
- 7. learn methods for gathering and integrating various types of spatial data from different sources, such as GPS data, satellite imagery, and online data services.

- 8. identify real-world problems that can be addressed using GIS, formulating appropriate spatial questions, and applying GIS techniques to solve those problems.
- 9. identify the importance of the resemblances and variance between places, environments and people.
- 10. develop a spatial mindset, which involves thinking critically about spatial relationships, patterns, and processes in the real world.
- 11. interpret a variety of types of geographical data and sources and recognize their limitations.
- 12. demonstrate skill of analysis and synthesis of geographical information.
- 13. to understand the methods and theories of programming for GIS that will allow students to apply GIS knowledge and skills to everyday life.
- 14. gain an understanding of the ethical and legal implications of using GIS, including privacy concerns, data sharing, and intellectual property rights.

SAVITRIBAI PHULE PUNE UNIVERSITY

Syllabi as per NEP 2020 for M.Sc. Geoinformatics (Level 6.0)

Department of Geography, Savitribai Phule Pune University

M.Sc. Geoinformatics (Year I, Semester I)

Level	Semester	Group	Course Code	Course Title	Cre	dits	Total Credits
Γ	Sen	G			Т	Р	
			GIS 101	Fundamentals of Remote Sensing and Photogrammetry	04		04
			GIS 102	Practicals in Spatial Data Processing		04	04
		Major Core	GIS 103	Fundamentals of GIS	02		02
			GIS 104	Applied Statistics - I: Theory	02		02
			GIS 105	Database Management Systems	02	-	02
	ter			Total credits related to Major Core	10	04	14
	Semester						
6.0	First Sen	Major Electives	GIS 111	Applied Statistics - I: Practicals		02	02
	Fiı	(Theory is mandatory, select any one of the	GIS 112	Basic Programming Concepts	02		02
		following practical courses)	GIS 113	Basic Programming with Python		02	02
				Total credits related to Major Elective	02	02	04
		Research Methodology	GIS 121	Research Methodology	04		04
			Sem I Tota	l Credits= (Major Core + Major Elective + RM)	16	06	22

Vertical Group (Semester – I)	Credits for Theory	Credits for Practical	Total Credits
Total Credits related to Major Core	10	04	14
Total Credits related to Major Electives	02	02	04
Research Methodology	04		04
Total Credits	16	06	22

Level	Semester	Course Course Title Credits Code T P		Course Title	Cre	edits	Total Credits
Ľ	Sen	G			Т	Р	
			GIS 201	Digital Image Processing	04		04
			GIS 202	Geospatial Analysis	04		04
		Major Core	GIS 203	Advance Surveying and fieldwork: Theory	02		02
		Major Core	GIS 204	Advance Surveying and fieldwork: Practicals		02	02
			GIS 205	Open Source GIS - I		02	02
				Total credits related to Major Core	10	04	14
	r						
	Second Semester	Major Electives	GIS 211	Applied Statistics – II: Practicals		02	02
6.0		(Theory is mandatory,	GIS 212	Advance Programming with Python		02	02
	Sec	of the following	GIS 213	Cartography and Data Representation		02	02
		practical courses)	GIS 214	Applications of GIS and Remote Sensing	02		02
				Total credits related to Major Elective	02	02	04
		On Job Training	GIS 221	On Job Training (Students should complete on job training not less clock hours)	s than	60	04
			Sem II Total Credits = (Major Core + Major Elective + OJT) 1		12	06	22

M.Sc. Geoinformatics (Year I, Semester II)

Vertical Group (Semester – II)	Credits for Theory	Credits for Practical	Total Credits
Total Credits related to Major Core	10	04	14
Total Credits related to Major Electives	02	02	04
On Job Training		04	04
Total Credits	12	10	22

SAVITRIBAI PHULE PUNE UNIVERSITY

Syllabi as per NEP 2020 for M.Sc. Geoinformatics (Level 6.5)

Department of Geography, Savitribai Phule Pune University

M.Sc. Geoinformatics (Year II, Semester III)

Level	Semester	Group	Course Code	Course Title	Credits		Total Credits
Γ	Sen	Gr			Т	Р	
			GIS 301	Advances in Remote Sensing and GIS: Theory	04		04
			GIS 302	Practicals in Advance Remote Sensing and GIS		04	04
		Major	GIS 303	Thermal and Microwave Remote Sensing	02		02
		Core	GIS 304	Hyperspectral and LASER Remote Sensing	02		02
			GIS 305	Web GIS and Google Earth Engine	02		02
	_			Total credits related to Major Core	10	04	14
	ster						
6.5	Semester	(One theory is mandatory, select any two	GIS 311	Artificial Intelligence and Machine	02		02
9	Third S		GIS 312	Concepts and Methods in Data Sources Exploration	02		02
	L		GIS 313	Programming in Java Script		02	02
		of the	GIS 314	Programming in .Net		02	02
		following courses)	GIS 315	Open Source GIS - II		02	02
				Total credits related to Major Elective	02	02	04
		Research Project	GIS 321	Research Project			04
			Sem III Total Credits = (Major Core +Major Elective + RP)		12	06	22

Vertical Group (Semester – III)	Credits for Theory	Credits for Practical	Total Credits
Total Credits related to Major Core	10	04	14
Total Credits related to Major Electives	02/04	02/00	04
Research Project		04	04
Total Credits	12/14	10/08	22

Level	Semester	Group	Course Code	Course Title	Cre	edits	Total Credits
Γ	Sen	G			Т	Р	
			GIS 401	Applications of Remote Sensing and GIS in Geosciences and Hydrology	02		02
			GIS 402	Applications of Remote Sensing and GIS in Agriculture and Soil	02		02
		Major Core	GIS 403	Applications of Remote Sensing and GIS in Forest and Biodiversity	02		02
			GIS 404	Applications of Remote Sensing and GIS in Ocean and Atmosphere	02		02
	Fourth Semester		GIS 405	Project Management		02	02
			GIS 406	Applied GIS		02	02
				Total credits related to Major Core	08	04	12
6.5	l Se	Major Electives (Select any					
	Fourtl		GIS 411	Applications of Remote Sensing in Urban Planning and Settlement	02		02
			GIS 412	Applications of Remote Sensing in Planetary Science	02		02
		two of the following	GIS 413	Applications of Remote Sensing and GIS in Disaster Management	02		02
		courses)	GIS 414	Applications of Remote Sensing and GIS in Health and Energy	02		02
				Total credits related to Major Elective	04	00	04
		Research Project	GIS 421	Research Project: Dissertation			06
			Sem IV Total Credits = (Major Core +Major Elective + RP)		12	04	22

M.Sc. Geoinformatics (Year II, Semester IV)

Vertical Group (Semester – IV)	Credits for Theory	Credits for Practical	Total Credits
Total Credits related to Major Core	08	04	12
Total Credits related to Major Electives	04		04
Research Project: Dissertation		06	06
Total Credits	12	10	22

Year-I Semester-I

Department of Geography, Savitribai Phule Pune University

Page 9 | 39

Code: GIS 101 Fundamentals of Remote Sensing and Photogrammetry						
No. of	f Credits: 04 No. of Lect	tures: 60				
Cours	se Objectives:					
	1. To introduce the basic principles of remote sensing.					
	2. To be familiar with Indian space missions and satellite sensors characteristics.					
	3. To know the different types of satellite data products, visual interpretation.					
	4. To provide basic exposure to radiometry and spectroscopy.					
	5. To understand underlying concepts of aerial photo and photogrammetry	·.				
Sr. No.	Topics	Lectures				
	Introduction to Remote Sensing: Concepts, Definition, Development,					
1	Overview of Remote Sensing System.	4				
	Physics of Remote Sensing: Electromagnetic radiation (EMR), Theories					
2	of EMR, Laws of Radiation, EM Spectrum, Sources of EMR	8				
	Interaction of EMR: Interaction between radiation and matter, Interaction					
3	with Earth's Atmosphere, Atmospheric Window, Reflection, Absorption,	6				
	and Transmission.					
4	Spectral Signature: Spectral Signatures for common features, e.g. Snow,	4				
4	Soil, Water and Vegetation.	4				
	Platform and Sensors: Platforms, Sensors, Orbits: Types of Platform,					
5	Types of Sensors- Active and Passive, Cameras and Satellite Orbits,	8				
	Concept of Resolution, Satellite Imaging modes.					
6	Fundamentals of Radiometry: Concept of solid angle, radiometric	4				
0	measurements, observation geometry in RS.	4				
	Data Products and RS data errors: Satellite Data Generation, Data					
7	reception, Type of data products and Aerial Photography Products, FCC	6				
,	and TCC images and their applications, radiometric, geometric and	0				
	atmospheric errors.					
	Photogrammetry: Basic aerial Photography, Basic geometry of aerial					
8	photograph, central and orthographic projections, difference between map	4				
	and aerial photograph, Types of aerial photographs.					
	Measurements: Scale and ground coverage of aerial photograph,					
9	Geometry of Aerial Photographs, Determination of Scale, Use of Parallax,	4				
	height measurement.					
	Aerial Photo and Image Interpretation: Elements of visual interpretation					
10	for aerial photos and satellite imageries: Single, Vertical Stereo Pairs,					
10	Derived From PAN, LISS, Wifs, OCM Sensors. Study and Visual	6				
	Interpretation of Satellite Images for Physical Features, Urban, Forest and					
	Agricultural Uses.					
11	Stereo Photogrammetry: Introduction, orientation of aerial photographs –	2				
11	inner, relative, absolute orientation, Collinearity and Coplanarity	2				
	conditions, Concept of Rotation Matrix.					

12	Digital Photogrammetry: Concept and Techniques of Digital Photogrammetry, Data Generation and Research Application of Cartosat- 1 Data, Lidar-altimeter.	3			
	Field Work/Study Tour: Identification of Features in the Field Using				
13	Aerial Photographs and Satellite Images	1			
Course Outcomes:					
By the end of the course, students will be able to					
1.	1. understand the basic principles of remote Sensing and Photogrammetry.				
2.	2. obtain knowledge of the sensor characteristics of various RS Systems				
3.	3. acquire knowledge of different missions & their utility				
4. understand functioning, data acquisition and orbit operations of missions.					
Suggested Readings:					

- 1. Campbell, J. (2002): Introduction to Remote Sensing, Taylor & Francis, London
- 2. Jensen, J. R. (2005): Introductory Digital Image Processing, Prentice Hall, New Jersey
- 3. Joseph, G. (2004): Fundamentals of Remote Sensing, Universities Press, Hyderabad, India
- 4. Lillesand, T. M., Kiefer, R. W. and Chipman, J. W. (2008): Remote Sensing and Image Interpretation, John Wiley & Sons, New Delhi
- 5. Sabins, F. F. (1996): Remote Sensing: Principles and interpretation, W.H. Freeman and Company, San Francisco

Code: GIS 102 Practicals in Spatial Data Processing				
No. of Credits: 04 No. of Practicals: 15				
	e Objectives: To develop an understanding of basic skills necessary to work with	Geographic		
1.	Information Systems (GIS), using ESRI's ArcGIS software.	Geographic		
2.	To learn about GIS data types.			
2. 3.	To learn spatial data visualization techniques and cartography, aerial p	hoto, stereo		
	pairs in 3D.	,		
4.	To learn geo-processing tools and Spatial query and data extraction.			
Sr.	Topics	Practicals		
No.				
1	Overview of GIS software: ArcGIS Desktop, Arc Pro, Arc catalogue,	1		
1	Arc tool Box	1		
	Attribute Data: Creation of Schema, Tables, Data Definition, Data Input,			
2	Data Updating, Queries on Tables, Simple-Complex Query with two or	1		
-	more tables using SQL; Queries using Union, Intersection, Join	1		
	Operations; Use of MS Excel and MS Access			
	Spatial Data: Vector/Raster Data Formats with File Extensions, Find and			
2	Identify features, attributes and values, select features of vector files,	2		
3	create vector layers, Compute geometry - line and area	3		
	measurements, convert coordinates between reference systems, Topology creation and editing			
	Geodatabase: Feature Dataset, Feature Classes, Import of Data, Spatial			
4	Data Formats, Shape/Coverage Files and Layers	1		
	Georeferencing: Image georeferencing, Coordinate Systems, Datum			
5	Conversions, Map Projections, Types, Image to Image georeferencing,	1		
C	vector to raster georeferencing	-		
	Study of Satellite imagery: Visual Interpretation in different bands,			
6.	study with B/W images, B/W IR, Color IR mages, TCC, FCC	2		
	Spatial Processes: Spatial Joins with Tabular data, Clip Raster to			
	Polygon, Extract values of raster from a point shape file, Clip vectors,			
7	Distance Computations on feature data, Editing Data: Selecting	3		
	Features, Simple Editing Functions, Creating New Features, Modifying,			
	Schema Changes, Spatial Analysis: Query by Attribute and Location			
	Map Creation: Building a map, Layer File, Preparation of Base Map,			
8	Map Layouts, Scale, Legends, Annotations, Labels, Creation of	1		
	Graphs and Reports			
	Photogrammetry: Location of nadir and principal point on aerial photos,			
9	Determination of height from single vertical aerial photograph,	1		
-	Orientation of stereo model under mirror stereoscope, Tracing details			
	from stereo pair, Use of parallax bar and determination of heights			
10	GPS: GPS Survey, Data Import, Processing and Mapping	1		

By the end of the course, students will be able to

- 1. understand basic spatial analysis techniques: georeferencing, spatial statistics.
- 2. create datasets in GIS using ESRI ArcGIS Software.
- 3. identify key concepts related to GIS/Remote Sensing and explore how to apply them to solve real-world problems.
- 4. identify required data sources, design data preparation and advanced techniques in order to achieve a geospatial solution.

Note: a) For 4 credits 2 hours practical twice a week.

b) The concerned teacher may add some points related to the subject.

- Bailey, T. C., & Gatrell, A. C. (1995). *Interactive spatial data analysis* (Vol. 413, No. 8). Essex: Longman Scientific & Technical.
- 2. Bao, J., Tsui, Y. (2005): Fundamentals of Global Positioning System Receivers, John Wiley Sons, Inc., Hoboken.
- 3. Environmental Systems Research Institute, Inc. (1998): Understanding GIS: The ARC/INFO Method, ESRI Press, Redland
- 4. Fotheringham, S., & Rogerson, P. (Eds.). (2013). Spatial analysis and GIS. Crc Press.
- 5. Longley, P. (2003). Advanced spatial analysis: the CASA book of GIS. ESRI, Inc.

Code: GIS 103 Fundamentals of GIS

No. of Credits: 02

No. of Lectures: 30

Course Objectives:

- 1. To understand the core concepts of Geographic Information Systems.
- 2. To get acquainted with popular GIS software and their functionalities.
- 3. To learn about various data models (vector and raster), data types, and data structures used in GIS.
- 4. To learn about spatial analysis methods, including spatial query, buffering, overlay, interpolation, and network analysis.
- 5. To understand how to apply these techniques to solve spatial problems.

Sr. No.	Topics	Lectures
1	Introduction to GIS: Definitions, Evolution, Components and Objectives	3
2	Overview of GIS Software Packages	2
3	Spatial Data: Concepts of Space and Time, Layers Coverage, Spatial Data Models, Representation of Geographic Features in Vector, Raster Data Models, Concept of Arc, Node, Vertices and Topology	5
4	Object Oriented Models: Advantages and Disadvantages, Computer Representation for Storing Spatial Data: Block Code, Run-Length Encoding, Chain Coding, Quadtree, Issues Governing Choice of Models	5
5	Non-Spatial Data: Advantages of Data Base Management System. Conceptual Implementation Models, Hierarchical, Network, and Relational Models	5
6	Relational Database Management System: Components, Concept, Database Schema, Tables and Relationships, Database Design Normalization (1NF, 2NF, 3NF Forms) Data Definition Manipulation using SQL, SQL-Query Processing, Operations on Tables, Integrity Constraints, Database Security, Role of Database Administrator (DBA), Metadata	5
7	Spatial Data Input: Digitization, Error Identification, Errors: Types, Sources, Correction; Editing and Topology Building	5

Course Outcomes:

By the end of the course, students will be able to

- 1. equip with a comprehensive understanding of GIS theory
- 2. understand data concepts and spatial analysis techniques, preparing them to apply GIS knowledge effectively in a wide range of applications and pursue more advanced GIS studies or professional opportunities.

Suggested Readings:

- 1. Chang, K. T. (2008): Introduction to Geographic Information Systems, Avenue of the Americas, McGraw-Hill, New York
- 2. Demers, M. N. (2000): Fundamentals of Geographic Information Systems, John Wiley and Sons, New Delhi
- 3. Korte, G. B. (2001): The GIS Book, Onward Press, Bangalore
- 4. Lo, C. P., Yeung, A. W. (2002): Concepts Techniques of Geographical Information Systems, Prentice-Hall of India, New Delhi

Department of Geography, Savitribai Phule Pune University

5. Longley, P. A., Goodchild, M. F., Maguire, D. J., Rhind, D. W. (2002): Geographical Information Systems and Science, John Wiley & Sons, Chichester

Code: GIS 104Applied Statistics – I: Theory		
No. of Credits: 02 No. of lectures		o. of lectures: 30
Course C	Objectives:	
1. T	o learn the theoretical part of statistical techniques.	
	'o learn the advantages and application of different statistical tech malysis.	iniques for differen
3. T	o study comparison and conclusions of data.	
4. T	o learn about the concepts related to geographical data and its typ	es.
Sr. No.	Topics	Lectures
	Geographic Data: Sources, Types, Discrete and Continuous Serie	s,
	Scales of Measurements, Population, Sample and Sampling	10
1	Techniques	
	Organization of Data: Frequency Distribution, Measures of	
2	Central Tendency, Dispersion, Skewness and Kurtosis	10
3	Correlation and Regression: Concepts and Methods, Types	10
3	of Regression: Simple and Multiple	10

By the end of the course, students will be able to

- 1. understand analysis of data and drawing conclusions from it.
- 2. understand distribution of spatial data, how things are changing over time and planning, designing, collecting data, analyzing, drawing meaningful interpretation and reporting of the research findings.

- 1. Ebdon, D. (1977): Statistics in Geography, Basil Blackwell, Oxford
- 2. Frank, H. and Althoen, S.C. (1994): Statistics: Concepts Applications, Cambridge University Press, Cambridge.
- 3. Gregory, S. (1978): Statistical Methods for Geographers, Longman, London
- 4. Hammond, R. and McCullagh, P. (1991): Quantitative Techniques in Geography, Clarendon Press, Oxford
- 5. Rogerson, P. A. (2010): Statistical Methods for Geography, Sage Publications, London

Code: GIS 105Database Management System		
No. of Credits: 02 No. of Lectures: 30		
Course	Objectives:	
	1. To present an introduction to database management systems.	
	2. To organize, maintain and retrieve - efficiently, and effectively -	information
	from a DBMS.	
	3. To understand the relational database design principles.	
No	4. To master the basics of SQL and construct queries using SQL.	Lasturas
No.	Topics	Lectures
1	Database concepts: introduction to database concepts and its need,	2
	relational databases, database architecture	
	Data Models: The importance of data models, Basic building blocks,	_
2	The evolution of data models, and degrees of data abstraction;	5
	DBMS, RDBMS, Advantages and Disadvantages of DBMS	
	Database Design and ER-Diagram: overview, ER-Model, Constraints,	
	ER-Diagrams, ERD Issues, weak entity sets, Codd's rules, Relational	
3	Schemas, Introduction to UML;	5
5	Relational database model: Logical view of data, keys, and integrity	5
	rules, Relational Database design: features of good relational database	
	design, atomic domain and Normalization (1NF, 2NF, 3NF, BCNF)	
	Relational Algebra: Introduction, Selection and projection, set	
4	operations, renaming, Joins, Division, syntax, semantics, Operators,	2
	grouping and ungrouping, relational comparison, calculus vs algebra	
	Constraints and Views: What are constraints, types of constraints,	
	Integrity constraints, (Primary Key, Foreign Key, Check Constraint,	
5	Not Null, Altering Constraint, Concept of Backup Recovery);	4
	Introduction to views, data independence, security, updates on views,	
	comparison between tables and views	
	PL/SQL: Introduction, Variables and types declaration, data	
	definition;	2
6	Data Types, DDL, DML, DCL, aggregate function, Null values,	3
	nested sub queries, joined relations, Triggers	
	Manipulating Dataset using SQL Statement: Basic Select Statement,	
7	Selecting Specific Column, Using Arithmetic Expressions, Defining	2
	Column Alias, using Where Clause	
8	Restricting & Sorting Data: using Comparison Condition $(=, <=, >=)$;	
	Using Logical Operator: AND, OR, NOT, using BETWEEN, LIKE	2
	Conditions, Rule of Precedence, using Order by Clause	_
	SQL Function: Displaying Data from Multiple Tables, Sub-Query,	
9	Concept of Function, Types, Group Functions, Use of Group by,	
	Having Clause, Types of Joins, Concept of Sub-Query, Types of Sub-	2
	Queries	

10	Spatial database systems and application: Exploring Spatial Geometry – Organizing spatial data – spatial data relationships and functionalities– Application program and user Interfaces, Overview of NoSQL for spatial data handling	2
11	Interface of Python with an SQL database Connecting, SQL with Python Creating, Database connectivity, Applications Performing - Insert, Update, Delete, queries, Display data by using fetchone(), fetchall(), rowcount()	1
	Outcomes: end of the course, students will be able to	

- 1. describe the fundamental elements of relational database management systems.
- 2. explain the basic concepts of relational data model, entity-relationship model, relational database design, relational algebra and SQL.
- 3. design ER-models to represent simple database application scenarios.
- 4. extract data from database using SQL.
- 5. understand basic concept of spatial database.

- 1. Connolly, T. M., & Begg, C. E. (2005). *Database systems: a practical approach to design, implementation, and management*. Pearson Education.
- Deshpande, P. S. (2008): SQL & PL/SQL for Oracle 10g, Blackbook, Dreamtech Press, New Delhi
- Ramakrishnan, R., Gehrke, J., & Gehrke, J. (2003). *Database management systems* (Vol. 3). New York: McGraw-Hill.
- 4. Silberschatz, A., Korth, H. F., & Sudarshan, S. (2011). Database system concepts.
- 5. Ullman, J. D. (1983). Principles of database systems. Galgotia publications.

Code: C	Applied Statistics -I: Practicals	
No. of Cı	redits: 02 No. of F	racticals: 15
Course C	Objectives:	
2. To	learn the different statistical techniques useful for research findings. understand the different statistical techniques practically. study comparison and conclusions of data.	
Sr. No.	Topics	Practicals
1	Graphical representation of frequency distribution: Histogram, frequency curve, ogive curve	2
2	Measures of Central Tendency: Athematic mean, median and mode; Measures of Dispersion: Absolute and relative measures	3
3	Measure of skewness and kurtosis based on moments of distribution	3
4	Correlation and Regression: Scatter plot, Bivariate correlation example Regression: Bivariate linear and exponential	3
5	Matrix algebra: Matrix operations, types of matrices	4

By the end of the course, students will be able to

- 1. understand analysis of data and drawing conclusions from it
- 2. understand how things are changing over time and to learn planning, designing, collecting data, analyzing, drawing meaningful interpretation and reporting of the research findings.
- Note: a) For 2 credits 2 hours practical per week.
 - b) The concerned teacher may add some points related to the subject.

- 1. Ebdon, D. (1977): Statistics in Geography, Basil Blackwell, Oxford
- 2. Frank, H. and Althoen, S.C. (1994): Statistics: Concepts Applications, Cambridge University Press, Cambridge
- 3. Gregory, S. (1978): Statistical Methods for Geographers, Longman, London
- 4. Hammond, R. and McCullagh, P. (1991): Quantitative Techniques in Geography, Clarendon Press, Oxford
- 5. Rogerson, P. A. (2010): Statistical Methods for Geography, Sage Publications, London

Code: G	IS 112Basic Programming Concepts	
No. of C	Credits: 02 No. of Lo	ectures: 30
Course	Objectives:	
 To develops basic understanding of computers, the concept of algorithm and algorithmic thinking. To develop the ability to analyze a problem, develop an algorithm to solve it. 		
3. Т	To develop the use of the C programming language to implement various and develops the basic concepts and terminology of programming in gen	s algorithms,
Sr. No.	Topics	Lectures
1	Fundamental Concept: programming languages, Hardware and Software, Analog and Digital, Operating Systems	2
2	Introduction to computer: Introduction, Basic block diagram and functions of various components of computer, Concept of Hardware and Software, Types of software, Compiler and Interpreter	3
3	Introduction to programming language: machine language, assembly Language, high-level language, compilers and interpreters; Problem-solving using computers: Algorithms and flowcharts, Documentation, Comments, and Coding Style	3
4	The C Programming Language: Introduction, History of Programming Language, Basics elements, Variables, Basic I/O	2
5	Data Types and Operators, Control Structures, Types of Loops	5
6	Control Structures: Simple statements, Decision making statements, looping statements, Nesting of control structures, break and continue statement, go-to statements, Conditionals statements, Loops; Introduction to Functions	5
7	Introduction to Array and String: Single and Multidimensional Array, declaration and initialization of arrays, String storage, Built-in string functions, Collections and Dynamic Memory	5
8	Error Handling, File Handling: File I/O, Reading and Writing the Data to File	3
9	Concepts of Object-Oriented Programming: Fundamentals, Features - class, object, polymorphism, inheritance, data encapsulation and abstraction	2
Course Outcomes:		
•	and of the course, students will be able to	
2. u	inderstand the basic principles of computers. Inderstand the basics of binary computation. Inderstand the programming basics (operations, control structures, data t	ypes).
4. fa	amiliarize with basic C programming. amiliarize with the concept of object-oriented program.	

- 1. Balagurusamy, E. (2002): Programming in ANSI C, Tata McGraw Hill, New Delhi
- 2. Bjarne Stroustrup (2015): The C# Programming Language, 4th edition
- 3. Kanetkar, Y. (2001): Let Us C, BPB Publications, New Delhi
- 4. Kernighan, R. (1998): C Programming Language, (ANSI C Version), Prentice Hall, New Jersey
- 5. Malik D. S. (2009): "C# Programming Language", Cengage Learning

Code: GIS 113Basic Programming with Python			
No. of C	No. of Credits: 02 No. of Practicals: 15		
Course	Objectives:		
2. 1 3. 1 4. 1	 To master the fundamentals of writing Python scripts. To learn core Python scripting elements such as variables and flow control structures. To understand the object-oriented program design and development. To work with common Python data types like integers, floats, strings, characters, lists. 		
Sr. No.	To use basic flow control, including for loops and conditionals. Topics	Practicals	
1	Introduction to Python: Comparison of Python with other languages like C/C++, Java etc, the execution model of Python, Salient features of Python, Areas where Python is in use, Industries that are using Python	1	
2	Installing Python, Learning the syntax and semantics of Python, Using the Python interpreter, Python Keywords, Identifiers, Comments, Expressions, Statements, Input and Output, Type Conversion, Debugging, executing a Script, Structuring with Indentation, Editors	1	
3	Data types and Variables: Naming convention of variables, Basic Input-Output Operations, Basic Operators	1	
4	Control structures: Boolean Values, Conditional Execution, If/Else Statements, For/while Statements, Range () function, Break and continue statements, Else clauses on Loops, Pass statements,	1	
5	Operations, and Assignment statements Functions: Define Function Statements with Parameters, Return Values and Return Statements, The None Value, Keyword Arguments and print (), Local and Global Scope, The global Statement, Lamda function	2	
6	Data structures: List Data Type, Working with Lists, Augmented Assignment Operators, Methods, Stack, operations on stack (push and pop), Tuples, Set, Dictionaries and Structuring Data	2	
7	Strings and String Methods: Working with Strings, Useful String Methods	1	
8	File Handling: Files and File Paths, os.path Module, File Reading/Writing Process, Introduction to files, types of files (Text file, Binary file, CSV, excel file), relative and absolute paths	1	
9	Modules and Packages: Standard modules, Packages, Defining Classes, defining functions, Creating Modules and Packages, importing a module, Import the names, Executing modules as scripts	1	
10	Data Visualization: Basic data visualization with Matplotlib, Line Charts, Bar Graphs, Histograms, Scatter Plots, 3D plots, Heat maps	2	
11	Finding and Fixing Code Bugs: Error handling and fixing bugs	1	

12	Object-oriented design: Object-Oriented Approach, Classes, Methods, Standard Objective Features; Exception Handling, and Working with Files	1	
Course	Outcomes:		
By the	By the end of the course, students will be able to		
2. 3. 4. 5.	 develop algorithmic solutions to simple computational problems. demonstrate programs using simple Python statements and expressions. explain control flow and functions concept in Python for solving problems. 		
	Note: a) For 2 credits 2 hours practical per week.b) The concerned teacher may add some points related to the subject.		

- 1. Barry, P. (2016). Head first Python: A brain-friendly guide. " O'Reilly Media, Inc.".
- 2. Chun, W. (2001). Core python programming (Vol. 1). Prentice Hall Professional.
- 3. Lutz, M. (2013). *Learning python: Powerful object-oriented programming*. " O'Reilly Media, Inc.".
- 4. Phillips, D. (2010). Python 3 object-oriented programming. Packt Publishing Ltd.
- 5. Sweigart, A. (2019). Automate the boring stuff with Python: practical programming for total beginners. No Starch Press.

Code: GIS 121 Research Methodology		
No. of Credits: 04 No. of Lectures: 60		
Course	Objectives:	
	o understand the fundamental principles of the research.	
	o differentiate between different types if research.	
	To evaluate research design.	
	To set or develop hypothesis. To select appropriate data collection method.	
	To apply research methodology to real world problems.	
Sr. No.	Topics	Lectures
1.	Methods of Geospatial Studies, Research: Definition, Types, Classification, Literature Review, Case Studies	10
2.	Methods of Explanation: Inductive, Deductive, Empiricism, Positivism, Hempel	4
3.	Hypothesis, Theories, Laws and Models	4
4.	Research Question, Objectives, Significance of Research, Research Design	6
5.	Data Collection: Types, Methods, Tools and Techniques	5
6.	Recent Trends in RS and GIS Research	4
7.	Ethics in Scientific Research and Plagiarism	4
8.	Scientific Journals: Impact Factor, Citation,	3
9.	Introduction to useful online platforms: Mendeley, Google Scholar, ResearchGate, Shodhganga	4
10.	Research Proposal	4
11.	Presentation of Research Findings: Report Writing, Presentation and Formatting	4
12.	Citations, References, Bibliography and various referencing styles	4
13.	Evaluation of Research: Criteria of evaluation	4
Course Outcomes:		
By the end of the course, students will be able to		
1. equip with the foundation skills and competencies needed to embark on their research		
journey successful.		
	naster research methodology. o conduct meaningful research in their academic and professional endea	vors
J. 10	s conduct meaningful research in their academic and professional endea	v015.

- 1. Gomez, B. and Jones, J. P. III (2010): Research Methods in Geography: A Critical Introduction, John Wiley and Sons
- 2. Goudie, A. (Ed) (2004): Encyclopedia of Geomorphology, Routledge, London

Department of Geography, Savitribai Phule Pune University

- 3. Gregory, D., Johnston, R., Pratt, G., Watts, M. and Whatmore, S. (2009): The Dictionary of Human Geography, Wiley-Blackwell, Singapore
- 4. Montello, D. and Sutton, P. (2013): An Introduction to Scientific Research Methods in Geography and Environmental Studies, SAGE Publications
- 5. Warf, B. (Ed) (2006): Encyclopedia of Human Geography, SAGE Publications, London

Year-I Semester-II

Department of Geography, Savitribai Phule Pune University

Page 26 | 39

Code: (GIS 201Digital Image Processing	
No. of	Credits: 04 No. of J	Lectures: 6(
Course	Objectives:	
1. T	o learn the interpretation of remote sensing images,	
2. T	o understand numerous image processing and analysis techniques	
	o understand methods or algorithms to usage is determined by the object	tives of eac
	pecific requirement.	
	o learn creation of new themed maps by combining multiple data layers	in a
	computer.	
Sr.	Topics	Lectures
No.	_	
	Introduction to Digital Image Processing: Digital images, Types	
	Sources of Errors, Atmospheric, Radiometric and Geometric;	10
1	Image Rectification: Geometric Correction, Radiometric,	10
	Correction, Noise Removal	
	Image Enhancement Techniques: Contrast Enhancement, Linear,	
	Non-Linear, Logarithmic and Exponential, Gaussian Stretch, Density	
2	Slicing; Spatial Filtering: Low Frequency, High Frequency, Edge	10
	Enhancement, Band Ratio and Band Combination	
	Digital Image Classification: Classification Scheme, Supervised	
	Classification, Training Sites Selection, Classifier types, Unsupervised	
3	Classification, Accuracy Assessment	10
	Object-oriented classification: Segmentation, Object-oriented vs.	
4	pixel-based classification, Algorithms for classification	4
5	Introduction to ERDAS	2
5	Familiarization with Image Processing Systems: Loading of	2
	Image Data, Identification of Objects on Visual Display, Study of	
7	Histograms and Layer Information	4
	Image Enhancement Techniques: Linear and Non-Linear Contrast	
	Enhancement, Band Ratioing, Edge Enhancement, High and Low	
8	Pass Filtering, Density Slicing	4
9	Image Registration: Registration of Bases Map/ Topomap, Image	4
9	to Map, Image to Image	4
10	Image Classification: Supervised, Unsupervised and Use of	4
10	Different Algorithms, Change Detection	+
11	Accuracy Analysis: Producer, User Accuracy, Overall and	4
	Mapping Accuracy, Kappa Coefficient	•
	Vector Layers: Generation of Vector Layer, Editing and Topology	
12	Building, Area and Perimeter Estimation;	4
	Map Composition	
	Outcomes:	
•	end of the course, students will be able to	. .
1	extract additional information from geographical data that might not b	be obvious
	simply by looking at a map.	

2. understand how efficiently they can encode, save, retrieve, overlay, correlate, alter, analyze, query, and display geographical data. Digital image processing,

Department of Geography, Savitribai Phule Pune University

visual inspection is a crucial component, and the results of these methods and also learn to gather data from the images.

- 1. Cha, B., Dattaa, D., Majumdar (2001): Digital Image Processing Analysis, Prentice-Hall of India, NewDelhi
- 2. Jensen, J. R. (2005): Introductory Digital Image Processing, Prentice Hall, NewJersey
- 3. Lillesand, T. M., Kiefer, R. W.Chipman, J. W.(2008): Remote Sensing and Image Interpretation, JohnWiley & Sons, New Delhi
- 4. Nag, P. Kudrat, M. (1998): Digital Remote Sensing, Concept Publishing Company, New Delhi
- 5. Richards, J. A, Jia,X.(1999):Remote Sensing and Digital Image Processing, Springer, Verlag Berlin

Code: G	HS 202 Geospatial Analysis	
No. of Credits:04 No. of Lecture		
	Objectives	
	o learn spatial data visualization techniques and cartography.	
	To learn geo-processing tools.	
	o learn about GIS and decision-making. To learn about surface analysis.	
	To learn about 3D modelling and analysis.	
<u>Sr. No.</u>	Topics	Lectures
	Introduction to Spatial Analysis: Significance of Spatial Analysis,	
1	Overview of Tools for Analysis	3
	Data Conversion, Creation and Extraction: Netcdf, .h5, JSON, CAD,	
2	excel, KML/KMZ, dbase, raster, shapefile	3
	Vector Analysis: Overlay Operations: Point-in-Polygon, Line-in-	
	Polygon, Polygon-in-Polygon;	
	Single Layer Operations: Feature Identification, Extraction,	
3	Classification Manipulation;	10
	Multilayer Operation: Union, Intersection, Symmetrical Difference,	
	Update, Merge, Append and Dissolve, geometry and related	
	operations	
	Raster Analysis: Map Algebra, Grid Based Operations, Local, Focal,	
	Zonal and Global Functions, Cost Surface Analysis, Optimal Path and	-
4	Proximity Search, Attribute table, Mask, Reclassify, resample, raster	6
	mosaic, merge, extract bands	
	Spatial Network and Location Analysis: Concepts, Evaluation of	
	Network Complexity Using Alpha-Gamma Indices, C-Matrices for	
5	Evaluating Connectivity of the Network, Network Data Model, Path	8
	Analysis, Types of Network Analysis, Optimum Cyclic Path, Vehicle	
	Routing, Path Determination and Cost-Path Analysis	
6	Geocoding and Reverse geocoding	3
	Point Pattern Analysis: Methods for Evaluating Point Pattern,	
7	Clustered and Random Distribution, Density Analysis, Distance	8
	related operations	
6	Surface and Grid Analysis: DEM, TIN, Slope, Aspect, Hill shade and	
8	viewshed, creating 3D data, mapping, animation	5
	Geostatistics: Interpolation Methods - Trend Surface Analysis, IDW,	
9	Kriging, Measures of Arrangement and Dispersion, Autocorrelation,	6
	Semi-Variogram	
	Spatial Modeling: Role of Spatial Model, Explanative, Predictive and	
10	Normative Models, Correlation-Regression Analysis in Model	6
	Building, Handling Complex Spatial Query and case Studies	-
11	Big Data and Geospatial Analysis: Types and Challenges	•
11		2

By the end of the course, students will be able to

- 1. apply a range of geospatial analysis techniques using remote sensing and GIS tools toward solving quantitative problems in one or more core disciplinary areas such as geography, ecology, environmental sciences, bio-geosciences, urban planning, natural resources management etc.
- 2. quantitatively analyze data to evaluate scientific hypotheses and arguments in remote sensing and geographic information science.

- 1. Booth, B., Shaner, J., MacDonald, A., Sanchez, P. Pfaff, R. (2004): ArcGIS, Geodatabase Workbook, Redlands
- 2. Environmental Systems Research Institute, Inc. (1998): Understanding GIS: The Arc/Info Method, ESRI Press, Redlands.
- 3. ESRI (2003): Introduction to ArcGIS- I, Course Lectures, GIS Education Solutions
- 4. Makrewski, J. (1999): GIS Multi-criteria Analysis, John Wiley and Sons, New York
- 5. Melania, H. M., Rhonda, P., Minami, M., Hatakeyama, A. M. (2004): ArcGIS, Using ArcMap, ESRI Press, Redlands

Code: GIS 203Advance Surveying and Fieldwork: Theory			
No. of	No. of Credits: 02 No. of Lectures: 30		
Course	Objectives:		
1.	To understand advanced surveying concepts.		
2.	To utilize modern surveying instruments.		
	To plan and execute field survey.		
	To analyze and process survey data.		
	To apply surveying in various domains.	r	
Sr.	Topics	Lectures	
No.		Lectures	
1	Introduction to Differential GPS (DGPS): Principle and Function	3	
2	Single and Dual Frequency DGPS, RTK and Static Surveys in DGPS,	6	
2	Use of DGPS in Topographical Survey	0	
3	Introduction to Total Station: Principle and Function	3	
4	REM, RDM, Use of Total Station for data processing and analysis	6	
5	Comparison of Total Station with DGPS in Topographical Surveying	5	
6	Introduction to Unmanned Aerial Vehicle (UAV): Principles and	3	
U	Functions	5	
7	Types of UAV, DGCA directions and rules	4	
		1	

By the end of the course, students will be able to

- 1. handle advanced survey instruments such as Total Station, DGPS, and UAVs.
- 2. conduct surveys and collect the required data.
- 3. analyze the data and produce the results.
- 4. correlate and compare the data from various sources.
- 5. integrate remote sensing data, such as aerial and satellite imagery, LiDAR and other remote sensing technology into surveying projects for enhanced spatial information.

- 1. Jeff, H. (1995): Differential GPS Explained, Trimble Navigation
- 2. Lawrence, L. and Alex, L. (2008): GPS Made Easy: Using Global Positioning Systems in the Outdoors, Rocky Mountain Books, Calgary
- 3. Mohinder, S. G., Lawrence, R. W. and Angus, P. A. (2001): Global Positioning Systems, Inertial Navigation and Integration, John Wiley and Sons Inc., New York
- 4. Satheesh, G., Sathikumar, R. and Madhu, N. (2007): Advanced Surveying: Total Station, GIS and Remote Sensing, Pearson Education, Delhi
- 5. Stinespring, B. M. (2000): The Experimental Evaluation of a DGPS Based Navigational System for the ARIES AUV, Monterey, California: Naval Postgraduate School; Springfield.

Code: GIS 204Advanced Surveying and Fieldwork: Practicals				
No. of	No. of Credits: 02 No. of Practicals: 1			
Course	Objectives:			
1.	To understand advanced surveying concepts.			
2.	To utilize modern surveying instruments.			
3.	To plan and execute field survey.			
	To analyze and process survey data.			
5.	To apply surveying in various domains.			
Sr.	Topics	Practicals		
No.	Topics	racticals		
	Introduction to Differential GPS (DGPS): DGPS setting of			
1	Instruments at base and rover, DGPS Survey and Data Processing,	5		
	Generation of digital elevation model (DEM)			
2	Introduction to Total Station: REM, RDM, Use of Total station for data	~		
2	collection, processing, and analysis	5		
4	Introduction to Unmanned Aerial Vehicle (UAV): Drone survey, Data	_		
4	Collection, Data processing, DEM, DSM, DTM generation	5		
Course	Outcomes:			

By the end of the course, students will be able to

- 1. handle advanced survey instruments such as Total station, DGPS, UAV.
- 2. conduct survey and collect the required data.
- 3. analyze the data and produce the results.
- 4. corelate and compare the data from various sources.
- 5. integrate remote sensing data, such as aerial and satellite imagery, LiDAR and other remote sensing technology into surveying projects for enhanced spatial information.
- Note: a) For 2 credits, 2 hours practical per week.
 - b) The concerned teacher may add some points related to the subject.

- 1. Jeff, H. (1995): Differential GPS Explained, Trimble Navigation
- 2. Lawrence, L. and Alex, L. (2008): GPS Made Easy: Using Global Positioning Systems in the Outdoors, Rocky Mountain Books, Calgary
- 3. Mohinder, S. G., Lawrence, R. W. and Angus, P. A. (2001): Global Positioning Systems, Inertial Navigation and Integration, John Wiley and Sons Inc., New York
- 4. Satheesh, G., Sathikumar, R. and Madhu, N. (2007): Advanced Surveying: Total Station, GIS and Remote Sensing, Pearson Education, Delhi
- 5. Stinespring, B. M. (2000): The Experimental Evaluation of a DGPS Based Navigational System for the ARIES AUV, Monterey, California: Naval Postgraduate School; Springfield.

Code: GIS 205 Open Source GIS - I				
No. of Credits: 02 No. Pr				
Course	Objectives:			
	To explore open-source GIS concepts their importance.			
	To acquire and manage open-source GIS data.			
	To perform spatial analysis in open-source GIS.			
	To understand the integration of open-source tools.			
	To apply open-source GIS to real world problems solving.			
Sr. No.	Topics	Practicals		
1	Open Source GIS: Basic Concepts, OGC/ISO Protocols;	2		
1	Introduction to Open Source Software			
	Introduction to QGIS Graphical User Interface: Menu Bar,			
2	Toolbars, Panels, Map, View, Status Bar, Browser Panel, Plugin	s - 2		
	Installing and Managing Plugins, QGIS Configuration			
3	Generation of Vector Layers: Point, Line, Polygon	3		
4	Georeferencing, Projection and Reprojection, Handling broken f	ile 3		
	paths			
5	Working with Vector Data: Vector Properties Dialog, Working	3		
5	with Attribute Table, Editing, Vector Tiles, Query Analysis	5		
6	Working with Raster Data: projection, band combination, layer	2		
0	stacking, Map Composition	2		
Course	Outcomes:			
By the e	nd of the course, students will be able to			
1. u	inderstand the concept and philosophy of the open source.			

2. harness the power of open source GIS tools for a wide range of applications in their academic and professional endeavors.

Note: a) For 2 credits, 2 hours practical per week.

b) The concerned teacher may add some points related to the subject.

- 1. Andrew Cutts, Anita Graser (2018): Learn QGIS,
 - https://www.packtpub.com/application-development/learn-qgis-fourth-edition
- 2. Markus Neteler And Helena Mitasova (2007): Open Source GIS: A GRASS approach, Springer-Verlag Berlin, Heidelberg

Code: GIS 211 Applied Statistics – II: Practicals				
No. of Credits: 02 No. of Practicals: 1				
	Objectives:			
1.	To understand GIS and geo statistical techniques, tools and approac	thes for spatial		
2.	analysis. To enhances the knowledge about distribution of spatial data.			
	To learn the how to do predictions for a better understanding of information.	the available		
Sr. No.	Topics	Practicals		
1	Geographical Data and Multivariate Analysis	1		
2	Trend Surface Analysis: Computation of Linear Trend and Ideas of Quadratic and Cubic Surfaces	3		
3	Principal component analysis (PCA), Factor Analysis	4		
4	Introduction to R software: Exploratory data analysis, Probability and statistical operations, Regression and least squares using R	3		
5	Geostatistics: Point data interpolation techniques including kriging methods - Simple kriging, Ordinary kriging, Universal kriging	4		

By the end of the course, students will be able to

- 1. understand the geostatistical methods and their application in different GIS domain, spatial trends in the data, or whether the features form spatial patterns.
- 2. analyze and predict the values associated with spatial or spatio-temporal phenomena.
- 3. enhance their knowledge about recent trends in geostatistics and it will offer convenient management in the related field.
 - Note: a) For 2 credits 2 hours practical per week.
 - b) The concerned teacher may add some points related to the subject.

- 1. Acevedo, M. F. (2012). *Data Analysis and Statistics for Geography, Environmental Science and Engineering*. London: CRC Press.
- 2. Hammond, R. and McCullagh, P. (1991): Quantitative Techniques in Geography, Clarendon Press, Oxford
- 3. Johnston, R. J. (1978). Multivariate Statistics in Geography. London: Longman.
- 4. Rogerson, P. A. (2010). Statistical Methods for Geography, London: Sage Publications

	Code: GIS 212 Advance Programming with Python				
No. of Credits: 02No. of Practicals: 15Course Objectives:					
	To master the numeric data processing with Python scripts.				
	To learn geospatial data analysis using python.				
	To learn to create API and web application using Python.				
	To work with GUIs and web browsers with Python.				
<u></u> Sr. No.		Practical			
	NumPy and SciPy: Introduction to NumPy, Creation of vectors and				
1	matrices, Matrix manipulation	2			
	Pandas: Introduction, Pandas data structures - Series and				
2	DataFrame, Data wrangling, loading a dataset into a DataFrame,	2			
2	Selecting Columns, Selecting Rows, Adding/ Deleting new data in a	2			
	DataFrame, manipulation of tabular data				
3	Data Visualization: Matplotlib and Seaborn	1			
	GeoPandas: Introduction, Installation, Vector data processing,				
4	reading/writing shapefile, plotting, clip, overlay, spatial join,	2			
	choropleth maps, classification				
	Rasterio: Introduction, Installation, opening data, read, save,				
5	georeferenced and visualize raster files, spatial indexing, creating	2			
	data				
6	Scikit-Learn: for machine learning, model fitting, predicting, cross-	2			
0	validation, for predictive data analysis, Tensor Flow, Pytorch	2			
	GUIs in Python: Tkinter, Introduction, components and events,				
7	example of GUI, root component, adding button, entry widgets, Text	1			
	widgets, check buttons				
	Web Scraping: Beautiful Soap, python web browser Module,				
8	Downloading Files from the Web with the requests Module, Saving	1			
	downloaded Files to the Hard Drive, HTML				
	Django: Overview, Installation, Creating Project, creating				
9	application, database and views, static files and forms, API and	1			
	security				
10	ESRI ArcGIS API for Python	1			
Course	Outcomes:				
By the	end of the course, students will be able to				
	understand the concept of numerical python, manipulate and extract data	a from			
	pandas DataFrames.				
	write Python code according to standard style guidelines. master basic processing of Raster and vector data in python.				
	familiarize themselves with python GUI's and data processing with skle	arn.			
5.	understand the concept of Django and ESRI API for python.				
ote: a) For 2 credits 2 hours practical per week.				

Department of Geography, Savitribai Phule Pune University

- 1. Beazley, D., & Jones, B. K. (2013). *Python Cookbook: Recipes for Mastering Python 3*. " O'Reilly Media, Inc."
- 2. Kanetkar, Y. (2019). Let Us Python. BPB Publications
- 3. Lutz, M. (2010). *Programming Python: powerful object-oriented programming*. " O'Reilly Media, Inc."
- 4. McKinney, W. (2012). *Python for data analysis: Data wrangling with Pandas, NumPy, and IPython.* "O'Reilly Media, Inc".

No. of Credits: 02 No. of Pra			
Course	e Objectives:		
	1. To learn the representation of the region in a short scale.		
	2. To understand display/represent graphic information using GIS system	n.	
	3. To learn easier data symbolization.		
	4. To learn different types and component of geographical maps.		
	5. To develop a map in a detailed manner easily and digitally.		
Sr. No.	Topics	Practical	
1	Introduction to Cartography and Elements of Map Design	2	
2	Map Projection and Coordinate system: Concepts, Types and Uses	4	
	Scales of Measurement: Nominal, Ordinal, Interval, Ratio;		
3	Graphical Representation of Statistical Data: Two- and Three- dimensional diagrams	4	
	Map types: Thematic, Topographical, Cadastral;		
4	Interpretation of SOI Topographical Maps: Identification and	3	
	Visualization of different Physical and Manmade Features		
	Digital Cartography and Digital Data Representation	2	
5		1	

- 1. understand the all aspects of handling geographical information, also it provides a simple platform to understand most of the geographical phenomena and the occurrence of these phenomena.
- 2. perform map making and will understand how to apply patterns and colors when representing features on a map.
 - Note: a) For 2 credits 2 hours practical per week.
 - b) The concerned teacher may add some points related to the subject.

- 1. Gupta, K. K. Tyagi, (1992): Working with maps, Survey of India Publication, DST, New Delhi
- 2. Monkhouse, F. J., & Wilkinson, H. R. (1963). Maps and diagrams: their compilation and construction. Egmont Books Ltd
- 3. Ramamurthy, K. (1982): Map Interpretation, Rex Printers, Madras
- 4. Robinson, A. H., Morrison, J. L., Muehrcke, P. C., Kimerling, A. J. Guptill, S. C. (1995): Elements of Cartography, Wiley, New York
- 5. Singh, R. L. (1979): Elements of Practical Geography, Kalyani Publishers, New Delhi
- 6. Understanding Map Projection (2003-2004): GIS by ESRI, Redlands.

No. of Credits: 02 No. of Le				
Course	Objectives:			
1.	To learn the applications of remote sensing data and GIS techniques in	different		
	fields.			
2.	To understand periodic updates in various fields.			
	To monitor the environment and human activities using RS and GIS tec	chniques.		
Sr. No.	Topics	Lectures		
	Geosciences: Landform Analysis, Drainage Basin Morphometry,			
1	Slope Mapping, Integrated Approach for Landslide Hazard Zonation Models and Mapping	5		
2	Water Resources: Watershed Hydrology, Physical Processes in Watershed, River Valley Project, Hydrological Modeling	4		
3	Forest: Image Processing for Forest, Vegetation Classification Mapping, Forest Inventory, Forest Management, Land Evaluation for Forestry	4		
4	Marine and Atmospheric Sciences: Fundamentals, Oil Spills, Ecology, Ocean Color Mapping, SST Mapping, Potential Fishing Zone Mapping	5		
5	Fundamental of Climatology: Aerosols, Climate modeling, Meteorological Satellites, Forecasting of Natural Calamities, Climate change detection	4		
6	Agriculture and Soils: Spectral Characteristics of Crop, Crop Inventory, Crop Yield Modeling, Soil Mapping, Crop Water Management, Agro-Ecological Zoning	4		
7	Biodiversity: Concept of Ecology and Biodiversity, Biodiversity Mapping, Assessment of Biodiversity Hotspots, Wildlife Habitat Suitability Analysis, Species Inventory	4		

By the end of the course, students will be able to

- 1. understand how remote sensing data and GIS techniques are efficient to find and analyze real world problem in the different fields and it will help for decision making to minimize problem and for their management.
- 2. understand Satellite imaging helps detect environmental and structural changes in various sites.

- 1. Deekshatulu, B. L. (1990): Description and useofLand use/Landcover, NRSA, Hyedrabad
- Harris, J. E. (1990): Earthwatch The Climate from space, Ellishorwood Ltd., Midsower Norton
- 3. Lal, D. S. (1998): Climatology, Chaitanya Publishing House, Allahabad
- 4. SPRS Technical Commission VII (2002): Symposium on Resource Environmental Monitoring, ISRS Annual Convention, IIRS, Dehradun
- 5. Roy, P.S., Dwivedi, R. S. (2010): Remote Sensing Application www.nrsc.gov.in/Learning-Center, E Book. html

Code: GIS 221

On Job Training

No. of Credits: 04

On Job Training (OJT) in the RS and GIS field aims to provide necessary knowledge and practical skills to excel in their RS and GIS roles. The objectives of OJT in RS and GIS are as follows.

- 1. To understand spatial data management and perform spatial analysis.
- 2. To interpret remote sensing imagery.
- 3. To apply RS and GIS in real world problems.
- 4. To enhance problem solving skills.
- 5. To foster collaboration and communication.
- 6. To emphasize data ethics and privacy.
- 7. To embrace emerging technology.

By considering on these objectives, OJT in the RS and GIS field equips employees with the necessary skills and knowledge to contribute effectively to geospatial projects, making them valuable assets in the organization's geospatial endeavors.

Guidelines

- 1. For On Job Training, the students will be attached with various institutions and employing establishments, which have laboratory/workshop, other related facilities and where adequate supervision by qualified personnel will be available.
- 2. A student is expected to spend not less than 60 working hours on On Job Training and related activities.
- 3. On Job Training will be carried out in summer vacation after the students complete their second semester examinations.
- 4. Students need to provide the confirmation letter from the organization or the institute where they have joined for On Job Training.
- 5. Continuous evaluation of the students' performance in the On Job Training will be carried out with the assistance of the personnel of training institutions/employing establishments where this training will be imparted.
- 6. The proof of completion of On Job Training (work experience certificate and field report) should be submitted during examination to the parent institution, duly issued and signed by the concerned training authority.

Course Outcomes:

By the end of the course, students will be able to

- 1. apply the principles of RS and GIS in real-world projects.
- 2. solve problems and enhance their critical thinking skills.
- 3. effectively communicate and collaborate with corporate industries.
- 4. adapt to emerging RS and GIS technology.
- 5. embrace different pathways of learning, including experiential learning.
- 6. understand the social, economic and administrative considerations that influence the working environment of different organizations.
- 7. learn new strategies like time management, multi-tasking and new skills.
- 8. get an opportunity to meet new people and learn networking skills.