Savitribai Phule Pune University (Formerly University of Pune)

Department of Technology

STRUCTURE OF ONE YEAR FULL TIME POST GRADUATE DIPLOMA IN Data Science and Artificial Intelligence (PGD-DS&AI)

Teaching Scheme Course Sr. **Course Name** Credits Code No. L Т Р 2 0 2 1 PGDS101 Introduction to Programming 1. 1 1 1 2 2. PGDS102 **Python Programming** 1 1 1 2 3. PGDS103 R Programming for Data Science 2 1 0 2 PGDS104 4. Statistics Essential for Data Science-1 2 0 PGDS105 1 2 5. Introduction to Database Management System 2 0 2 4 6. PGDS106 Programming Lab-1 0 2 1 0 PGDS107 7. Seminar-1 **Total Credits** 16

Semester 1

Semester 2

Sr.	Course	Course Name		Teaching Scheme		
No.	Code	Course runne	L	Т	Р	Cicuits
1.	PGDS201	Statistics Essential for Data Science-2	2	1	0	2
2.	PGDS202	Machine Learning & Artificial Intelligence	2	0	1	2
3.	PGDS203	Data Visualization		1	2	2
4.	PGDS204	Natural Language Processing	1	1	1	2
5.	PGDS205	ntroduction to Deep Learning		1	1	2
6.	PGDS206	Programming Lab-2	0	2	2	4
7.	PGDS207	Seminar-2	0	1	0	2
		Total Credits				16

Semester 3

Sr.	Course	Course Name		Teaching Scheme		
No.	Code			Т	Р	cicuits
1	PGDS301	Data Science Capstone Project	0	3	3	10
2	PGDS302	Massive Open Online Courses (MOOCs)	0	4	0	2
		Total Credits				12
		Course Total Credits				44

Subject Code: PGDS101Subject Name: Introduction to ProgrammingTeaching Scheme:CreditLectures: 3 Hrs / week2

Unit-1: Fundamentals of Programming Language

Importance of Studying Programming Languages, History of Programming Languages, Impact of Programming Paradigms, Role of Programming Languages, Programming Environments. Impact of Machine Architectures: The operation of a computer, Virtual Computers and Binding Times. Programming paradigms- Introduction to programming paradigms, Introduction to four main Programming paradigms- procedural, object oriented, functional, and logic & rule based.

Unit-2: Introduction to C language

Introduction to c, Features of data types placeholders, Compilation Process control statements, Loop control structure, Functions, Pre-processing and header files, Arrays and strings, Structure and unions, File handling

Unit-3: Introduction to OOP

Introduction to procedural, modular, generic, and object-oriented programming techniques, limitations of procedural programming, need of object-oriented programming, OOP Paradigms, Fundamentals of object-oriented programming: Namespaces, objects, classes, data members, methods, messages, data encapsulation, data abstraction and information hiding, inheritance, polymorphism. Benefits of OOP, C++ as object-oriented programming language.

Unit-4: Introduction to Python

Introduction to Python and Computer Programming, Data Types, Variables, Basic Input-Output Operations, Basic Operators, Boolean Values, Conditional Execution, Loops, Lists and List Processing, Logical and Bitwise Operations, Functions, Tuples, Dictionaries, and Data Processing.

Unit-5: Introduction to R

Overview of R, R data types and objects, reading and writing data, Control structures, functions, scoping rules, dates and times, Loop functions, debugging tools, Simulation, code profiling.

Unit-6: Introduction to Natural Language Processing

Introduction, what is NLP, what is Data Pre-processing, what are Stop words, what is Tokenization, Stemming, Lemmatization, Modelling Techniques in NLP.

References:

1. Sebesta R., "Concepts of Programming Languages", 4th Edition, Pearson Education, ISBN 81- 7808-161-X

2. Introduction to Object Oriented Programming (English, Paperback, S. Sureshkumar)

3. A Textbook of Basics of C-Language Programming (English, Paperback, K Bikshalu)

4. Python Programming Fundamentals - A Beginner's Handbook (Nischay Kumar Hegde)

End Semester: 50 Total: 100

Mid Semester: 25

Examination Scheme:

05 Hrs

2 Hrs

3 Hrs

2Hrs

3 Hrs

Subject Code: PGDS102Subject Name: Python ProgrammingTeaching Scheme:CreditLectures: 3 Hrs / week2

Unit-1: Problem Solving, Programming and Python Programming

General Problem-Solving Concepts- Problem solving in everyday life, types of problems, problem solving with computers, difficulties with problem-solving, problem-solving aspects, top-down design. Problem Solving Strategies, Program Design Tools: Algorithms, Flowcharts and Pseudo-codes, implementation of algorithms. Basics of Python Programming: Features of Python, History and Future of Python, Writing and executing Python program, Literal constants, variables and identifiers, Data Types, Input operation, Comments, Reserved words, Indentation, Operators and expressions, Expressions in Python.

Unit-2: Decision Control Statements

Decision Control Statements: Decision control statements, Selection/conditional branching Statements: if, if-else, nested if, if-elif-else statements. Basic loop Structures/Iterative statements: while loop, for loop, selecting appropriate loop. Nested loops, the break, continue, pass, else statement used with loops. Other data types- Tuples, Lists and Dictionary.

Unit-3 Functions and Modules

Need for functions, Function: definition, call, variable scope and lifetime, the return statement. Defining functions, Lambda or anonymous function, documentation string, good programming practices. Introduction to modules, Introduction to packages in Python, Introduction to standard library modules.

Unit-4: Strings

Strings and Operations- concatenation, appending, multiplication and slicing. Strings are immutable, strings formatting operator, built in string methods and functions. Slice operation, ord() and chr() functions, in and not in operators, comparing strings, Iterating strings, the string module.

Unit-5: Object Oriented Programming

Programming Paradigms-monolithic, procedural, structured and object oriented, Features of Object-oriented programming-classes, objects, methods, and message passing, inheritance, polymorphism, containership, reusability, delegation, data abstraction and encapsulation. Classes and Objects: classes and objects, class method and self-object, class variables and object variables, public and private members, class methods.

Unit-6: Working with Data in Python

Introduction• Working with NumPy Arrays, Pandas in Python, Useful Ways to View Data Frame objects in Python.

References:

- 1. Python Data Science Handbook Essential Tools for Working with Data (Jake VanderPlas)
- 2. DATA SCIENCE AND ANALYTICS WITH PYTHON (JESUS ROGEL SALAZAR)
- 3. Mastering Python for Data Science (Madhavan Samir
- R. G. Dromey, "How to Solve it by Computer", Pearson Education India; 1st edition, ISBN10: 8131705625, ISBN-13: 978-8131705629 Maureen Spankle, "Problem Solving and Programming Concepts", Pearson; 9th edition, ISBN-10: 9780132492645, ISBN-13: 978- 0132492645
- 5. Romano Fabrizio, "Learning Python," Packt Publishing Limited, ISBN: 9781783551712, 1783551712
- Paul Barry, "Head First Python- A Brain Friendly Guide", SPD O'Reilly, 2nd Edition, ISBN:978-93-5213-482-3

07 Hrs

08 Hrs

08 Hrs

07 Hrs

08 Hrs tures of

Mid Semester: 25 End Semester: 50 Total: 100

Examination Scheme:

- Martin C. Brown, "Python: The Complete Reference", McGraw Hill Education, ISBN-10: 9789387572942, ISBN-13: 978-9387572942, ASIN: 9387572943
- Jeeva Jose, P. Sojan Lal, "Introduction to Computing & Problem Solving with Python", Khanna Computer Book Store; First edition, ISBN-10: 9789382609810, ISBN-13: 978-9382609810

Text Books:

1. Reema Thareja, "Python Programming Using Problem Solving Approach", Oxford University Press, ISBN 13: 978-0-19-948017-6

2. R. Nageswara Rao, "Core Python Programming", Dreamtech Press; Second edition ISBN10: 938605230X, ISBN-13: 978-9386052308 ASIN: B07BFSR3LL

Subject Code: PGDS103

Subject Name: R Programm	ing for Data Science
Teaching Scheme:	Credit
Lectures: 3 Hrs / week	2

Unit 1: - Basics of R-Programming

Evolution of R, Features of R, Local Environment support, R Command prompt, R Script File, Comment, R Data types, R Variables, R Operators-function.

Unit 2: - R Fundamentals

R-Decision Making: - R-If statement, R-If.... else statement, R- The if.... else if...else statement-Switch Statement, R- Loop: - Repeat loop, While loop, for loop, Loop, Control statement: - Break, Next.

Unit 3: -Data Structures in R

Vectors: -Vector Creation, Accessing Vector Elements, Vector Manipulation, Lists: - Creating Lists, Naming List Elements, Accessing List Elements, Manipulating List Elements, Merging Lists, Covering Lists to Vectors. Matrices: - Accessing Elements of Matrix, Matrix Computation. Arrays: - Naming columns & rows, Accessing Array Elements, Manipulating Array Elements, and Calculations across Array Elements. Factors: - Factors in Data Frames, changing order of levels, Generating factor levels. Data frames: - Extract data from data frame, Expand data frame.

Unit 4: - Working with Data in R

R-Reshaping: - Joining rows and columns, merging data frames, melting and casting. R- CSV Files: - Getting and starting with directory, Input as a CSV file, Reading CSV file, Analyzing CSV file, writing to CSV file. R- EXCEL File: - Install xlsx Packages, Verify & Load "xlsx" packages, Input as a xlsx file, Reading excel file. R- Binary File: - writing binary file, reading binary file. R- XML File: - Input data, Reading XML file, details of the first node, xml to data node.

Unit 5: - Statistics in R

R- Statistics Introduction: Mean, median and mode, Minimum and maximum value, Percentiles, Variance and Standard Deviation, Covariance and Correlation, Probability distributions. R Data Set: - Print Variable Values, Sort Variable Values, Analyzing the Data. R Max and Min, Max and Min, Outliers. R Mean: - Mean, Median, and Mode, R Percentiles.

Unit 6: - Application of R- programming

R- Pie charts: - Pie chart title and colour, 3-D Pie Chart. R- Bar Chart: - Bar Chart Labels, Title and colour, Group Bar chart and stacked bar chart. R- Box Plot: - Creating a box plot, Box plot with notch. R- Histogram: - Range of x and y values.

10 Hrs

Examination Scheme: Mid Semester: 25 End Semester: 50

Total: 100

08 Hrs

08 Hrs

10 Hrs

08 Hrs

Reference Books: -

- 1. Mark Gardener, Beginning R: The Statistical Programming Language, Wiley India, ISBN:9788126541201 16.
- 2. Mark Gardener, The Essential R Reference, Wiley India, ISBN: 9788126546015 17.
- 3. Judith Hurwitz, Alan Nugent, Big Data for Dummies, Wiley India, ISBN: 9788126543281.
- 4. "Practical Data Science with R", Second Edition, Nina Zumel and John Mount Foreword by Jeremy Howard and Rachel Thomas, November 2019, ISBN 9781617295874.
- 5. "Hands-On Programming with R: Write Your Own Functions and Simulations," by Garrett Grolemund.

Subject Code: PGDS104

Subject Name: Statistics Esse	ential for Data Science-1	
Teaching Scheme:	Credit	Examination Scheme:
Lectures: 3 Hrs / week	2	Mid Semester: 25
		End Semester: 50
		Total: 100

Unit-1: Maths and Statistics for Data Science

Introduction: Sample or Population Data, Understanding the Data, various data types, Various variable types, uses of variable types, Population and Sample, Sampling techniques, Data representation, Numerical parameters to represent data, Mean, Mode, Median, Sensitivity, Information Gain, Entropy, Statistical parameters to represent data.

Unit-2: The Fundamentals of Descriptive Statistics

Probability and its uses, Uses of probability, Need of probability, Bayesian Inference, Density Concepts, Normal Distribution Curve, Measures of Central Tendency, Asymmetry, and Variability, Practical Example: Descriptive Statistics.

Unit-3: Data Clustering

Association and Dependence, Causation and Correlation, Covariance, Simpson's Paradox, Clustering Techniques, B testing.

Unit 4: Statistical Inference

Point Estimation, Confidence Margin, Hypothesis Testing, Levels of Hypothesis Testing, Estimators and Estimates, Confidence Intervals: Advanced Topics, Practical Example: Inferential Statistics, Hypothesis Testing: Introduction

Unit-5: Testing the Data

Parametric Test, Parametric Test Types, Non- Parametric Test, Experimental Designing, Hypothesis Testing: Let's Start Testing, Practical Example: Hypothesis Testing, The Fundamentals of Regression Analysis, Subtleties of Regression Analysis, Assumptions for Linear Regression Analysis, Dealing with Categorical Data, Practical Example: Regression Analysis.

Unit-6: Regression Modelling

Logistic and Regression Techniques, Problem of Collinearity, WOE and IV, Residual Analysis, Heteroscedasticity, Homoscedasticity.

Reference Books: -

- 1. Statistics for Data Science (Miller James D.)
- 2. Practical Statistics for Data Scientists (Bruce Peter)
- 3. Statistical Data Book 2nd Edition (R. S. Nagarajan, C. Muralidharan)

5 Hrs

3 Hrs

4 Hrs

3 Hrs

3 Hrs

Subject Code: PGDS105						
Subject Name: Introduction to Database Management System						
Teaching Scheme:	Credit	Examination Scheme:				
Lectures: 3 Hrs / week	2	Mid Semester: 25				
		End Semester: 50				

Unit-1: Data Wrangling with SQL

SQL Basics - Fundamentals of Structured Query Language, SQL Tables, Joins, Variables Advanced SQL – SQL Functions, Subqueries, Rules, Views, Nested Queries, string functions, pattern matching, Mathematical functions, Date-time functions, etc. Deep Dive into User Defined Functions -Types of UDFs, Inline table value, multi-statement table, Stored procedures, rank function, triggers, etc. SQL Optimization and Performance -Record grouping, searching, sorting, etc., Clustered indexes, common table expressions. Record grouping, searching, sorting, etc.

Unit-2: Introduction to Big Data and Spark

Apache spark framework, RDDs, Stopgaps in existing computing methodologies

RDDs - RDD persistence, caching, General operations: Transformation, Actions, and Functions, Concept of Key-Value pair in RDDs, Other pair, two pair RDDs, RDD Lineage, RDD Persistence, Word Count Program Using RDD Concepts, RDD Partitioning & How it Helps Achieve Parallelization.

Unit-3: Advanced Concepts & Spark-Hive

Passing Functions to Spark, Spark SQL Architecture, SQL Context in Spark SQL, User-Defined Functions, Data Frames, Interoperating with RDDs, Loading Data through Different Sources, Performance Tuning, Spark-Hive Integration.

Unit-4: Extract Transform Load

Web Scraping, Interacting with APIs, Data Handling with NumPy - NumPy Arrays, CRUD Operations, etc., Linear Algebra – Matrix multiplication, CRUD operations, Inverse, Transpose, Rank, Determinant of a matrix, Scalars, Vectors, Matrices.

Data Manipulation Using Pandas -Loading the data, data frames, series, CRUD operations, splitting the data, etc. Data Pre-processing -Exploratory Data Analysis, Feature engineering, Feature scaling, Normalization, standardization, etc. Null Value Imputations, Outliers Analysis and Handling, VIF, Bias-variance trade-off, cross validation techniques, train-test split, etc.

04 Hrs

04 Hrs

04 Hrs

Data Visualization-Bar charts, scatter plots, count plots, line plots, pie charts, donut charts, etc, with **Python Matplotlib**, Regression plots, categorical plots, area plots, etc, with **Python seaborn**.

Unit-5: Deploying Machine Learning Models with Cloud

Introduction to MLOps-MLOps lifecycle, MLOps pipeline, MLOps Components, Processes, etc. Deploying Machine Learning Models- Introduction to Azure Machine Learning, Deploying Machine Learning Models using Azure.

References:

- Visual Data Storytelling with Tableau, (4 Colour), 1st Edition by Pearson Lindy Ryan
- 2. Mastering Tableau 2019.1 Meier Marleen
- 3. Tableau Your Data! Fast and Easy Visual Analysis With Tableau Software Murray Dan

Subject Code: PGDS106 Subject Name: Programming Lab-I Teaching Scheme: Practical: 4 Hrs / week

Credit 4

Examination Scheme: End Semester: 100

04 Hrs

Assignments related to Python, R and SQL **Python--**

Program: 1-COMPUTE THE RESULT GRADEWISE-To accept student is five courses' marks and compute his/her result. Student is passing if he/she scores marks equal to and above 40 in each course. If student scores aggregate greater than 75%, then the grade is distinction. If aggregate is 60>= and <75 then the grade if first division. If aggregate is 50>= and <60, then the grade is second division. If aggregate is 40>= and <50, then the grade is third division.

Program: 2-CHECK IF THE NUMBER IS ARMSTRONG NUMBER-To check whether input number is Armstrong number or not. An Armstrong number is an integer with three digits such that the sum of the cubes of its digits is equal to the number itself.

Program: 3-CALCULATOR PROGRAM-To simulate simple calculator that performs basic tasks such as addition, subtraction, multiplication and division with special operations like computing xy and x!

Program: 4 - To accept the number and Compute a) square root of number, b) Square of number, c) Cube of number d) check for prime, d) factorial of number e) prime factors.

Program: 5-REVERSING THE NUMBER -To accept a number from user and print digits of number in a reverse order.

Program: 6-CONVERSION OF BINARY TO DECIMAL- To input binary number from user and convert it into decimal number.

Program: 7-PSEUDO RANDOM NUMBERS- To generate pseudo random numbers.

Program: 8-PARTITION IN EVEN AND ODD- To accept list of N integers and partition list into two sub lists even and odd numbers.

Program: 9-FIBONACCI SERIES- To accept from user the number of Fibonacci numbers to be generated and print the Fibonacci series.

Program: 11 -FILE OPERATIONS -AIM: To copy contents of one file to other. While copying a) all full stops are to be replaced with commas b) lower case are to be replaced with upper case c) upper case are to be replaced with lower case.

Program: 12 -FILE COUNT -To count total characters in file, total words in file, total lines in file and frequency of given word in file.

Program: 13 -EMPLOYEE CLASS - Create class EMPLOYEE for storing details (Name, Designation, gender, Date of Joining and Salary). Define function members to compute a)total number of employees in an organization b) count of male and female employee c) Employee with salary more than 10,000 d) Employee with designation "Asst Manager"

SQL-

1)Bank Database Consider the following database of Bank. A bank maintains the customer details, account details and loan details. It has the Branch information also. Following are the tables:

ACCOUNT(ACC_NO INT, ACC_TYPE CHAR(10), BALANCE FLOAT(8,2))

LOAN(LOAN_NOINT, LOAN_AMT DOUBLE(9,2), NO_OF_YEARS INT) BRANCH(BRANCH NO INT, BRANCH NAME CHAR(20), BRANCH CITY

VARCHAR(20)) CUSTOMER(CUST NO INT, CUST NAME CHAR(20), CUST STREET

CHAR(15), CUST CITY VARCHAR(20))

The relationships are as follows. :-

CUSTOMER-ACCOUNT: 1-M

CUSTOMER- LOAN: 1-M

BRANCH-LOAN: 1-M

BRANCH-ACCOUNT: 1:M

Constraints:

1) use auto_increment data type attribute for cust_no

2) branch_name should be not null.

2) Bus transport System Consider the following database of Bus transport system . Many buses run on one route. Drivers are allotted to the buses shiftwise. Following are the tables: BUS (BUS_NO INT, CAPACITY INT, DEPOT_NAME VARCHAR(20)) ROUTE (ROUTE_NO INT, SOURCE CHAR(20), DESTINATION CHAR(20), NO_OF_STATIONS INT) DRIVER (DRIVER_NO INT, DRIVER_NAME CHAR(20), LICENSE_NO INT, ADDRESS CHAR(20), D_AGE INT, SALARY FLOAT) The relationships are as follows: BUS_ROUTE : M-1 BUS_DRIVER : M-M with descriptive attributes Date of duty allotted and Shift — it can be 1 (Morning) 0r 2 (Evening).

Constraints:

1. License_no is unique.

2. Bus capacity is not nul

3)Client-Policy Database Consider an insurance company which has agents. Clients select a particular policy ang go for the policy through the agents. Company manintains information about

the clients and agents . Whenever client takes a policy , agent validates the information of client such as age of the 11 client should be in the range of the selected policy(i.e. Age should be between minimum_age_limit and maximum_age_limit.) , sum_assured also should be between the min_sum_assured and max_sum_assured. The client gets a unique policy number , decides the premium amount , type_of_premium , nominee name etc. The policy term is calculated as the

maturity age of the selected policy — age of the client.

POLICY(POLICY_NAMEVARCHAR(20), MIN_AGE_LIMIT INTEGER, MAX_AGE_LIMIT INTEGER, MATURITY_AGE INTEGER, MIN_SUM_ASSURED INTEGER, MAX_SUM_ASSURED INTEGER); CLIENT (CLIENT_IDINTEGER, NAME VARCHAR (25), BIRTH_DATE DATE, NOMINEE_NAME VARCHAR (25), RELATION_WITH_CLIENT VARCHAR (20)); AGENT (AGENT_IDINTEGER, NAME VARCHAR (25), LICENSE_NO INTEGER, BRANCH_OFFICE VARCHAR (20)); Relationship between: POLICY, CLIENT and AGENT are ternary with described attributes POLICY_NO, PREMIUM AMOUNT, POLICY_DATE, TYPE_OF_PREMIUM, SUM_ASSURED and POLICY TERM. The relationship table is:

AGENT_CLIENT_POLICY (AGENT_ID INTEGER, CLIENT_ID INTEGER, POLICY_NAME VARCHAR (20), POLICY_NO INTEGER, PREMIUM DECIMAL(7,2), POLICY_DATE DATE, TYPE VARCHAR(20), SUM_ASSURED DECIMAL(7,2), TERM INTEGER). type: is the type of premium which can be 'q' (quarterly),'h' (half yearly),'y' (Yearly). While inserting records in relationship table enter the type value as one of the 'q', 'h','y'. Constraints: 1.use auto_increment data type attribute for client_id. 2. policy_no is unique.

4) Real Estate Database Consider the Real Estate Agency Database where estate agents are sold by many agents. Estates are purchased by Customers from Agents and agent will get a commission.

Following are the tables:

1. AGENT (AID INT, ANAME VARCHAR (20), ADDRESS VARCHAR (20), CONTACTNO VARCHAR (10));

2. ESTATE (ENO INT, TYPE VARCHAR (20), LOCATION VARCHAR (20), PRICE INT); 3.CUSTOMER (CUSTID INT, CNAME VARCHAR (20), CONTACTNO VARCHAR (10), ADDRESS

VARCHAR (30));

Type: Estate type can be 1bhk flat, land, 2bhk flat etc.

The Relationship Between: 12 Agent, Estate and Customer is a ternary relationship. A relationship table Transaction will store the transaction about customer purchased estate from agent. A customer can purchase many estates from one or more agents. A transaction table is:

TRANSACTION (AID, ENO, CUSTID, PURCHASEDATE DATE, COMMISSION DECIMAL

(5,2)) Constraints:

1. Not null on price

2. Unique constraint on Eno on transaction table (one estate sold to only one customer)

5) Mobile Billing Database Consider a database of Gigabyte Mobile Services which provide postpaid services to the customers. Different service plans are available from which a customer can select any one. The monthly customer call information is recorded (in custcallinfo table) and a bill is generated at the end. Following are the tables:

 PLAN (PLANNO INT, PNAME VARCHAR (20), NOOFFREECALLS INT, RATEPERCALLPERMIN DOUBLE, FREECALLTIME INT, FIXEDAMT DOUBLE);
 CUSTOMER (CUSTNO INT, NAME VARCHAR (20), MOBILENO VARCHAR (10));
 CUSTCALLINFO (RECNO INT, CUSTNO INT, NOOFCALLS INT, TOTALTAKLTIME INT, CYCLEPERIOD VARCHAR (20))

6) BILL (RECNO INT, BILLNO INT, FINALBILLAMT DOUBLE, CYCLEDATE DATE, BILLDUEDATE DATE, STATUS VARCHAR (10), BILLPAYDATE DATE)

CYCLEPERIOD: shows the period between two particular months. e.g 'jan-feb', 'oct-nov'. CYCLEDATE: is in between the respective cycle period.

Following are the relationships:

1.PLAN-CUSTOMER: 1-M

2.CUSTOMER-CUSTCALLINFO: 1-M

3.CUSTOMER-BILL :1-1 Constraint: 1. FIXEDAMT in plan is by default 0.

6) . Railway Reservation System Consider a railway reservation system of passengers. Passengers reserve berths of a bogie of trains. The bogie capacity of all the bogies of a train is same.
1. TRAIN (TRAIN_NO INT, TRAIN_NAME VARCHAR (20), DEPART_TIME TIME, ARRIVAL_TIME TIME, SOURCE_STN VARCHAR (20), DEST_STN VARCHAR (20), NO_OF_RES_BOGIES INT, BOGIE_CAPACITYINT) 13
2. PASSENGER (PASSENGER_ID INT, PASSENGER_NAME VARCHAR (20), ADDRESS VARCHAR (30), AGE INT, GENDER CHAR)
Relationship is as follows:
TRAIN_PASSENGER: M-M with descriptive attributes as follows: TICKET (TRAIN_NO INT, PASSENGER_ID INT, TICKET_NO INT COMPOSITE KEY, BOGIE_NO INT, NO_OF_BERTHS INT, DATE DATE, TICKET_AMT DECIMAL (7,2), STATUS CHAR) The status of a particular berth can be 'W' (waiting) or 'C' (confirmed).

Subject Code: PGDS107

Subject Name: Seminar-I Teaching Scheme:

Credit 2

Examination Scheme: Presentation & Report Submission

Examination Scheme:

Total: 100

Mid Semester: 25 End Semester: 50

3 Hrs

Seminar related to any of their current subjects

Subject Code: PGDS201 Subject Name: Statistics Essential for Data Science-2 Teaching Scheme: Credit Lectures: 3 Hrs / week 2

Unit-1: Data Gathering and Data Discovery

Identifying potential data sources, Gathering data, Data discovery- understanding the data, assessing data, data formats, Parsing, Selecting features, Transformation, Scalability and real-time issues

Unit-2: Cleaning and Conditioning Data

Data Preparation Basic Models: Data Integration, Data Cleaning, Data Normalization, Min-Max Normalization, Z-score Normalization, Decimal Scaling Normalization, Consistency checking, Heterogeneous and missing data, Dealing with missing values, Duplicate values, Noise, Inconsistent data, Outliers

Unit-3: ETLT

Transform and enrich data: Data Transformation, Linear Transformations, Quadratic Transformations, Non-polynomial Approximations of Transformations, Polynomial Approximations of Transformations, Rank Transformations, Box-Cox Transformations, Spreading the Histogram, Nominal to Binary Transformation, Transformations via Data Reduction, ETL tools

Unit 4: Exploratory Analysis

Formulating Hypothesis, Data Terminology, Data Exploration, Data Exploration through Summary Statistics, Data Exploration through Plots, Feature Engineering, Feature selection, Feature transformation, Dimensionality reduction

Unit-5: Testing the Data

Parametric Test, Parametric Test Types, Non- Parametric Test, Experimental Designing, Hypothesis Testing: Let's Start Testing, Practical Example: Hypothesis Testing, The Fundamentals of Regression Analysis, Subtleties of Regression Analysis, Assumptions for Linear Regression Analysis, Dealing with Categorical Data, Practical Example: Regression Analysis.

Unit-6: Advanced Tools for Data Preparation

4 Hrs

3 Hrs

5 Hrs

Web scraping, Data from social networks, Open-source tools for data preparation: Open Refine, R/Python libraries for data preparation and visualization

Textbooks:

1. Glenn J. Myatt, "Making Sense of Data I: A Practical Guide to Exploratory Data Analysis and Data Mining" 2. Salvador García, JuliánLuengo, Francisco Herrera, "Data Preprocessing in Data Mining"

Reference Books: -

- 1. Statistics for Data Science (Miller James D.)
- 2. Practical Statistics for Data Scientists (Bruce Peter)
- 3. Statistical Data Book 2nd Edition (R. S. Nagarajan, C. Muralidharan)
- 4. 'Python Crash Course' by Eric Matthews
- 5. Big Data Analytics with Hadoop 3(Alla Sridhar)
- 6. Scikit-Learn: Machine Learning Simplified

7. Mark Gardner, "Beginning R: The Statistical Programming Language", Wrox Publication, ISBN: 978-1-118-16430-3

8. David Dietrich, Barry Hiller, "Data Science and Big Data Analytics", EMC education services, Wiley publications, 2012, ISBN0-07-120413-X

9. Ruben Verborgh; Max De Wilde, "Using OpenRefine : the essential OpenRefine guide that takes you from data analysis and error fixing to linking your dataset to the Web"

Subject Code: PGDS202

Subject Name: Machine Learning & Artificial Intelligence					
Teaching Scheme:	Credit	Examination Scheme:			
Lectures: 3 Hrs / week	2	Mid Semester: 25			
		End Semester: 50			

Unit-1: Decision Trees

Decision trees, a type of data mining algorithm that can select from among a large number of variables those and their interactions that are most important in predicting the target or response variable to be explained. Decision trees create segmentations or subgroups in the data, by applying a series of simple rules or criteria over and over again, which choose variable constellations that best predict the target variable.

Unit-2: Random Forests

Random forests, a type of data mining algorithm that can select from among a large number of variables those that are most important in determining the target or response variable to be explained. Unlike decision trees, the results of random forests generalize well to new data.

04 Hrs

Unit-3: Lasso Regression

Lasso regression analysis is a shrinkage and variable selection method for linear regression models. The goal of lasso regression is to obtain the subset of predictors that minimizes prediction error for a quantitative response variable. The lasso does this by imposing a constraint on the model parameters that causes regression coefficients for some variables to shrink toward zero. Variables with a regression coefficient equal to zero after the shrinkage process are excluded from the model. Variables with non-zero regression coefficients variables are most strongly associated with the response variable. Explanatory variables can be either quantitative, categorical or both. In this session, you will apply and interpret a lasso regression analysis. You will also develop experience using k-fold cross validation to select the best fitting model and obtain a more accurate estimate of your model's test error rate.

Unit-4: K-Means Cluster Analysis

Cluster analysis is an unsupervised machine learning method that partitions the observations in a data set into a smaller set of clusters where each observation belongs to only one cluster. The goal of cluster analysis is to group, or cluster, observations into subsets based on their similarity of responses on multiple variables. Clustering variables should be primarily quantitative variables, but binary variables may also be included. In this session, we will show you how to use k-means cluster analysis to identify clusters of observations in your data set. You will gain experience in interpreting cluster analysis results by using graphing methods to help you determine the number of clusters to interpret, and examining clustering variable means to evaluate the cluster profiles. Finally, you will get the opportunity to validate your cluster solution by examining differences between clusters on a variable not included in your cluster analysis.

Unit-5: GIT

Version Control - What is version control, types, SVN, Git Lifecycle, Common Git commands, working with branches in Git, GitHub collaboration (pull request), GitHub Authentication (SSH and Http), Merging branches, Resolving merge conflicts, Git workflow.

Unit-6: Deep Learning Using Tensor Flow

Artificial Intelligence Basics-Introduction to Keras API and TensorFlow, Neural Networks-Neural networks, Multi-layered Neural Networks, Artificial Neural Networks, Deep Learning-Deep neural networks, Convolutional Neural Networks, Recurrent Neural Networks, GPU in deep learning, Autoencoders, restricted Boltzmann machine.

References:

- Visual Data Storytelling with Tableau, (4 Colour), 1st Edition by Pearson Lindy Ryan
- 2. Mastering Tableau 2019.1 Meier Marleen
- 3. Tableau Your Data! Fast and Easy Visual Analysis With Tableau Software Murray Dan

04 Hrs

04 Hrs

04 Hrs

Subject Name: Data Visualization	Ū	
Teaching Scheme:	Credit	Examination Scheme:
Lectures: 3 Hrs / week	2	Mid Semester: 25
		End Semester: 50

Getting started with Importing	Unit 1	Introduction to Data Visualization, BI Lifecycle, What is Analysis, importance of data visualization to the industry
Data Options		Why Data Visualization become so popular and where we used it. what is Data and what is Visualization Techniques, Data Wrangling Getting Started
		Importing Data : Excel As a source, SQL Server as a Source, Web as a Source
		Live Connection Limitations,
Data	Unit	Data Transformation Stratagies
Transformation	2	The newer query editor, transform basies
Strategies	-	The power query earlor, transform basics
C		Use first row as header, Remove Column, Change type
		Add Column from examples, Advanced Data Transformation options, Conditional Columns, Fill Down unpivot merging queries appending queries
		Leverging R Installation and configuration The R Script transform
		M Formula language #shared
Building the Unit		Building the Data Model
Data Model	3	building relationships Editing relationships
		creating a new relationship $\&$ # $x \Delta 0$
		Working with complex relationship
		many to many relationships, cross filtering directions
		Enabeling filtering from the many side of a relationship
		role playing tables. Importing the date table
		Usability enhancements, Hiding tables and columns, Renaming tables and columns, Default summarization How to display one column but sort by another, Data Categorization,
		Creating hierarchies
		summarv
Leveraging	Unit	Leverging DAX
DAX	4	Building calculated columns
		String functions – Month, Year Format function – Month, Year
		Age Calculation, Switch () – the basics calculated measures – basic aggregation, Total Sales, Total Cost, Profit, Profit Margin, Optional Parameters
		Filter Context, Percentage of total calculation,
		Time Intelligence,
		year to date sales, YTD sales(Fiscal Calender), Prior Year Sales#xA0
		Data Visualization Basics

Visualizing	Unit	Visuals for Filtering, Interactive Filtering, The Slicer Visual
Data	5	Visualizing tabular data : the table visual, the matrix visual
		Visualizing categorical data: Bar and Column charts, Pie and Donut Charts, The Treemap Visual, The scatter Chart
		Visualizing Trend Data: Line and Area Charts, The Waterfall Charts, The Funnel Chart
		Visualizing KPI Data: The Gauge Visual, The KPI Visual,
Digital	Unit	Visualizing Geographical Data: The map visual, The Filled Map Visual, The ArcGIS map visual Configuring drill through filters
Storytelling with Power BI	6	Storytelling with the selection pane and bookmarks Bookmarks pane
		Selection pane
		summary

Text Book: Microsoft Power BI Quick Start Guide, By Devin Knight, Brain Knight, Mitchell Pearson and Manual quintana, Published by Packt Publishing Ltd, ISBN 978-1-78913-822-1

Reference Book: Microsoft Power BI Data Analyst Certification Guide by Orrin Edenfield-Edward

Subject Code: PGDS204		
Subject Name: Natural Lang	uage Processing	
Teaching Scheme:	Credit	Examination Scheme:
Lectures: 3 Hrs / week	2	Mid Semester: 25
		End Semester: 50
		Total: 100
Unit-1: Introduction to NLP		03 Hrs

What is NLP? Why NLP is Difficult? History of NLP, Advantages of NLP, Disadvantages of NLP, Components of NLP, Applications of NLP, How to build an NLP pipeline? Phases of NLP, NLP APIs, NLP Libraries

Unit-2: Text Mining, Cleaning, and Pre-processing 03 Hrs Various Tokenizers, Tokenization, Frequency Distribution, Stemming, Types of Stemming, Stop Words, Normalization, POS Tagging, Lemmatization, Named Entity Recognition (NER), NLP Models-Bigrams, Trigrams & Ngram Model, Binary Weight.

Unit-3: Text classification, NLTK, sentiment analysis, etc. 04 Hrs

Overview of Machine Learning, Bag-of-Words, Term Frequency, Count vectorizer, Inverse Document Frequency, Text conversion, Confusion Matrix, Classification Metrics, Naive Bayes Classifier, Support vector Machine

Unit-4: Sentence Structure, Sequence Tagging, Sequence Tasks, and Language Modelling 04 Hrs Language Modeling, Sequence Tagging, Sequence Tasks, Predicting Sequence of Tags, Syntax Trees, Context-Free Grammars, Chunking, Automatic Paraphrasing of Texts, Chinking.

Unit 5: Machine Translation:

Need of MT, Problems of Machine Translation, MT Approaches, Direct Machine Translations, Rule-Based Machine Translation, Knowledge Based MT System, Statistical Machine Translation (SMT), Parameter learning in SMT (IBM models) using EM), Encoder-decoder architecture, Neural Machine Translation

Unit-6: AI Chabot's and Recommendations Engine

03 Hrs

03 Hrs

Using the NLP concepts, build a recommendation engine and an AI chatbot assistant using AI.

References:

- 1. Natural Language Processing and Information Retrieval First Edition (TIWARY, U.S, SIDDIQUI, TANVEER)
- 2. Speech and Language Processing Written by Daniel Jurafsky and James Martin.
- 3. Natural Language Processing with Python Written by Steven Bird, Ewan Klein and Edward Loper.

Subject Code: PGDS205

Subject Name: Introduction to Deep Learning

Teaching Scheme:	Credit	Examination Scheme:
Practical: 4 Hrs / week	4	End Semester: 100

Unit-1: Fuzzy Systems and Genetic Algorithms

Membership Functions, Fuzzification and Methods, Defuzzification and Methods, Fuzzy Logic, Fuzzy Rules and Fuzzy Reasoning, Fuzzy Inference Systems, Fuzzy Expert Systems, Fuzzy Decision Making. Fuzzy Control Systems, Fuzzy Classification. Genetic Algorithms: Introduction to Genetic Algorithms (GA), Search space, Working Principle, Simple GA, Operators, Fitness function, Multi-level Optimization. Unit-2: Introduction to Neural Networks 03 Hrs

Perceptron's, Perceptron Learning Algorithm, Sigmoid Neuron, Shallow neural networks, Deep neural networks, Feedforward Neural networks, Gradient descent and the backpropagation algorithm

Unit-3: Deep Learning

Learning Parameters of a feedforward neural network, the vanishing gradient problem, and ways to mitigate it, RelU Heuristics for avoiding bad local minima, Heuristics for faster training, Nesterov Accelerated GD, Stochastic GD, AdaGrad, RMSProp, Adam, Momentum. Adagrad, Principal Component Analysis and its interpretations, Singular Value Decomposition.

Unit-4: Neural Networks and its variants

Convolutional Neural Networks, LeNet, AlexNet, ZF-Net, VGGNet, GoogLeNet, ResNet, Visualizing Convolutional Neural Networks, Guided Backpropagation, Deep Dream, Deep Art, Fooling Convolutional Neural Networks

Unit 5: Introduction to Soft Computing and Fuzzy logic

04 Hrs

Introduction to soft computing: , Paradigms soft computing, Features, Components, Techniques, Applications, Neural Networks, Fuzzy logic, Genetic Algorithms, Hybrid systems, Introduction to Fuzzy logic: Classical and Fuzzy sets, operations, properties, Fuzzy Relations.

Unit-6: Sequence Models:

03 Hrs

RNN, LSTM, GRU models, Application to NLP, language models, machine translation, image captioning, video processing, visual question answering, video processing, learning from descriptions, Attention Mechanism, Attention over images

References:

Text Books:

1. S. N. Sivanandam & S.N.Deepa "Principles of Soft computing", John Wiley & Sons,

2. S. Rajasekaran, G. A. Vijayalakshami, Neural Networks, Fuzzy Logic and Genetic Algorithms: Synthesis & Applications, PHI.

- 3. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT Press, 2016.
- 4. David E. Goldberg., Genetic Algorithms: in Search and Optimization, PHI
- 5. Jyh: Shing Roger Jang, Chuen:Tsai Sun, EijiMizutani, Neuro:Fuzzy and Soft Computing,

Prentice:Hall of India, 2003

Reference Books:

- 1. Timothy J. Ross, Fuzzy Logic with Engineering Applications (Wiley)
- 2. George J. Klir and Bo Yuan, Fuzzy Sets and Fuzzy Logic: Theory and Applications, Prentice Hall,
- 3. An Introduction to Genetic Algorithm Melanic Mitchell (MIT Press)

4. Evolutionary Algorithm for Solving Multi-objective, Optimization Problems (2nd Edition), Collelo, Lament, Veldhnizer (Springer)

5. Neural Networks and Learning Machines Simon Haykin (PHI).

6. Neural Networks, Fuzzy logic, and Genetic Algorithms, S. Rajasekaran& G. A. V. Pai, PHI.

Subject Code: PGDS206		
Subject Name: Programming Lab-II		
Teaching Scheme:	Credit	Examination Scheme:
Practical: 4 Hrs / week	4	End Semester: 100

Assignments related to Machine Learning, Deep Learning and Visualization

Machine Learning---

- 1. Basics of Machine Learning with Python
- 2. Basic Package introduction: Numpy, Pandas, Seaborn, Matplotlib
- 4. Machine Learning using Simple Linear regression
- 4. Classification problem solving using Logistic Regression
- 5. Classification analysis using Decision tree Algorithm
- 6. Classification and regression analysis using Random forest algorithm
- 7. Classification and regression problem solving using Support Vector Machine algorithm 3
- 8. Classification problem solving using K-Nearest Neighbor algorithm
- 9. Unsupervised Learning using K-means Clustering
- 10. End to End Machine Learning Classification Project 1
- 11. End to End Machine Learning Regression Project 2

Natural Language Processing (Lab)

Objective: The main objective of this laboratory is to write programs that manipulate and analyze language data using Python.

Python Packages Students are expected to know/ learn the following Python NLP packages

- NLTK (www.nltk.org/(<u>http://www.nltk.org/</u>))
- Spacy (https://spacy.io/)

- TextBlob (<u>http://textblob.readthedocs.io/en/dev/</u>
- Gensim(https://pypi.python.org/pypi/gensim)
- Pattern (https://pypi.python.org/pypi/Pattern)

Datasets: 1. NLTK includes a small selection of texts from the Project Gutenberg electronic text archive, which contains some 25,000 free electronic books, hosted at http://www.gutenberg.org/.

2. The Brown Corpus contains text from 500 sources, and the sources have been categorized by genre, such as news, editorial, and so on (<u>http://icame.uib.no/brown/bcmlos.html</u>).

3. Wikipedia Articles Or any other dataset of your choice Reference: Jacob Perkins. Python 3 Text Processing with NLTK 3 Cookbook. Packt Publishing. 2014 Exercises:

1. Text segmentation: Segment a text into linguistically meaningful units, such as paragraphs, sentences, or words. Write programs to segment text (in different formats) into tokens (words and word-like units) using regular expressions. Compare an automatic tokenization with a gold standard

2. Part-of-speech tagging: Label words (tokens) with parts of speech such as noun, adjective, and verb using a variety of tagging methods, e.g., default tagger, regular expression tagger, unigram tagger, and n-gram taggers.

3. Text classification: Categorize text documents into predefined classes using Naïve Bayes Classifier and the Perceptron model

4. Chunk extraction, or partial parsing: Extract short phrases from a part-of-speech tagged sentence. This is different from full parsing in that we're interested in standalone chunks, or phrases, instead of full parse trees

5. Parsing: parsing specific kinds of data, focusing primarily on dates, times, and HTML. Make use of the following preprocessing libraries:
☐ dateutil which provides datetime parsing and timezone conversion
☐ lxml and BeautifulSoup which can parse, clean, and convert HTML
☐ charade and UnicodeDammit which can detect and convert text character encoding 6. Sentiment Analysis: Using Libraries TextBlob and nltk, give the sentiment of a document

Domain : Social Media

"Daily" Twitter Data Analysis for a Product

As more and more people are expressing their views and opinions on various microblogging websites about various products and services. There has been a surge of data generated by the users, these websites have people sharing their thoughts daily.

Sentiment Analysis with the help of Natural Launguage Processing technique for identifying the sentiments of a product or service

Domain : E commerce

Natural Language Processing

Customers are looking for more information before buying a product on E-commerce websites. Amazon introduced a new feature 'question and answer' search field for products.

The project is to build information retrievel system from Amazon products data based on NLP techniques. Top 5 relevant answers to be retrived based on input question

Domain : Banking

Predicting Loan defaulters

Reducing the risk of fraudulent loans by carefully evaluating the risk & at the same time increasing profits by rejecting only those loans, which have the potential of defaulting

Domain : FMCG

Warranty Cost prediction

The objective of the analysis to predict an item when sold, what is the probability that customer would file for warranty and to understand important factors associated with them

Domain : Aviation

Predict flight delays

Predict which flights would be delayed and by how long?

Flight delays costs the industry an estimated \$25 billion every year More than 60 percent of frequent flyers cite delays among the things about air travel that they find most dismaying. And the costs are spread around — an extra \$25 in parking here, a missed business meeting there. Carriers, meanwhile, pay an estimated \$62 per minute in crew, fuel, maintenance and other costs. It adds up.

Lab: Data Analytics and Visualization

Lab 01: Overview Exercise 1: Getting Started Task 1: Record Your Account Details Task 2: Sign in to the Power Bi Service Task 3: Create Work space Task 4: Open Power BI Desktop Task 5: Update the lab database

Lab02: Preparing data in Power BI Desktop

Exercise1: Prepare Data Task 1: Save the Power BI Desktop file from a source Task 2: Sey Power BI Desktop options from a source Task 3: Get the Data from SQL Server from a source Task 4: Preview SQL Server queries from a source Task 5: Get data from CSV file from a source Task 6: Get data from Web as a source

LAB 03: Loading Data in Power BI desktop

Overview Exercise 03: Load Data Task 1: Configure the Salesperson Query Task 2: Configure SalespersonRegion query Task 3: Configure the Product query Task 4: Configure the Reseller query Task 5: Configure the Region query Task 6: Congigure the Sales query Task 7: Configure the Target query Finish Up.

Lab04: Data Modeling in Power BI Desktop

Overview

Exercise: Create Model Relationships, Configure Tables, Review Model Interface, Create Quick Measures

Task 1: Create Model Relationships

Task 2: Configure Tables

2.1 Configure the Product Table

- 2.2 Configure the Region Table
- 2.3 Configure the Reseller Table
- 2.4 Configure the Sales table

2.5 Bulk update properties Task 3: Review the Model interface Task 4: Create Quick Measures Finish up

Lab05: Advanced Data Modelling in Power BI Desktop

Overview Exercise: Create a Many to Many Relationship Task 1: Create Many to Many Relationship Task 2: Relate the Targets table Task 3: Enforce Row Level Security Finish up.

Lab06: Using DAX in Power BI Desktop Overview Exercise 06:Create Calculated Tables Task 1: Create the Salesperson table Task 2: Create the Date Table Task 3: Create calculated Columns Task 4: Complete the Date table Task 5: Mark the Date table Lab 07: Measures Exercise 06.2: Create Measures Task1: Create Simple Measures Task2: Create Additional Measures Finish up.

Lab 08: Publish the Power BI Desktop Overview Exercise 1: Publish the File. Finish up.

Lab 09 : Designing a Report in Power BI Desktop

Overview Exercise 7.1: Create Report Task 1: Create a new File Task 2: Create a live Connection Task 3: Design page 1 Task 4: Design page 2 Task 5: Design page 3 Task 6: Publish the report. Finish up.

Lab10: Creating a Power BI Dashboard with R Scripting Overview Exercise: Create a Dashboard, Refresh Data Set, Review the Dashboard. Task 1: Create a Dashboard Task 2: Edit tile details Task 3: Configure an alert Task 4: Update lab database, Refresh Power BI Desktop file.

Case Studies:

- 1. Image classifier for identifying cat vs dogs using CNN
- 2. Image classifier for identifying cat vs dogs using CNN

Subject Code: PGDS207

Subject Name: Seminar-II		
Teaching Scheme:	Credit	Examination Scheme:
	2	Presentation & Report Submission
Seminar related to any of their cur	rent subjects	
Subject Code: PCDS301		

Subject Name: Capstone Project		
Teaching Scheme:	Credit	Examination Scheme:
-	10	Viva & Report Submission

The Data Science capstone project focuses on establishing a strong hold of analyzing a problem and coming up with solutions based on insights from the data analysis perspective. The capstone project will help you master the following verticals:

Project Steps:

- Data Processing In this step, you will apply various data processing techniques to make raw data meaningful.
- Model Building You will leverage techniques such as regression and decision trees to build Machine Learning models that enable accurate and intelligent predictions. You may explore Python, R, or SAS to develop your model. You will follow the complete model-building exercise from data split to test and validate data using the k-fold cross-validation process.
- Model Fine-tuning You will apply various techniques to improve the accuracy of your model and select the champion model that provides the best accuracy.
- Dash boarding and Representing Results As the final step, you will be required to export your results into a dashboard with meaningful insights using Tableau.
- Assessment and monitoring of the model created using the machine learning models.

Subject Code: PGDS302

Subject Name: Massive Open	n Online Courses (MOOCs)	
Teaching Scheme:	Credit	Examination Scheme:
	4	Certificate Submission

1. Introduction to Machine Learning: https://nptel.ac.in/courses/106/106/106106139/

2. Machine Learning: https://nptel.ac.in/courses/106/106/106106202/

3. Machine Learning for Science and Engineering applications:

https://nptel.ac.in/courses/106/106/106106198/

4. Introduction to Machine Learning: https://nptel.ac.in/courses/106/105/106105152/

5. Deep Learning (Part-I): https://nptel.ac.in/courses/106/106/106106184/

6. Deep Learning: https://onlinecourses.nptel.ac.in/noc19_cs54/preview

7. Naive Bayes from Scratch: https://courses.analyticsvidhya.com/courses/naive-bayes

8. Getting Started with Neural Networks: https://courses.analyticsvidhya.com/courses/getting-started- with-neural-networks

9. Machine Learning – Offered by Stanford Online - https://www.coursera.org/learn/machine-learning

10. Microsoft Exam DA-100: Analyzing Data with Microsoft Power BI

11. Microsoft Exam PL-300: Microsoft Power BI Data Analyst.