B.Sc. (Blended) PHYSICS MAJOR Program

Savitribai Phule Pune University

Revision and Amendment

B. Sc. (Blended) PHYSICS MAJOR

Four Year undergraduate program

Syllabus for SEM I – IV (88 Credits)

In accordance with guidelines of NEP 2020

(To Be Implemented from Academic Year 2023 – 2024)

Semester 1			
	Course Name	Title allocation as per NEP	
PHY 101 MJ (T)	Introductory Classical Physics +Python for physics	DSC(Discipline Specific Course)- Major Core	4
PHY 101 MJ (P)	Physics Practical	DSC(Discipline Specific Course)- Major Core	2
CC 101 CHE (T)	Introductory and Organic Chemistry	Curricular course	2
SEC 101 CHE (p)	Chemistry Practical	Skill Enhancement Course (SEC)	2
GE 101 MTS (T)	Calculus	GE (General Elective)/OE(Open Elective)	4
VEC 101 BIO (T)	The Diversity of Life	VEC(Value Education Course)	2
VSC 121 BIO (p)	Biology Practical	VSC(Vocational Skill course)	2
AEC 101 ENG	English,/Critical Thinking / Communication skill	AEC(Ability Enhancement Course)	2
PHY 101 IKS	Indian Knowledge System	IKS (Indian Knowledge System)	2
			22

PHY 101 MJ (T)	4 Credits
Classical Mechanics	No. of
	lectures
Straight line motion	10
Vectors	
Two-and three-dimensional motion	
Force and Motion: Newton's Laws	
Force and Motion: Drag and Friction	
Kinetic energy, work, power	
Potential energy, conservation of energy	
Collisions and momentum	
Rotational motion	
Angular momentum-I	
Angular momentum-II	
Gravitation	No. of
	lectures
Newton's law of gravity, superposition	5
Gravity at the earth's surface, far above the earth and within the	
earth	
Work and gravitational potential energy	
Kepler's laws: the planets and satellites	
Orbital motion and energy	
Thermal physics	No. of
	lectures
Zeroth Law of Thermodynamics	10
Thermal expansion and absorption of heat	
First Law of Thermodynamics; adiabatic processes, constant volume	
processes, enthalpy, cyclical processes, free expansions	
Heat transfer, conduction, emission, absorption. Second Law of	
Thermodynamics, Irreversible processes, entropy, free energy	
Elasticity, fluids and gases	No. of
	lectures
Equilibrium and elasticity	5
Density and Pressure, Pascal's and Archimedes' Principles	

Continuity and Bernoulli's Equation	
Ideal gases (Kinetic theory of gases)	
Mean free path, molecular speed distribution	
Specific heat, adiabatic expansion	
Real world examples - eg wind power, hydro, blood circulation, water	
in plants, materials, osmosis, wind and atmosphere	
ODEs	No. of
	lectures
Applications of 2nd order ODEs: Springs	6
Applications of 2nd order ODEs: LRC series electrical circuits	
Real world contextual examples in physics and application of ODEs	
PYTHON I	No. of
	lectures
Introduction to python programming, basic arithmetic and Hello	12
world programs • Variables, Operators and Datatypes; Operations on	
datatypes; Input and Output • Functions: Modules, Built-in	
functions, User defined functions, keyword arguments • Conditional	
statements (if, elif, else) and Loops.	

PHY 101 MJ (P) 2	Credits
	No. of
	lectures
1.Simple Pendulum: To plot a L-T2 graph using a simple pendulum and find the effective	
length of the simple pendulum for a given time period using the graph. To calculate the	3
acceleration due to gravity at a place.	
2.Torsional Pendulum: To find the moment of inertia of the disc and the rigidity modulus	3
of the material of the suspension wire subjected to torsional oscillations.	3
3. Young's Modulus: To determine the Young's modulus of elasticity of the material of a	3
given wire using Searle's apparatus.	3
4. Measurement of coefficient of Viscosity.	3
5. Measurements using various instruments and error analysis.	3

CC 101 CHE (T) 2	2 Credits	
General Chemistry	No. of	
	lectures	

The Periodic Table	
Molecular Structure and Bonding	
Acids and Bases	4
Stoichiometry	
Organic Chemistry	No. of
	lectures
Carbon – the basis of life	
Structure and Bonding Alkanes (sp ³ Hybridisation)	
Structure and Bonding Alkenes (sp ² Hybridisation)	
Benzene and its derivatives	
Structure and Bonding of Alkynes (sphybridisation)	
Functional Groups	
Electrophiles and Nucleophiles	10
Nucleophilic substitution reactions	-
Elimination reactions	-
Addition reactions	-
Electrophilic aromatic substitution reactions	-
Nucleophilic addition reactions	-
Organic redox reactions	-
ODEs	No. of
	lectures
Applications of 1st order ODES: ecology models	
Applications of 1st order ODES: chemical reaction rates, Newton's law	1
of cooling	4
Second-order ODEs: definitions of homogeneous/inhomogeneous,	,
linear/non-linear; solution of homogeneous constant-coefficient linear	
ODEs	
Physical Chemistry	No. of
	lectures
First Law of Thermodynamics; adiabatic processes, constant volume	
processes, enthalpy, cyclical processes, free expansions	
Second Law of Thermodynamics, Irreversible processes, entropy, free	6
energy	
Real world examples - eg solar energy, geothermal, wind power	

SEC 101 CHE (P)	2 Credits
Physical chemistry experiments (Any 3)	
	lectures
To determine the rate constant of the hydrolysis of Ethyl acetate using	2
an acid catalyst.	
Molar mass determination of some base metals, gases.	2
Determination of dissociation constant of a weak acid.	2
Determination of heat capacity of a calorimeter for different volumes	2
using change of enthalpy data of a known substance.	
Calculation of the enthalpy of ionization of ethanoic acid.	2
To determine the rate constant of the hydrolysis of Ethyl acetate using	2
an acid catalyst.	
Inorganic chemistry experiments Any three	No. of
	lectures
Basic Analytical Terms: Volumetric and Gravimetric analysis,	2
Titration, Types of titration viz. acid base, redox, iodometric,	
iodometric and complexometric titrations, Types of indicators,	
Selection of indicator, Aquametry (Karl-Fisher titration)	
Oxalate Complexes of Aluminum and Chromium.	2
Estimation of Fe (II) with K2Cr2O7 using internal external	2
(diphenylamine, anthranilic acid) and external indicator.	
Estimation of sodium carbonate and sodium hydrogen carbonate	2
present in a mixture.	
Estimation of Fe (II) and oxalic acid using standardized KMnO4 solution.	2
Organic chemistry experiments	No. of
	lectures
1. Techniques:	2
Crystallization, Sublimation, Distillation, Steam Distillation,	
Vacuum Distillation, Column Chromatography, Thin Layer	
Chromatography. Record melting point & Boiling Point.	
2. Functional group tests following functional groups	2
Alcohols, Alkenes, Aldehydes and Ketones, Acids, Phenols, Amines, Amides, Esters, Aromatic compounds.	
3. <u>Preparations:</u> (Any 3)	2

- a. Preparation of 4, 4'-Dimethoxy-dibenzylideneacetone
- b. Preparation of 4-tert-Butylphenol
- c. Reduction of p-nitro benzaldehyde by sodium borohydride
- d. Nitration of Salicylic acid by green approach (using ceric ammonium nitrate).
- e. Bromination of cinnamic acid.

GE 101 MTS (T) 4 Cre	edits
Logic and Proof	No. of
	lectures
Basic set theory (review)	
Logical connectives (conjunction, disjunction, negation, conditional, bi-	
conditional) and truth tables	
Propositional logic, logical equivalence, logical laws	
Real numbers and their properties; completeness property	12
Proof methods: direct proof, contrapositive	12
Proof methods: contradiction, proof by cases	
Proof methods: induction	
Natural numbers, integers, rational numbers	
Real numbers	
Complex Numbers	No. of
	lectures
Review of complex numbers including algebra, Argand plane, cartesian	
and polar form	
Complex exponential	6
de Moivre's theorem; roots of complex numbers	
Differential calculus	No. of
	lectures
Review of differential calculus: limits, derivative, differentiation rules	
incl. polynomials, trigonometric, exponential, log functions; product,	6
quotient, chain rules	
Review of inverse trigonometric functions and their derivatives, implicit	6
differentiation	
Integral calculus	No. of
	lectures
Riemann integration	

Fundamental Theorem of Calculus; review of standard anti-derivatives	
Techniques of integration (review): derivative present substitution,	
linear substitution	
Techniques of integration (review): integration of trigonometric	
functions using identities	
Techniques of integration (review): integration of rational functions	
including partial fractions, integration yielding inverse trig functions	
Techniques of integration (review): trigonometric substitutions;	
integration by parts	18
Improper integrals	
Applications of integration: areas between curves	
Applications of integration: volumes of surfaces of revolution	
Ordinary differential equations: definition of ODE, order, general	
solution, initial conditions; separable ODEs	
Solving linear ODE using integrating factor	
Particular solutions of inhomogeneous constant coefficient linear	
ODEs using method of undetermined coefficients; principle of	
superposition	

VEC 101 BIO (T)	2 Credits
Evolution and the Diversity of Life	No. of
	lectures
Theory of evolution: understanding life's diversity	
Evolutionary relationships (phylogenies) are summarized in	
classifications	
Chemical evolution of life – Molecules to cells	
Cell theory and the origin of life	
Prokaryotic Cells: Bacteria and Archaea	
Evolution of the eukaryotic cell	12
Endosymbiosis	
Protists 1 - Red and Green algae	
Protists 2 – Chromists	
Protists 3 - Dinoflagellates and apicomplexans, flagellates, ciliates,	
amoebae	
Evolution of sex, life cycles	

Origins of multi multicellularity	No. of
	lectures
Slime molds and fungi	
Fungi	
Introduction to Land Plants	
Bryophytes	
Evolution of vascular tissue, Lycophytes, fern allies, early fossil land	
plants	
Ferns	
Seed plants, the seed and secondary growth, Cycads and Ginkgo	
Conifer diversity and biology	
Angiosperm structure, biology and diversity, the flower, double	
fertilization.	
Angiosperm phylogeny and evolution	12
Introduction to animals (Metazoa)	12
Simple animals	
Protostomes-Flatworms and annelids	
Molluses	
Arthropods	
Deuterostomes, Echinoderms-Chordates	
Fishes –sharks/rays, teleosts, coelacanth, lungfish	
Amphibians	
Reptiles	
Birds	
Mammals	
The Primate story	

VSC 121 BIO (P)	2 Credits
	No. of
	lectures
1. Observation of zooplankton from pond samples under microscope	2
2. Determination of dissolved oxygen in water sample using Winkler	2
titration	

3. Collection and identification of invertebrate samples from pond by	2
using different types of nets.	
4. Visit to the museum at zoology department at Pune University and	2
observe the collected specimens.	
5. Using a taxonomic browser to identify the taxonomic lineage and	2
explain key characteristics of the species.	
6. Observe the characteristics of prokaryotic and eukaryotic cells.	2

AEC 101 ENG		2 Credits	
Sr.	Theory	Practical	No. of
no			lectures
1	Listening - Overview,	Listening for - Description, Time,	12
	Question Types,	Frequency, Similar meanings,	
	Listening Tips,	Emotions, Explanation, Classification,	
	Completing the blanks,	Comparison and contrasts, Negative	
	Making Assumptions,	meaning, Chronology	
	understanding numbers		
	Understanding the		
	alphabet, Distinguishing		
	similar sounds		
2	Reading- Overview,	Using first paragraph to make	12
	Question Types, Reading	predictions, Using the topic sentence	
	Tips	to make predictions, looking for	
		specific details Analyzing Questions	
		and Answers, Identifying the tasks	

PHY 101 IKS	2 Credits
Indian Rhetoric	No. of
	lectures
Rhetoric as Everyday Experience:	6
Persuasion & Convincing: Advt. & Campaigns Arguments and Debates: Courtrooms	
to Politics Historical context of Classical Rhetoric in Greece Democracy, Public	
Opinion and Rhetoric	
Rhetoric: Elements & Versions	6
Context and Intent Appeals & Arrangement Instruments & Ornamentation Culture,	
History and Versions of Rhetoric	

1Nyay Shastra- Indian Framework of Debate	6
Brief background and premise Basic elements, of Nyay Shastra Logic and	
arrangement Good & Bad forms of Debate	
Natya Shastra	6
Brief background and premise Basic elements of Natya Shastra Sahahridaya &	
Sadharanikarn Rasa & Bhaav	

OR

PHY 101 IKS 2 Cre	edits
Vedic Mathematics	No. of
	lectures
Vedic Mathematics: Brief History	5
Mathematics in Ancient India. Relevance & Utility of Vedic	
Mathematics Contributions by Aryabhata & Brahmagupta	
Contributions by Mahaveer Acharya & Bharti Krishna Tirtha	
Application of Vedic Mathematics Multiplication of two numbers of two	5
digits Multiplication of two numbers of three digits multiplication of	
two numbers of three digits Nikhilam Navtashchramam Dashtaha	
Division and Divisibility Two digits divisor Three digits divisor	5
Divisibility- Two digits divisor	
Power and Root Power: Square (two-digit numbers) Cube (two-digit	5
numbers).	
Square root (four-digit number) Cube root (six-digit numbers)	
LCM and HCF	4

	Semester 2		
Course Code	Course Name	Title allocation as per NEP	After
PHY 151 MJ (T)	Modern Physics	DSC (Discipline Specific Course)- Major Core	4
PHY151 MJ (P)	Physics Practical	DSC (Discipline Specific Course)- Major Core	2
CC 151 CHE (T)	Inorganic and Physical Chemistry	Curricular Course	2
SEC 151 CHE (p)	Chemistry Practical	Skill Enhancement Course (SEC)	2
GE 151 MTS (T)	Algebra	GE (General Elective)/OE (Open Elective)	4
VEC 151 BIO (T)	Biology of Cells	VEC (Value Education Course)	2
VSC 171 BIO (p)	Biology Practical	VSC (Vocational Skill course)	2
AEC 151 ENG	English, /Critical Thinking / Communication skill	AEC (Ability Enhancement Course)	2
PHY 191 MN	interdisciplinary elective	Minor	2
	Total		22

PHY 151 MJ (T)	4 Credits
Electricity and Magnetism	No. of lectures
Electric charge, conductors and insulators	
Coulomb's Law, superposition principle	
Electric field, superposition principle	
Electric flux	
Gauss's law, applications	
Energy and electric field; electric potential	
Calculating potential from the field, electric potential, potential energy	
surfaces.	
Electric dipoles	
Capacitance; parallel plate capacitors	
Energy storage in capacitors, dielectrics, series and parallel circuits	18
Conductors, electric current, electric power, Ohm's law	
Kirchoff's rules, resistors in series and parallel circuits	
Magnetic field, magnetic force, Lorentz force, cyclotrons	
Lorentz force, ion velocity filter, Hall effect, Biot-Savart Law	
Bio-Savart Law, Ampere's Law, solenoids, earth's magnetic field	
Magnetic field due to a current, forces on current-carrying wires,	
Electromagnetic induction, magnetic flux	
Lenz' Law, Faraday's law, Maxwell's equations, applications	
Magnetic materials	
Oscillations and Waves	No. of
	lecture
Simple harmonic motion, pendulum, diatomic molecules, Damped	
harmonic motion, resonance - electronic circuits, evolution of	
populations	
One dimensional waves, Interference and standing waves, Sound	6
waves and the speed of sound, Intensity, sound level and the physics	
of music	
Doppler effect and supersonic motion, shock waves	
Optics	No. of
	lectures

Images and mirrors	
Thin lenses and optical instruments	
Young's experiment, interference	
Thin films and the Michaelson interferometer	6
Diffraction by slits and apertures	0
Diffraction by gratings and X-ray diffraction	
Optical Microscopy	
Spectroscopy	
Modern Physics	No. of
	lectures
Challenges to classical physics; special relativity	
Lorentz transformation, transformation of velocities, Doppler effect	
Relativistic momentum and energy	
Photons and the photoelectric effect	
Quantum physics, blackbody radiator, matter waves	6
Trapped particles and the tunneling particles	
Nuclear physics, nuclear properties, nuclear decay	
Quarks, Leptons, The Big Bang	
PYTHON -II	No. of
	lectures
Lists, Strings, Tuples and Dicts	
Introduction to numpy	12
Introduction to matplotlib for basic plotting	

PHY 151 MJ (P)	2 Credits
	No. of
	lectures
1. Verification of Kirchhoff's Law.	3
2. Study of RC circuit and calculation of time constant.	3
3. To find the Force constant of a helical spring.	3
4. To determine the refractive index and dispersive power of the prism	3
using the spectrometer	3
5. Determine the wavelength of laser using (i) diffraction grating and	3
(ii)single slit	

CC 151 CHE (T)	2 Credits
Chemistry of Life	No. of
	lectures
The chemical basis of life	
Bioenergetics	
Enzymes and catalyzed reactions	
Metabolism: Catabolism and anabolism	6
Concatenation and Biopolymers	
Stereochemistry and Biomolecular chirality	
Biochemistry and Biomolecular structure	
Small inorganic molecules of biological importance	
Inorganic Chemistry	No. of
	lectures
Ionic Compounds and their Solutions	
Structures of Solids	
Main Group Chemistry	
Redox reactions and electrochemistry	10
The transition metals: a survey	
Coordination Chemistry	
Bonding in complex ions	
Transition metals in biological systems	
Simple harmonic motion, pendulum, diatomic molecules	
Quantum Chemistry	No. of
	lectures
Schrödinger's equation and Heisenberg's Uncertainty Principle	
Bohr and Schrodinger models of the hydrogen atom	
Complex atoms; Pauli Exclusion Principle, Periodic Table of Elements,	8
selection rules and spectra	
Nuclear fission and fusion	

SEC 151 CHE (P	2 Credits
Physical chemistry experiments (Any 3)	No. of
	lectures

To determine the rate of chemical reaction by using hydrolysis of <i>tert</i> -	2
Butyl chloride.	
Effects of catalase enzyme obtained from potato in cleaving H ₂ O ₂ into	2
H_2O and O_2 .	
To measure the vapour pressure of n- Pantane by using high vacuum	2
line.	
Heat of solution of KNO ₃ / NH ₄ Cl.	2
Glass electrode- Buffer solutions: To titrate a weak base (Na ₂ CO ₃) with a	2
strong acid: a) an acid-base indicator, (b) a glass electrode	
Inorganic chemistry experiments (Any 3)	No. of
	lectures
Synthesis of hexamminenickel (II) [Ni(NH ₃) ₆]I ₂	2
Cuprous Chloride, Cu ₂ Cl ₂	2
The transition metals: a survey (Transition metals in biological systems	2
and Bonding in complex ions).	
Estimation of Cu(II) and K2Cr2O7 using sodium thiosulphate solution	2
(Iodimetrically).	
Estimation of available chlorine in bleaching powder iodometrically.	2
Organic chemistry experiments	No. of
	lectures
1. Preparation of Derivatives:	
Oxime, 2, 4-DNP, Acetyl, Benzoyl, Semicarbazone, Anilide, Amide,	2
Aryloxyacetic acid.	
2. Organic single stage preparation: (Any 3)	2
 The preparation of paracetamol. The synthesis of meso-1,2-Dihydroxy-1,2-Diphenylethane. 	
 The synthesis of meso-1,2-Dinydroxy-1,2-Diphenylethane. Preparation of α-phenyl Cinnamic acid from Benzaldehyde. 	
4. Preparation of benzyl alcohol from Benzaldehyde	
5. Preparation Glucose pentaacetate from Glucose.	
6. Preparation of 2-iodobenzoic acid from Anthranilic acid.	
o. Treparation of 2 loadsenzoic acia from militarime acia.	
3. Use of Computer (Chemistry Software) –	2
Chem Draw-Sketch, ISI – Draw, Draw the structure of simple aliphatic,	
aromatic, heterocyclic organic compounds with substituents. Get the	

GE 151 MTS (T)	4 Credits
Analysis	No. of lectures
Limits of real-valued functions	
Proving limits using the definition	1
Continuity & differentiability	1
Examples of differentiable and non-differentiable functions; continuity	1
and differentiability of standard functions including polynomials,	10
trigonometric, exponential, log functions and their inverses	12
Techniques for evaluating limits including L'Hopital's rule, sandwich theorem	
Mean Value Theorem and applications	-
Applications of differential calculus eg related rates	-
Sequence and series	No. of
	lectures
Sequences, limits, convergence and divergence	
Proving limits using definition	1
Methods for evaluating limits: standard limits, limit theorems,	
continuity rule, sandwich theorem	
Series, convergence and divergence of series, geometric series,	
harmonic p-series	12
Series convergence tests: divergence test, comparison test	1
Series convergence tests: ratio test, integral test, alternating series test	
Power series, Taylor polynomials	
Taylor series	1
Taylor's theorem, error in Taylor polynomial estimates	1
Vectors	No. of lectures
Vector arithmetic, dot product, vector projections (review)	
Vector cross product; scalar triple product; parametric curves specified	1
by vector equations	6
Lines and planes in R^3	1
Lines and planes in R^3	1

Linear Algebra 1	No. of
	lectures
Solving systems of linear equations with Gaussian elimination	
Solutions of systems of linear equations - consistency, uniqueness	
Geometric interpretation of solutions	
Matrices, matrix addition, multiplication, transpose and properties	
(review)	
Matrix inverse	
Determinant	
R^n as a vector space, linear independence of vectors in R^n	
Span of a set of vectors, subspaces of R^n	
Basis and dimension in R^n	18
Abstract vector space axioms; examples and non-examples of vector	
spaces	
Bases, dimension and co-ordinates in (finite dimensonal) abstract	
vector spaces	
Definition of linear transformation and examples/non-examples	
Linear transformations of the plane	
Matrix representation of a linear transformation	
Image and kernel of a linear transformation	
Rank and nullity	

VEC 151 BIO (T)	2 Credits
The Biology of Cells	No. of
	lectures
Introduction to Cell Biology	2
Theme: The cell contained	No. of
	lectures
The plasma membrane	
Cell walls, extracellular matrix, cellulose synthesis, other cell wall	
components	6
Cytoplasm: content, chemistry and properties	
Cytoskeleton, actin filaments, microtubules	
Theme: Information flow in the cell	No. of
	lectures

Nucleus, chromosomes, DNA	
Genes and the genetic code	4
Control of gene expression	
Theme: Endomembrane system and intracellular trafficking	No. of
	lectures
ER and ribosome, proteins and enzymes	
Golgi apparatus	
Vesicles, transport and secretion, Lysosomes	
Theme: Harvesting energy	6
Mitochondria, ATP, energetic reactions, electron transport pathways,	
cellular respiration	
Chloroplasts, photosynthesis, historical experiments, pigments,	
photosystems	
Theme: Multicellularity and the Dividing Cell	No. of
	lectures
Cell division, cell cycle, mitosis, cytokinesis, division and distribution	
of organelles	
Meiosis, formation of haploid cells	6
Communication and signaling, recognizing and responding	
Cell differentiation and multicellularity	

VSC 171 BIO (P)_	2 Credits
	No. of lectures
1. Microscopy and observation recording of representative organelle readymade specimens	2
2. Staining of cell for observations of- Flagella, cell wall, endospores, etc.a. Plant call, bacterial, fungi samplesb. malachite green, safranin, Leifson flagella stain/RYU flagella stain, nitric acid,crystals of potassium chlorate	2
3. Introduction and visualization DNA-Proteins in silico	2

4. A one day visit to IISER Pune for electron/ fluorescence microscopy	2
observations	
5. Observation of budding in yeast & different kinds of cells	2
6. Observation of live/dead cells using Trypan blue staining	2
7. Isolation of DNA	2
8. Mitosis in onion root tips	2

AEC 151 ENG 2 Cr			2 Credits
Sr.	Theory	Practical	No. of
no			lectures
1	Writing-	Responding to task, Coherence and cohesion,	12
	Overview,	Lexical resource, Generalizing and	
	Question types,	Qualifying, Grammatical range and accuracy	
	Writing tips		
2	Speaking-	Introduction and Overview, Giving	12
	Overview,	Information, Organizing and discussing a	
	Question type,	topic, Sequence, Comparing and contrasting	
	Speaking tips	Respond to follow up questions, ask for	
		clarification, Avoid short answers, Transition	
		and intonation	

PHY191MN	2 Credits
Basic of Astrophysics	No. of
	lectures
Astronomical Scales: Astronomical Distance, Mass and Time, Scales,	12
Brightness, Radiant Flux and Luminosity, Measurement of	
Astronomical Quantities Astronomical Distances, Stellar Radii, Masses	
of Stars, Stellar Temperature. Astronomical techniques: Basic Optical	
Definitions for Astronomy (Magnification Light Gathering Power,	
Resolving Power and Diffraction Limit, Atmospheric Windows), Optical	
Telescopes (Types of Reflecting Telescopes, Telescope Mountings, Space	
Telescopes, Detectors and Their Use with Telescopes (Types of Detectors, detection Limits with Telescopes).	12

The sun (Solar Parameters, Solar Photosphere, Solar Atmosphere, Chromosphere. Corona, Solar Activity, Basics of Solar Magnetohydrodynamics. Helioseismology). The solar family (Solar System: Facts and Figures, Origin of the Solar System: The Nebular Model, Tidal Forces and Planetary Rings, Extra-Solar Planets.

OR

PHY191MN 2	Credits
Renewable Energy and Energy Harvesting	No. of
	lectures
Fossil fuels and Alternate Sources of energy Fossil fuels and nuclear energy, their limitation, need of renewable energy, non- conventional energy sources. An overview of developments in Offshore Wind Energy, Ti Energy, Wave energy systems, Ocean Thermal Energy Conversion, solar energy, biomass biochemical conversion, biogas generation, geothermal energy tidal energy, Hydroelectricity	
Solar energy its importance, storage of solar energy, solar pond, no convective solar pond, applications solar pond and solar energy, solar water heater, flat plate collector, solar distillation, solar cooker, solar green houses, solar cell, absorption	

	Semester		40.
Course Code	Course Name	Title allocation as per NEP	credit
PHY 201 MJ (T)	Quantum Mechanics and Thermodynamics	DSC(Discipline Specific Course)- Major Core	6
PHY 201 MJ (P)	Physics Practical	DSC(Discipline Specific Course)- Major Core	2
CC 201 CHE (T)	Chemistry: Reactions and Synthesis	Curricular Course	2
MN 241 MTS (T)	Vector Calculus and Differential Equations	Minor	4
GE 201 BIO (T)	Functional Biology of Organisms	GE (General Elective)/OE (Open Elective)	2
VSC 221 BIO (p)	Biology Practical	VSC (Vocational Skill course)	2
AEC 201 ENG	English/Critical Thinking / Communication skill	AEC (Ability Enhancement Course)	2
PHY 231 FP	Field Project	FP (Field Project)/OJT (On job training)/CEP	2

PHY 201 MJ (T)	Credit
Quantum Mechanics	No. of Lectures
The Breakdown of Classical Physics	
Matter Waves and Quantum Interpretation	
Quantum Mechanics in One Dimension	
Expectation Values, Observables and Operators	10
Tunneling Phenomena	18
Quantum Mechanics in 3-dimensions	
Hydrogen atom, hydrogenic ions, helium atom	
Hydrogen molecule ion, hydrogen molecule	
Thermodynamics	No. of Lectures
Temperature and the Zeroth Law of Thermodynamics. Thermal	
equilibrium. Ideal gases, the kinetic theory of gases, equipartition	
theory, Boltzmann distribution	
Heat, work, internal energy. First law of thermodynamics. Compression	n
of an ideal gas under various conditions. Transport, conduction,	
conductivity, diffusion in gases.	12
The two-state paramagnet and the Einstein model of a solid; quantum	
deviations from classical equipartition. Partition function. Interacting	
systems, large systems, Stirling's approximation	
Second Law of Thermodynamics. Heat engines, Carnot Cycle, Otto	
Cycle, Stirling Cycle.	
PDEs	No. of
	Lectures
Wave equation	2
Heat and Diffusion equation	
Linear Algebra	No. of
	Lectures
Change of basis and linear transformations	
Definition of eigenvectors and eigenvalues	
Calculating eigenvalues and eigenvectors	4
Diagonalization of matrices; matrix powers	
Orthogonal matrices, real symmetric matrices	

PYTHON III	No. of
	Lectures
Object Oriented Programming: Classes, Inheritance	
Exception handling	
Basic File Handling	12
Introduction to pandas: extraction of data from CSV, XLSX and TXT	14
files.	
Basics of GUI Programming using tkinter	

PHY 201 MJ (P) 2	Credit
	No. of lectures
1. To determine the Wavelength of main spectral line of mercury light using (1) plane transmission grating. (2)using single slit.	3
2. Verification of Stefan's Law by electrical method.	3
3. Determine of the wavelength of sodium light by measuring the diameters of Newton's ring.	3
4.To determine coefficient of Linear Expansion using Pullinger's method	3
5. To determine the coefficient of thermal Conductivity of bad conductor by Lee's Disc.	3

CC 201CHE (T)	2 Credit
Reactions and Synthesis 1	No. of
	Lectures
Organic Synthesis C-C bond Forming Reactions: Grignard Reagents	
and Organolithiums. Formation and reaction with Carbonyl	
compounds.	
Organometallic Reagents in Synthesis: Applications of Organocerium	
and Organocuprate reagents.	
Carbonyl Compounds and Reactions: Carbonyl compounds,	
tautomerism as a general phenomen, keto-enol tautomerism of	
carbonyl compounds, mechanism of keto-enol tautomerism	8

Generating enolate anions, suitable base catalysts for enolising	
aldehydes, ketones ester and β -dicarbonyl compounds, general α -	
substitution reaction	
Reactions of enols and enolates, α-substitution with H/D ⁺	
Stereochemical consequences and deuterium incorporation.	
Halogenation of carbonyl compounds, The haloform reaction	
Halogenation of carbonyls, Hell-Volhard-Zelinsky reaction. Synthetic	
applications of a-halo carbonyl compounds	
Alkylation of enolates, LDA, scope and limitations	
Aldol reaction, mechanism and retrosynthesis, inter-and- intra-	
molecular variants, mixed Aldol reaction	
Claisen reaction, mechanism and retrosynthesis, mixed Claisen and	
Deickman reaction.	
Malonate Diester Chemistry, Acetoacetate chemistry, Synthesis of	-
substituted acetic acid and acetone derivatives. Scope, Mechanism and	
Retrosynthesis.	
Michael addition Chemistry, reaction of enolates with various Michael	-
electrophiles	
Kinetic and Thermodynamic enolates, Enamines and silylenol ethers	
Kinetic and Thermodynamic enolates, Enamines and silylenol ethers Reactions and Synthesis 2	No. of
	No. of Lectures
Reactions and Synthesis 2	
Reactions and Synthesis 2 Redox (and important acid-base) Reactions: Oxidation of elements by	
Reactions and Synthesis 2 Redox (and important acid-base) Reactions: Oxidation of elements by halogens and dioxygen. Metal and main group halides and oxides.	
Reactions and Synthesis 2 Redox (and important acid-base) Reactions: Oxidation of elements by halogens and dioxygen. Metal and main group halides and oxides. Discussion of selected syntheses, chemistry and structures of halides	
Reactions and Synthesis 2 Redox (and important acid-base) Reactions: Oxidation of elements by halogens and dioxygen. Metal and main group halides and oxides. Discussion of selected syntheses, chemistry and structures of halides and oxides including amphoteric behaviour and hydroxide/aqua ion	
Redox (and important acid-base) Reactions: Oxidation of elements by halogens and dioxygen. Metal and main group halides and oxides. Discussion of selected syntheses, chemistry and structures of halides and oxides including amphoteric behaviour and hydroxide/aqua ion formation. Thermodynamic vs kinetic control of reactions.	Lectures
Redox (and important acid-base) Reactions: Oxidation of elements by halogens and dioxygen. Metal and main group halides and oxides. Discussion of selected syntheses, chemistry and structures of halides and oxides including amphoteric behaviour and hydroxide/aqua ion formation. Thermodynamic vs kinetic control of reactions. Thermodynamic aspects of halide and oxide formation. Thermodynamic	
Redox (and important acid-base) Reactions: Oxidation of elements by halogens and dioxygen. Metal and main group halides and oxides. Discussion of selected syntheses, chemistry and structures of halides and oxides including amphoteric behaviour and hydroxide/aqua ion formation. Thermodynamic vs kinetic control of reactions. Thermodynamic aspects of halide and oxide formation. Thermodynamic parameters, their estimation and uses of tabulations. Born-Haber cycle	Lectures
Redox (and important acid-base) Reactions: Oxidation of elements by halogens and dioxygen. Metal and main group halides and oxides. Discussion of selected syntheses, chemistry and structures of halides and oxides including amphoteric behaviour and hydroxide/aqua ion formation. Thermodynamic vs kinetic control of reactions. Thermodynamic aspects of halide and oxide formation. Thermodynamic parameters, their estimation and uses of tabulations. Born-Haber cycle and construction and uses of Ellingham diagrams for these systems.	Lectures
Redox (and important acid-base) Reactions: Oxidation of elements by halogens and dioxygen. Metal and main group halides and oxides. Discussion of selected syntheses, chemistry and structures of halides and oxides including amphoteric behaviour and hydroxide/aqua ion formation. Thermodynamic vs kinetic control of reactions. Thermodynamic aspects of halide and oxide formation. Thermodynamic parameters, their estimation and uses of tabulations. Born-Haber cycle and construction and uses of Ellingham diagrams for these systems. (Electrides and sodides?)	Lectures
Redox (and important acid-base) Reactions: Oxidation of elements by halogens and dioxygen. Metal and main group halides and oxides. Discussion of selected syntheses, chemistry and structures of halides and oxides including amphoteric behaviour and hydroxide/aqua ion formation. Thermodynamic vs kinetic control of reactions. Thermodynamic aspects of halide and oxide formation. Thermodynamic parameters, their estimation and uses of tabulations. Born-Haber cycle and construction and uses of Ellingham diagrams for these systems. (Electrides and sodides?) Oxidation of metals by protons etc. and generation of aqua ions.	Lectures
Redox (and important acid-base) Reactions: Oxidation of elements by halogens and dioxygen. Metal and main group halides and oxides. Discussion of selected syntheses, chemistry and structures of halides and oxides including amphoteric behaviour and hydroxide/aqua ion formation. Thermodynamic vs kinetic control of reactions. Thermodynamic aspects of halide and oxide formation. Thermodynamic parameters, their estimation and uses of tabulations. Born-Haber cycle and construction and uses of Ellingham diagrams for these systems. (Electrides and sodides?) Oxidation of metals by protons etc. and generation of aqua ions. Comparison of TM and main group systems and hydrolysis in TM aqua	Lectures
Redox (and important acid-base) Reactions: Oxidation of elements by halogens and dioxygen. Metal and main group halides and oxides. Discussion of selected syntheses, chemistry and structures of halides and oxides including amphoteric behaviour and hydroxide/aqua ion formation. Thermodynamic vs kinetic control of reactions. Thermodynamic aspects of halide and oxide formation. Thermodynamic parameters, their estimation and uses of tabulations. Born-Haber cycle and construction and uses of Ellingham diagrams for these systems. (Electrides and sodides?) Oxidation of metals by protons etc. and generation of aqua ions. Comparison of TM and main group systems and hydrolysis in TM aqua ions (acid-base chemistry of coordinated water-hydroxide-oxo ligands).	Lectures

Interpretations of Frost diagrams exemplified by the more complex chemistry of main group elements, such as nitrogen. Thermodynamic content of plots (free energy of formation vs oxidation state) and predictive power.

Nernst equation revisited and construction and uses of Poubaix diagrams combining redox and acid base reactions. Comparison of chemistry of representative elements as reflected in Pourbaix diagrams.

Exchange reactions: Solid/gas phase systems exemplified by transport reactions and preparation of solid-state materials, in vulcanology, halogen lamps etc. Solution examples of double decomposition (metathesis). Solubility trends. Common ion effect.

Hard/soft acid/base theory. Thermodynamic basis for HSAB theory. Usefulness in predicting direction of equilibrium and solubility.

Substitution Reactions: Typical reactions and synthetic applications and examples. Inert and labile complexes. Stability (K, b) and factors affecting stability (metals, ligands). Irving-Williams series, Chelate effect. Applications of chelate effect. Siderophores. antioxidants, garden products, chelation therapy in medicine.

Mechanism of substitution reactions. Square planar Pt complexes and applications. Trans effect. Pt chemistry. Applications in synthesis of action of chemotherapeutic agents.

Dissociative, interchange and associative mechanisms in substitution, racemization *etc* in octahedral complexes.

Combination of substitution and redox chemistry in TM systems. Co(III) syntheses, Cr(II) catalysed substitution. Electron transfer, inner- and outer-sphere reactions.

Metal centred reactions: Template reactions and reactions of coordinated ligands. Atom transfer reactions (redox reactions). Metal directed ligand syntheses

Thermodynamics	No. of
	lectures
Heat, work, internal energy. First law of thermodynamics. Heat capacity	
and enthalpy. Compression of an ideal gas under various conditions.	8
Latent heats	

Multiplicity and ideal gases. Entropy, spontaneous change and the Second Law of Thermodynamics

Interacting ideal gases and the entropy of mixing.

Gibbs Free energy and spontaneity, Helmholtz Free energy, standard free energies, free energy as a function of pressure and temperature The Fundamental equation, properties of internal energy and Maxwell's relations

Thermodynamics criteria for chemical and phase equilibria, chemical potential and partial molar quantities, the Gibbs Free Energy minimum and equilibrium, extent of reaction and equilibrium constant, molecular description of equilibrium, response of equilibria to temperature

Thermodynamics of liquids and liquid mixtures, chemical potentials of liquids, ideal liquid mixtures and Raoult's Law, Henry's Law, vapor pressure diagrams, liquid-liquid phase diagrams Free energy and

entropy of mixing, excess functions and real solutions, solute and

solvent activity, activity coefficient, osmotic pressure

MN 241 MTS (T)	4 Credit
Linear Algebra	No. of
	Lectures
Change of basis and linear transformations	
Definition of eigenvectors and eigenvalues	
Calculating eigenvalues and eigenvectors	
Diagonalization of matrices; matrix powers	
Orthogonal matrices, real symmetric matrices	
Characteristic and minimal polynomial, Cayley-Hamilton Theorem	18
Applications of eigenvectors/diagonalization Markov chains	
Inner product axioms; examples/non-examples of inner products	
Length, angle, Cauchy-Schwarz inequality in terms of inner product	
Orthogonality, projections in terms of inner product	
Gram-Schmidt algorithm	
Vector Calculus	No. of
	Lectures

Functions of several variables; level curves and cross sections of surfaces	
Common surfaces including paraboloid, ellipsoid, hyperboloid	-
Domains and ranges of functions of several variables	-
Limits and continuity of functions of several variables; Definition of C^N	
Partial derivatives, tangent plane	1
Differentiability of functions of several variables	
Directional derivative, gradient	
Chain rule and total derivative	
Stationary points of surfaces, classification of stationary points using	
second derivatives	
Optimization applications	1
Constrained extrema using Lagrange multiplier method	
Double integrals, changing order of integration	
Polar co-ordinates, change of variables for double integrals	18
Triple integrals	1
Change of variables for triple integrals; cylindrical co-ordinates	
Spherical co-ordinates	
Vector fields, div and curl operators	
Parameterization of paths	
Line integrals of scalar functions	
Line integrals of vector functions	
Integrals of scalar functions over surfaces, applications of surface	
integrals eg surface area, mass	
Integrals of vector functions over surfaces, flux	
Green's Theorem	
Gauss Divergence Theorem	
Stokes' Theorem	1
Applications of integral theorems eg Maxwell's equations	
PDEs	No. of Lectures
Fourier Series	
Fourier series: Dirichlet, discontinuities and differentiation	12
Fourier series: Weak convergence and series summation	

Linearity and Superposition	
Laplace equation and harmonic functions	
Wave equation	
Heat and Diffusion equation	
Fourier transform	
Fourier transform: properties	

GE 201BIO (T) 2 Cr	edit
Functional Biology of Organisms	No. of Lectures
Introduction to Functional Biology	2
Animal biology (Humans as an example)	
Anatomy and Function 1: Tissues, Organs and Viscera	
Anatomy and Function 2: Skeletal & Muscular system	
Nervous system 1: The central nervous system (CNS) and nervous tissues	
Nervous system 2: Autonomic nervous system and motor responses	
Endocrine system 1: Endocrine and Exocrine glands	
Endocrine system 2: HPA axis introduction	
Respiration and Metabolism 1: Breathing in air and water	
Respiration and Metabolism 2: Regulation of metabolism	
Cardiovascular and circulatory system 1: Regulation of the circulatory system	12
Cardiovascular and circulatory system 2: Peripheral circulation	
Digestive system	
Urinary and Excretion systems 1: Anatomy and function	1
Urinary and Excretion systems 2: Osmoregulation in terrestrial &	
aquatic environments	
Thermal dynamics	
Immunology 1: Innate immune system	
Immunology 2: Adaptive/Humoral immune system	
Reproduction and Development 1: Gonads and the Reproductive tract	

Reproduction and Development 2: Gametes, Fertilization and	
conception	
Plant biology	No. of
	Lectures
Growth and Development	
Photosynthesis	
Water Balance	
Phloem and translocation	
Mineral nutrition and nutrient assimilation	
Respiration and lipid metabolism	12
Reproduction	
Signaling; hormones, light responses, control of flowering	
Abiotic stress	
Secondary metabolism and defense	
Microbial physiology	

VSC 221 BIO (P)	2 Credit
	No. of lectures
1.Bacterial growth: optical density measurement	2
2.Counting of different kind of blood cells using hemocytometer	2
3.Estimation of hemoglobin	2
4.Determination of blood pressure and amount of oxygen in the bloo	d 2
5.Action of salivary amylase in relation to enzyme concentration and temperature	. 2
6.Demonstration of imbibition	2
7.Demonstration of osmosis in plants	2
8.Demonstration of plasmolysis in onion cells	2
9.Separation of plant pigments by chromatography	2
10.Estimation of chlorophyll in the leaf tissue	2

PHY 251 FP (Any 2)	2 Credit
Field Project in Physics	No. of
	Lectures
Experimental Investigation of Projectile Motion: Set up an	12
experiment to study the motion of projectiles. You can vary parameters	
such as launch angle, initial velocity, and mass of the projectile, and	
observe how these factors affect the trajectory and range.	
Study of Optics in Nature: Explore how light behaves in various	12
natural settings. You could investigate phenomena such as rainbows,	
mirages, or the optics of animal vision. This could involve field trips to	
different environments and careful observation and measurement.	
Solar Energy Harvesting: Design and implement a small-scale solar	12
energy harvesting system. Measure factors such as incident sunlight	
intensity, efficiency of the solar cells, and the output power generated.	
This project could involve both theoretical calculations and practical	
measurements in the field.	
Seismic Monitoring: Set up seismometers in different locations to	12
monitor seismic activity. Analyze the data collected to study patterns of	
earthquakes and seismic waves. This project could involve collaboration	
with geologists and seismologists.	

	Semest	er 4	
Course Code	Course Name	Title allocation as per NEP	After
PHY 251 MJ (T)	Electricity, Magnetism, Special Relativity, and Optics	DSC(Discipline Specific Course)- Major Core	6
PHY 251 MJ (P)	Physics Practical	DSC(Discipline Specific Course)- Major Core	2
CC 251 CHE (T)	Chemistry: Structure and Properties	Ability Enhancement Course (AEC)	2
SEC 251 CHE (p)	Chemistry Practical	Skill Enhancement Course (SEC)	2
MN 291 MTS (T)	Probability and Statistics	Minor	4
GE 251 BIO (T)	Genetics, Evolution and Ecology	GE (General Elective)/OE(Open Elective)	2
AEC 251 PS	English, /Critical Thinking / Presentation skill	AEC(Ability Enhancement Course)	2
PHY 281 FP	Field Project	FP(Field Project)/OJT(On job training)/CEP	2
Total			22

PHY 251 MJ (T) 6	Credit
Electricity and Magnetism	No. of
	Lectures
Coulomb's Law	
Gauss's Law	
Electric Field, Potential	
Conductors, Insulators	
Laplace equation	
Curl and Stoke's theorem	
Capacitors, capacitance and energy stored in E field	_
Current and continuity equation	_
Magnetic field and Moving Charges	_
Force on Moving charges	
Magnetic Field and vector potential	
Special relativity and E and B fields	18
Induction	
Inductance and energy stored in B field	
RC circuits	
CL and RLC circuits	
Displacement current	
Complete Maxwell's Equations	
Electromagnetic Waves	
Dielectrics and Electric Dipoles	
Dielectrics	
Magnetic Dipoles	
Magnetism in Matter	
Special relativity	No. of
	Lectures
Space-time and simultaneity. Einstein axioms for special relativity. The	
Lorentz transformation.	
Relativistic kinematics; length contraction, time dilation. Doppler effect.	
Twin paradox.	9
Relativistic dynamics. Mass-energy equivalence. Conservation of four-	
momentum. Centre of momentum frame. De Broglie waves and	
photons.	

Einstein, the equivalence principle, gravity, gravitational lenses,	
gravitational waves (qualitative)	
Nuclear reactions and thermonuclear power.	
Optics- Applications and microscopy	No. of
	Lectures
Classical optics: Fermat's Principle	
Fourier Optics: Huygens-Fresnel Principle	
Fourier Optics: Fresnel diffraction integral	
Fourier Optics: Paraxial approximation	9
Fourier Optics: Fraunhofer diffraction	9
Fourier Optics: Apertures and imaging	
Fourier Optics: phase contrast imaging	
Microscopy applications	
PYTHON IV	No. of
	Lectures
Non-Linear Equations: Bisection, False-Position, Newton Raphson and	
Secant Methods	
• Numerical Integration: Trapezoidal and Simpson's Rules	12
• Linear Regression	
• Euler's Method and Runge-Kutta Methods	

PHY 251 MJ (P)	2 Credit
	No. of
	lectures
1. Study of Charging and discharging of capacitor and calculation of	3
time constant.	3
2. Determination of e/m by Thomson method.	3
3. Determination of the refractive index of a transparent liquid (water)	
using a hollow prism and spectrometer.	3
4. Study of the graph between refractive index and wavelength for	
different colors of light and to verify Cauchy's Formula.	3
5.Study of LCR circuit	3
CC 251 CHE(T)	2 Credit

Structure and Properties	No. of Lectures
Molecular shape and simple electronic structure, Isomerism: Orbitals,	
hybridization and shapes of molecules, sterochemical consequences of	
tetrahedral carbon (isomers, enantiomers, R/S, D/L, optical rotation)	
Stereochemistry – optical activity: Molecules with more than one chiral	
centre (diastereomers, meso compounds, separation of racemic	4
mixtures)	
Symmetry operations and elements	
Group theory: Definition of reducible and irreducible representations,	
use of group theory to determine the irreducible representation	
Assignment of point groups	
Leading to definition of components of character tables (irreducible	
representations, characters – at least the interpretation of the sign of the	
character)	
Simple applications, Label molecular shapes, isomers, Identify chiral	
molecules, Physical properties – $e.g.$ dipole moment, possible optical	
isomers, Orbital symmetry labels (e.g. s, p & d orbitals in T _d , O _h , D _{4h})	
Stereochemistry and Reactions: Prochirality, chirality in Nature,	
Sterochemistry on atoms other than carbon, Retrosynthetic analysis	
Stereochemistry and Mechanism (nucleophilic substitution, elimination	
from non-cyclic compounds)	
Alkene addition reactions – Hydrogenation, halogenation, HX addition.	_
Elimination Reactions epoxide ring forming reactions	6
Zeeman effect: Effect on the energies of a system by application of a	
magnetic field; Magnetochemistry, spin and orbital contribution to the	
magnetic moment	
Magnetic resonance spectroscopies: EPR spectroscopy, hyperfine	
coupling application to organic radicals and to transition metal	
complexes	
Nuclear Magnetic Resonance (NMR), energies of nuclei in magnetic fields	
Chemical shift and the δ scale, resonance of different nuclei, shielding,	
spin-orbit coupling and coupling constants, molecular symmetry	
¹³ C NMR, ¹ H NMR, integration, multiplicity, chemical shift typical ranges	

Introduction to molecular spectroscopy and spectroscopic transitions, absorbance, transmittance, the Beer-Lambert Law, intensities of spectroscopic transitions Quantised vibration and simply harmonic oscillator model, wave functions, Molecular vibrational modes, vibrational spectroscopy infrared and Raman spectroscopy 3N-5, 3N-6 vibrational degrees of freedom Vibrational symmetry and IR/Raman activity: Symmetry properties of the vibrational degrees of freedom and to deduce IR, Raman activity. Use of internal coordinates to get symmetry properties of a subset of bands Vibrational spectroscopy: Local mode approximation. Characteristic infrared absorptions (alkyl CH, alcohol, amine RN H2 and R2NH, carboxylic acid, amide, ester, ketone, aldehyde, nitrile RCN, alkyne, alkene, aromatic), fingerprint regions, interpretation of IR spectra Molecular orbital theory: Electronic spectroscopy requires understanding of electronic structure leading to Molecular orbital theory – HOMO. LUMO Diatomic molecules, LCAO-MO, Symmetry of MO's Photoelectron spectroscopy Generalisation of the application of MO approaches to polyatomic molecules Hückel Theory Aromatic and Heterocyclic Chemistry of compounds with delocalised p orbitals: Benzene and Aromaticity/ Antiaromaticity, Reactions of Aromatic Compounds Electrophilic aromatic substitution on naphthalene. Electrophilic aromatic substitution on heteroaromatics (e.g. pyridine and pytrol). Non C-based aromatic systems Electronic spectroscopy: Chromophores and excited electronic states, electronic transitions, UV-Vis spectroscopy, Franck-Condon Principle, Franck-Condon factors Fates of electronic excited states – fluorescence and phosphorescence, non-radiative transitions, internal conversion and intersystem crossing, fluorescence spectra Applications – light emitting polymers		
Spectroscopic transitions Quantised vibration and simply harmonic oscillator model, wave functions, Molecular vibrational modes, vibrational spectroscopy infrared and Raman spectroscopy 3N-5, 3N-6 vibrational degrees of freedom Vibrational symmetry and IR/Raman activity: Symmetry properties of the vibrational degrees of freedom and to deduce IR, Raman activity. Use of internal coordinates to get symmetry properties of a subset of bands Vibrational spectroscopy: Local mode approximation. Characteristic infrared absorptions (alkyl CH, alcohol, amine RN H2 and R2NH, carboxylic acid, amide, ester, ketone, aldehyde, nitrile RCN, alkyne, alkene, aromatic), fingerprint regions, interpretation of IR spectra Molecular orbital theory: Electronic spectroscopy requires understanding of electronic structure leading to Molecular orbital theory—HOMO. LUMO Diatomic molecules, LCAO-MO, Symmetry of MO's Photoelectron spectroscopy Generalisation of the application of MO approaches to polyatomic molecules Hückel Theory Aromatic and Heterocyclic Chemistry of compounds with delocalised p orbitals: Benzene and Aromaticity/Antiaromaticity, Reactions of Polycyclic and Heteroaromatic Compounds. Reactions via Aromatic Transition States Electrophilic aromatic substitution on naphthalene. Electrophilic aromatic substitution on heteroaromatics (e.g. pyridine and pyrrol). Non C-based aromatic systems Electronic transitions, UV-Vis spectroscopy, Franck-Condon Principle, Franck-Condon factors Fates of electronic excited states – fluorescence and phosphorescence, non-radiative transitions, internal conversion and intersystem crossing, fluorescence spectra	Introduction to molecular spectroscopy and spectroscopic transitions,	
Quantised vibration and simply harmonic oscillator model, wave functions, Molecular vibrational modes, vibrational spectroscopy infrared and Raman spectroscopy 3N-5, 3N-6 vibrational degrees of freedom Vibrational symmetry and IR/Raman activity: Symmetry properties of the vibrational degrees of freedom and to deduce IR, Raman activity. Use of internal coordinates to get symmetry properties of a subset of bands Vibrational spectroscopy: Local mode approximation. Characteristic infrared absorptions (alkyl CH, alcohol, amine RN H2 and R2NH, carboxylic acid, amide, ester, ketone, aldehyde, nitrile RCN, alkyne, alkene, aromatic), fingerprint regions, interpretation of IR spectra Molecular orbital theory: Electronic spectroscopy requires understanding of electronic structure leading to Molecular orbital theory – HOMO. LUMO Diatomic molecules, LCAO-MO, Symmetry of MO's Photoelectron spectroscopy Generalisation of the application of MO approaches to polyatomic molecules Hückel Theory Aromatic and Heterocyclic Chemistry of compounds with delocalised p orbitals: Benzene and Aromaticity/Antiaromaticity, Reactions of Aromatic Compounds Electrophilic aromatic substitution. Reactions of Polycyclic and Heteroaromatic Compounds. Reactions via Aromatic Transition States Electrophilic aromatic substitution on naphthalene. Electrophilic aromatic substitution on heteroaromatics (e.g. pyridine and pyrrol). Non C-based aromatic systems Electronic spectroscopy: Chromophores and excited electronic states, electronic transitions, UV-Vis spectroscopy, Franck-Condon Principle, Franck-Condon factors Fates of electronic excited states – fluorescence and phosphorescence, non-radiative transitions, internal conversion and intersystem crossing, fluorescence spectra	absorbance, transmittance, the Beer-Lambert Law, intensities of	
functions, Molecular vibrational modes, vibrational spectroscopy infrared and Raman spectroscopy 3N-5, 3N-6 vibrational degrees of freedom Vibrational symmetry and IR/Raman activity: Symmetry properties of the vibrational degrees of freedom and to deduce IR, Raman activity. Use of internal coordinates to get symmetry properties of a subset of bands Vibrational spectroscopy: Local mode approximation. Characteristic infrared absorptions (alkyl CH, alcohol, amine RN H2 and R2NH, carboxylic acid, amide, ester, ketone, aldehyde, nitrile RCN, alkyne, alkene, aromatic), fingerprint regions, interpretation of IR spectra Molecular orbital theory: Electronic spectroscopy requires understanding of electronic structure leading to Molecular orbital theory – HOMO. LUMO Diatomic molecules, LCAO-MO, Symmetry of MO's Photoelectron spectroscopy Generalisation of the application of MO approaches to polyatomic molecules Häckel Theory Aromatic and Heterocyclic Chemistry of compounds with delocalised p orbitals: Benzene and Aromaticity/Antiaromaticity, Reactions of Aromatic Compounds Electrophilic aromatic substitution. Reactions of Polycyclic and Heteroaromatic Compounds. Reactions via Aromatic Transition States Electrophilic aromatic substitution on naphthalene. Electrophilic aromatic substitution on heteroaromatics (e.g. pyridine and pyrrol). Non C-based aromatic systems Electronic spectroscopy: Chromophores and excited electronic states, electronic transitions, UV-Vis spectroscopy, Franck-Condon Principle, Franck-Condon factors Fates of electronic excited states – fluorescence and phosphorescence, non-radiative transitions, internal conversion and intersystem crossing, fluorescence spectra	spectroscopic transitions	
Molecular vibrational modes, vibrational spectroscopy infrared and Raman spectroscopy 3N-5, 3N-6 vibrational degrees of freedom Vibrational symmetry and IR/Raman activity: Symmetry properties of the vibrational degrees of freedom and to deduce IR, Raman activity. Use of internal coordinates to get symmetry properties of a subset of bands Vibrational spectroscopy: Local mode approximation. Characteristic infrared absorptions (alkyl CH, alcohol, amine RN H2 and R2NH, carboxylic acid, amide, ester, ketone, aldehyde, nitrile RCN, alkyne, alkene, aromatic), fingerprint regions, interpretation of IR spectra Molecular orbital theory: Electronic spectroscopy requires understanding of electronic structure leading to Molecular orbital theory - HOMO. LUMO Diatomic molecules, LCAO-MO, Symmetry of MO's Photoelectron spectroscopy Generalisation of the application of MO approaches to polyatomic molecules Hückel Theory Aromatic and Heterocyclic Chemistry of compounds with delocalised p orbitals: Benzene and Aromaticity/Antiaromaticity, Reactions of Aromatic Compounds Electrophilic aromatic substitution. Reactions of Polycyclic and Heteroaromatic Compounds. Reactions via Aromatic Transition States Electrophilic aromatic substitution on naphthalene. Electrophilic aromatic substitution on heteroaromatics (e.g. pyridine and pyrrol). Non C-based aromatic systems Electronic spectroscopy: Chromophores and excited electronic states, electronic spectroscopy: Chromophores and excited electronic states, electronic transitions, UV-Vis spectroscopy, Franck-Condon Principle, Franck-Condon factors Fates of electronic excited states – fluorescence and phosphorescence, non-radiative transitions, internal conversion and intersystem crossing, fluorescence spectra	Quantised vibration and simply harmonic oscillator model, wave	
Raman spectroscopy 3N-5, 3N-6 vibrational degrees of freedom Vibrational symmetry and IR/Raman activity: Symmetry properties of the vibrational degrees of freedom and to deduce IR, Raman activity. Use of internal coordinates to get symmetry properties of a subset of bands Vibrational spectroscopy: Local mode approximation. Characteristic infrared absorptions (alkyl CH, alcohol, amine RN H2 and R2NH, carboxylic acid, amide, ester, ketone, aldehyde, nitrile RCN, alkyne, alkene, aromatic), fingerprint regions, interpretation of IR spectra Molecular orbital theory: Electronic spectroscopy requires understanding of electronic structure leading to Molecular orbital theory – HOMO. LUMO Diatomic molecules, LCAO-MO, Symmetry of MO's Photoelectron spectroscopy Generalisation of the application of MO approaches to polyatomic molecules Hückel Theory Aromatic and Heterocyclic Chemistry of compounds with delocalised p orbitals: Benzene and Aromaticity/Antiaromaticity, Reactions of Aromatic Compounds Electrophilic aromatic substitution. Reactions of Polycyclic and Heteroaromatic Compounds. Reactions via Aromatic Transition States Electrophilic aromatic substitution on naphthalene. Electrophilic aromatic substitution on heteroaromatics (e.g. pyridine and pyrrol). Non C-based aromatic systems Electronic spectroscopy: Chromophores and excited electronic states, electronic transitions, UV-Vis spectroscopy, Franck-Condon Principle, Franck-Condon factors Fates of electronic excited states – fluorescence and phosphorescence, non-radiative transitions, internal conversion and intersystem crossing, fluorescence spectra	functions,	
Vibrational symmetry and IR/Raman activity: Symmetry properties of the vibrational degrees of freedom and to deduce IR, Raman activity. Use of internal coordinates to get symmetry properties of a subset of bands Vibrational spectroscopy: Local mode approximation. Characteristic infrared absorptions (alkyl CH, alcohol, amine RN H2 and R2NH, carboxylic acid, amide, ester, ketone, aldehyde, nitrile RCN, alkyne, alkene, aromatic), fingerprint regions, interpretation of IR spectra Molecular orbital theory: Electronic spectroscopy requires understanding of electronic structure leading to Molecular orbital theory – HOMO. LUMO Diatomic molecules, LCAO-MO, Symmetry of MO's Photoelectron spectroscopy Generalisation of the application of MO approaches to polyatomic molecules Hückel Theory Aromatic and Heterocyclic Chemistry of compounds with delocalised p orbitals: Benzene and Aromaticity/Antiaromaticity, Reactions of Aromatic Compounds Electrophilic aromatic substitution. Reactions of Polycyclic and Heteroaromatic Compounds. Reactions via Aromatic Transition States Electrophilic aromatic substitution on naphthalene. Electrophilic aromatic substitution on heteroaromatics (e.g. pyridine and pyrrol). Non C-based aromatic systems Electronic spectroscopy: Chromophores and excited electronic states, electronic transitions, UV-Vis spectroscopy, Franck-Condon Principle, Franck-Condon factors Fates of electronic excited states – fluorescence and phosphorescence, non-radiative transitions, internal conversion and intersystem crossing, fluorescence spectra	Molecular vibrational modes, vibrational spectroscopy infrared and	
the vibrational degrees of freedom and to deduce IR, Raman activity. Use of internal coordinates to get symmetry properties of a subset of bands Vibrational spectroscopy: Local mode approximation. Characteristic infrared absorptions (alkyl CH, alcohol, amine RN H2 and R2NH, carboxylic acid, amide, ester, ketone, aldehyde, nitrile RCN, alkyne, alkene, aromatic), fingerprint regions, interpretation of IR spectra Molecular orbital theory: Electronic spectroscopy requires understanding of electronic structure leading to Molecular orbital theory - HOMO. LUMO Diatomic molecules, LCAO-MO, Symmetry of MO's Photoelectron spectroscopy Generalisation of the application of MO approaches to polyatomic molecules Hückel Theory Aromatic and Heterocyclic Chemistry of compounds with delocalised p orbitals: Benzene and Aromaticity/Antiaromaticity, Reactions of Aromatic Compounds Electrophilic aromatic substitution. Reactions of Polycyclic and Heteroaromatic Compounds. Reactions via Aromatic Transition States Electrophilic aromatic substitution on naphthalene. Electrophilic aromatic substitution on heteroaromatics (e.g. pyridine and pyrrol). Non C-based aromatic systems Electronic spectroscopy: Chromophores and excited electronic states, electronic transitions, UV-Vis spectroscopy, Franck-Condon Principle, Franck-Condon factors Fates of electronic excited states – fluorescence and phosphorescence, non-radiative transitions, internal conversion and intersystem crossing, fluorescence spectra	Raman spectroscopy 3N-5, 3N-6 vibrational degrees of freedom	
of internal coordinates to get symmetry properties of a subset of bands Vibrational spectroscopy: Local mode approximation. Characteristic infrared absorptions (alkyl CH, alcohol, amine RN H2 and R2NH, carboxylic acid, amide, ester, ketone, aldehyde, nitrile RCN, alkyne, alkene, aromatic), fingerprint regions, interpretation of IR spectra Molecular orbital theory: Electronic spectroscopy requires understanding of electronic structure leading to Molecular orbital theory – HOMO. LUMO Diatomic molecules, LCAO-MO, Symmetry of MO's Photoelectron spectroscopy Generalisation of the application of MO approaches to polyatomic molecules Hückel Theory Aromatic and Heterocyclic Chemistry of compounds with delocalised p orbitals: Benzene and Aromaticity/Antiaromaticity, Reactions of Aromatic Compounds Electrophilic aromatic substitution. Reactions of Polycyclic and Heteroaromatic Compounds. Reactions via Aromatic Transition States Electrophilic aromatic substitution on naphthalene. Electrophilic aromatic substitution on heteroaromatics (e.g. pyridine and pyrrol). Non C-based aromatic systems Electronic spectroscopy: Chromophores and excited electronic states, electronic transitions, UV-Vis spectroscopy, Franck-Condon Principle, Franck-Condon factors Fates of electronic excited states – fluorescence and phosphorescence, non-radiative transitions, internal conversion and intersystem crossing, fluorescence spectra	Vibrational symmetry and IR/Raman activity: Symmetry properties of	
Vibrational spectroscopy: Local mode approximation. Characteristic infrared absorptions (alkyl CH, alcohol, amine RN H2 and R2NH, carboxylic acid, amide, ester, ketone, aldehyde, nitrile RCN, alkyne, alkene, aromatic), fingerprint regions, interpretation of IR spectra Molecular orbital theory: Electronic spectroscopy requires understanding of electronic structure leading to Molecular orbital theory – HOMO. LUMO Diatomic molecules, LCAO-MO, Symmetry of MO's Photoelectron spectroscopy Generalisation of the application of MO approaches to polyatomic molecules Hückel Theory Aromatic and Heterocyclic Chemistry of compounds with delocalised p orbitals: Benzene and Aromaticity/Antiaromaticity, Reactions of Aromatic Compounds Electrophilic aromatic substitution. Reactions of Polycyclic and Heteroaromatic Compounds. Reactions via Aromatic Transition States Electrophilic aromatic substitution on naphthalene. Electrophilic aromatic substitution on heteroaromatics (e.g. pyridine and pyrrol). Non C-based aromatic systems Electronic spectroscopy: Chromophores and excited electronic states, electronic transitions, UV-Vis spectroscopy, Franck-Condon Principle, Franck-Condon factors Fates of electronic excited states – fluorescence and phosphorescence, non-radiative transitions, internal conversion and intersystem crossing, fluorescence spectra	the vibrational degrees of freedom and to deduce IR, Raman activity. Use	
infrared absorptions (alkyl CH, alcohol, amine RN H2 and R2NH, carboxylic acid, amide, ester, ketone, aldehyde, nitrile RCN, alkyne, alkene, aromatic), fingerprint regions, interpretation of IR spectra Molecular orbital theory: Electronic spectroscopy requires understanding of electronic structure leading to Molecular orbital theory – HOMO. LUMO Diatomic molecules, LCAO-MO, Symmetry of MO's Photoelectron spectroscopy Generalisation of the application of MO approaches to polyatomic molecules Hückel Theory Aromatic and Heterocyclic Chemistry of compounds with delocalised p orbitals: Benzene and Aromaticity/Antiaromaticity, Reactions of Aromatic Compounds Electrophilic aromatic substitution. Reactions of Polycyclic and Heteroaromatic Compounds. Reactions via Aromatic Transition States Electrophilic aromatic substitution on naphthalene. Electrophilic aromatic substitution on heteroaromatics (e.g. pyridine and pyrrol). Non C-based aromatic systems Electronic spectroscopy: Chromophores and excited electronic states, electronic transitions, UV-Vis spectroscopy, Franck-Condon Principle, Franck-Condon factors Fates of electronic excited states – fluorescence and phosphorescence, non-radiative transitions, internal conversion and intersystem crossing, fluorescence spectra	of internal coordinates to get symmetry properties of a subset of bands	
carboxylic acid, amide, ester, ketone, aldehyde, nitrile RCN, alkyne, alkene, aromatic), fingerprint regions, interpretation of IR spectra Molecular orbital theory: Electronic spectroscopy requires understanding of electronic structure leading to Molecular orbital theory – HOMO. LUMO Diatomic molecules, LCAO-MO, Symmetry of MO's Photoelectron spectroscopy Generalisation of the application of MO approaches to polyatomic molecules Hückel Theory Aromatic and Heterocyclic Chemistry of compounds with delocalised p orbitals: Benzene and Aromaticity/Antiaromaticity, Reactions of Aromatic Compounds Electrophilic aromatic substitution. Reactions of Polycyclic and Heteroaromatic Compounds. Reactions via Aromatic Transition States Electrophilic aromatic substitution on naphthalene. Electrophilic aromatic substitution on heteroaromatics (e.g. pyridine and pyrrol). Non C-based aromatic systems Electronic spectroscopy: Chromophores and excited electronic states, electronic transitions, UV-Vis spectroscopy, Franck-Condon Principle, Franck-Condon factors Fates of electronic excited states – fluorescence and phosphorescence, non-radiative transitions, internal conversion and intersystem crossing, fluorescence spectra	Vibrational spectroscopy: Local mode approximation. Characteristic	
alkene, aromatic), fingerprint regions, interpretation of IR spectra Molecular orbital theory: Electronic spectroscopy requires understanding of electronic structure leading to Molecular orbital theory – HOMO. LUMO Diatomic molecules, LCAO-MO, Symmetry of MO's Photoelectron spectroscopy Generalisation of the application of MO approaches to polyatomic molecules Hückel Theory Aromatic and Heterocyclic Chemistry of compounds with delocalised p orbitals: Benzene and Aromaticity/Antiaromaticity, Reactions of Aromatic Compounds Electrophilic aromatic substitution. Reactions of Polycyclic and Heteroaromatic Compounds. Reactions via Aromatic Transition States Electrophilic aromatic substitution on naphthalene. Electrophilic aromatic substitution on heteroaromatics (e.g. pyridine and pyrrol). Non C-based aromatic systems Electronic spectroscopy: Chromophores and excited electronic states, electronic transitions, UV-Vis spectroscopy, Franck-Condon Principle, Franck-Condon factors Fates of electronic excited states – fluorescence and phosphorescence, non-radiative transitions, internal conversion and intersystem crossing, fluorescence spectra	infrared absorptions (alkyl CH, alcohol, amine RN H2 and R2NH,	
Molecular orbital theory: Electronic spectroscopy requires understanding of electronic structure leading to Molecular orbital theory – HOMO. LUMO Diatomic molecules, LCAO-MO, Symmetry of MO's Photoelectron spectroscopy Generalisation of the application of MO approaches to polyatomic molecules Hückel Theory Aromatic and Heterocyclic Chemistry of compounds with delocalised p orbitals: Benzene and Aromaticity/Antiaromaticity, Reactions of Aromatic Compounds Electrophilic aromatic substitution. Reactions of Polycyclic and Heteroaromatic Compounds. Reactions via Aromatic Transition States Electrophilic aromatic substitution on naphthalene. Electrophilic aromatic substitution on heteroaromatics (e.g. pyridine and pyrrol). Non C-based aromatic systems Electronic spectroscopy: Chromophores and excited electronic states, electronic transitions, UV-Vis spectroscopy, Franck-Condon Principle, Franck-Condon factors Fates of electronic excited states – fluorescence and phosphorescence, non-radiative transitions, internal conversion and intersystem crossing, fluorescence spectra	carboxylic acid, amide, ester, ketone, aldehyde, nitrile RCN, alkyne,	6
understanding of electronic structure leading to Molecular orbital theory – HOMO. LUMO Diatomic molecules, LCAO-MO, Symmetry of MO's Photoelectron spectroscopy Generalisation of the application of MO approaches to polyatomic molecules Hückel Theory Aromatic and Heterocyclic Chemistry of compounds with delocalised p orbitals: Benzene and Aromaticity/Antiaromaticity, Reactions of Aromatic Compounds Electrophilic aromatic substitution. Reactions of Polycyclic and Heteroaromatic Compounds. Reactions via Aromatic Transition States Electrophilic aromatic substitution on naphthalene. Electrophilic aromatic substitution on heteroaromatics (e.g. pyridine and pyrrol). Non C-based aromatic systems Electronic spectroscopy: Chromophores and excited electronic states, electronic transitions, UV-Vis spectroscopy, Franck-Condon Principle, Franck-Condon factors Fates of electronic excited states – fluorescence and phosphorescence, non-radiative transitions, internal conversion and intersystem crossing, fluorescence spectra	alkene, aromatic), fingerprint regions, interpretation of IR spectra	
— HOMO. LUMO Diatomic molecules, LCAO-MO, Symmetry of MO's Photoelectron spectroscopy Generalisation of the application of MO approaches to polyatomic molecules Hückel Theory Aromatic and Heterocyclic Chemistry of compounds with delocalised p orbitals: Benzene and Aromaticity/Antiaromaticity, Reactions of Aromatic Compounds Electrophilic aromatic substitution. Reactions of Polycyclic and Heteroaromatic Compounds. Reactions via Aromatic Transition States Electrophilic aromatic substitution on naphthalene. Electrophilic aromatic substitution on heteroaromatics (e.g. pyridine and pyrrol). Non C-based aromatic systems Electronic spectroscopy: Chromophores and excited electronic states, electronic transitions, UV-Vis spectroscopy, Franck-Condon Principle, Franck-Condon factors Fates of electronic excited states – fluorescence and phosphorescence, non-radiative transitions, internal conversion and intersystem crossing, fluorescence spectra	Molecular orbital theory: Electronic spectroscopy requires	
Diatomic molecules, LCAO-MO, Symmetry of MO's Photoelectron spectroscopy Generalisation of the application of MO approaches to polyatomic molecules Hückel Theory Aromatic and Heterocyclic Chemistry of compounds with delocalised p orbitals: Benzene and Aromaticity/Antiaromaticity, Reactions of Aromatic Compounds Electrophilic aromatic substitution. Reactions of Polycyclic and Heteroaromatic Compounds. Reactions via Aromatic Transition States Electrophilic aromatic substitution on naphthalene. Electrophilic aromatic substitution on heteroaromatics (e.g. pyridine and pyrrol). Non C-based aromatic systems Electronic spectroscopy: Chromophores and excited electronic states, electronic transitions, UV-Vis spectroscopy, Franck-Condon Principle, Franck-Condon factors Fates of electronic excited states – fluorescence and phosphorescence, non-radiative transitions, internal conversion and intersystem crossing, fluorescence spectra	understanding of electronic structure leading to Molecular orbital theory	
Photoelectron spectroscopy Generalisation of the application of MO approaches to polyatomic molecules Hückel Theory Aromatic and Heterocyclic Chemistry of compounds with delocalised p orbitals: Benzene and Aromaticity/Antiaromaticity, Reactions of Aromatic Compounds Electrophilic aromatic substitution. Reactions of Polycyclic and Heteroaromatic Compounds. Reactions via Aromatic Transition States Electrophilic aromatic substitution on naphthalene. Electrophilic aromatic substitution on heteroaromatics (e.g. pyridine and pyrrol). Non C-based aromatic systems Electronic spectroscopy: Chromophores and excited electronic states, electronic transitions, UV-Vis spectroscopy, Franck-Condon Principle, Franck-Condon factors Fates of electronic excited states – fluorescence and phosphorescence, non-radiative transitions, internal conversion and intersystem crossing, fluorescence spectra	– HOMO. LUMO	
Generalisation of the application of MO approaches to polyatomic molecules Hückel Theory Aromatic and Heterocyclic Chemistry of compounds with delocalised p orbitals: Benzene and Aromaticity/Antiaromaticity, Reactions of Aromatic Compounds Electrophilic aromatic substitution. Reactions of Polycyclic and Heteroaromatic Compounds. Reactions via Aromatic Transition States Electrophilic aromatic substitution on naphthalene. Electrophilic aromatic substitution on heteroaromatics (e.g. pyridine and pyrrol). Non C-based aromatic systems Electronic spectroscopy: Chromophores and excited electronic states, electronic transitions, UV-Vis spectroscopy, Franck-Condon Principle, Franck-Condon factors Fates of electronic excited states – fluorescence and phosphorescence, non-radiative transitions, internal conversion and intersystem crossing, fluorescence spectra	Diatomic molecules, LCAO-MO, Symmetry of MO's	
Hückel Theory Aromatic and Heterocyclic Chemistry of compounds with delocalised p orbitals: Benzene and Aromaticity/Antiaromaticity, Reactions of Aromatic Compounds Electrophilic aromatic substitution. Reactions of Polycyclic and Heteroaromatic Compounds. Reactions via Aromatic Transition States Electrophilic aromatic substitution on naphthalene. Electrophilic aromatic substitution on heteroaromatics (e.g. pyridine and pyrrol). Non C-based aromatic systems Electronic spectroscopy: Chromophores and excited electronic states, electronic transitions, UV-Vis spectroscopy, Franck-Condon Principle, Franck-Condon factors Fates of electronic excited states – fluorescence and phosphorescence, non-radiative transitions, internal conversion and intersystem crossing, fluorescence spectra	Photoelectron spectroscopy	
Aromatic and Heterocyclic Chemistry of compounds with delocalised p orbitals: Benzene and Aromaticity/Antiaromaticity, Reactions of Aromatic Compounds Electrophilic aromatic substitution. Reactions of Polycyclic and Heteroaromatic Compounds. Reactions via Aromatic Transition States Electrophilic aromatic substitution on naphthalene. Electrophilic aromatic substitution on heteroaromatics (e.g. pyridine and pyrrol). Non C-based aromatic systems Electronic spectroscopy: Chromophores and excited electronic states, electronic transitions, UV-Vis spectroscopy, Franck-Condon Principle, Franck-Condon factors Fates of electronic excited states – fluorescence and phosphorescence, non-radiative transitions, internal conversion and intersystem crossing, fluorescence spectra	Generalisation of the application of MO approaches to polyatomic	
Aromatic and Heterocyclic Chemistry of compounds with delocalised p orbitals: Benzene and Aromaticity/Antiaromaticity, Reactions of Aromatic Compounds Electrophilic aromatic substitution. Reactions of Polycyclic and Heteroaromatic Compounds. Reactions via Aromatic Transition States Electrophilic aromatic substitution on naphthalene. Electrophilic aromatic substitution on heteroaromatics (e.g. pyridine and pyrrol). Non C-based aromatic systems Electronic spectroscopy: Chromophores and excited electronic states, electronic transitions, UV-Vis spectroscopy, Franck-Condon Principle, Franck-Condon factors Fates of electronic excited states – fluorescence and phosphorescence, non-radiative transitions, internal conversion and intersystem crossing, fluorescence spectra	molecules	
orbitals: Benzene and Aromaticity/Antiaromaticity, Reactions of Aromatic Compounds Electrophilic aromatic substitution. Reactions of Polycyclic and Heteroaromatic Compounds. Reactions via Aromatic Transition States Electrophilic aromatic substitution on naphthalene. Electrophilic aromatic substitution on heteroaromatics (e.g. pyridine and pyrrol). Non C-based aromatic systems Electronic spectroscopy: Chromophores and excited electronic states, electronic transitions, UV-Vis spectroscopy, Franck-Condon Principle, Franck-Condon factors Fates of electronic excited states – fluorescence and phosphorescence, non-radiative transitions, internal conversion and intersystem crossing, fluorescence spectra	Hückel Theory	
Aromatic Compounds Electrophilic aromatic substitution. Reactions of Polycyclic and Heteroaromatic Compounds. Reactions via Aromatic Transition States Electrophilic aromatic substitution on naphthalene. Electrophilic aromatic substitution on heteroaromatics (e.g. pyridine and pyrrol). Non C-based aromatic systems Electronic spectroscopy: Chromophores and excited electronic states, electronic transitions, UV-Vis spectroscopy, Franck-Condon Principle, Franck-Condon factors Fates of electronic excited states – fluorescence and phosphorescence, non-radiative transitions, internal conversion and intersystem crossing, fluorescence spectra	Aromatic and Heterocyclic Chemistry of compounds with delocalised p	
Polycyclic and Heteroaromatic Compounds. Reactions via Aromatic Transition States Electrophilic aromatic substitution on naphthalene. Electrophilic aromatic substitution on heteroaromatics (<i>e.g.</i> pyridine and pyrrol). Non C-based aromatic systems Electronic spectroscopy: Chromophores and excited electronic states, electronic transitions, UV-Vis spectroscopy, Franck-Condon Principle, Franck-Condon factors Fates of electronic excited states – fluorescence and phosphorescence, non-radiative transitions, internal conversion and intersystem crossing, fluorescence spectra	orbitals: Benzene and Aromaticity/Antiaromaticity, Reactions of	
Transition States Electrophilic aromatic substitution on naphthalene. Electrophilic aromatic substitution on heteroaromatics (<i>e.g.</i> pyridine and pyrrol). Non C-based aromatic systems Electronic spectroscopy: Chromophores and excited electronic states, electronic transitions, UV-Vis spectroscopy, Franck-Condon Principle, Franck-Condon factors Fates of electronic excited states – fluorescence and phosphorescence, non-radiative transitions, internal conversion and intersystem crossing, fluorescence spectra	Aromatic Compounds Electrophilic aromatic substitution. Reactions of	
Electrophilic aromatic substitution on heteroaromatics (<i>e.g.</i> pyridine and pyrrol). Non C-based aromatic systems Electronic spectroscopy: Chromophores and excited electronic states, electronic transitions, UV-Vis spectroscopy, Franck-Condon Principle, Franck-Condon factors Fates of electronic excited states – fluorescence and phosphorescence, non-radiative transitions, internal conversion and intersystem crossing, fluorescence spectra	Polycyclic and Heteroaromatic Compounds. Reactions via Aromatic	
pyrrol). Non C-based aromatic systems Electronic spectroscopy: Chromophores and excited electronic states, electronic transitions, UV-Vis spectroscopy, Franck-Condon Principle, Franck-Condon factors Fates of electronic excited states – fluorescence and phosphorescence, non-radiative transitions, internal conversion and intersystem crossing, fluorescence spectra	Transition States Electrophilic aromatic substitution on naphthalene.	
Electronic spectroscopy: Chromophores and excited electronic states, electronic transitions, UV-Vis spectroscopy, Franck-Condon Principle, Franck-Condon factors Fates of electronic excited states – fluorescence and phosphorescence, non-radiative transitions, internal conversion and intersystem crossing, fluorescence spectra	Electrophilic aromatic substitution on heteroaromatics (e.g. pyridine and	
Electronic spectroscopy: Chromophores and excited electronic states, electronic transitions, UV-Vis spectroscopy, Franck-Condon Principle, Franck-Condon factors Fates of electronic excited states – fluorescence and phosphorescence, non-radiative transitions, internal conversion and intersystem crossing, fluorescence spectra	pyrrol). Non C-based aromatic systems	10
Franck-Condon factors Fates of electronic excited states – fluorescence and phosphorescence, non-radiative transitions, internal conversion and intersystem crossing, fluorescence spectra	Electronic spectroscopy: Chromophores and excited electronic states,	10
Fates of electronic excited states – fluorescence and phosphorescence, non-radiative transitions, internal conversion and intersystem crossing, fluorescence spectra	electronic transitions, UV-Vis spectroscopy, Franck-Condon Principle,	
non-radiative transitions, internal conversion and intersystem crossing, fluorescence spectra	Franck-Condon factors	
fluorescence spectra	Fates of electronic excited states – fluorescence and phosphorescence,	
-	non-radiative transitions, internal conversion and intersystem crossing,	
Applications – light emitting polymers	fluorescence spectra	
l l	Applications – light emitting polymers	

Organometallic chemistry. Types and broad applications of organometallic complexes and catalysts. Ligand types and examples. Group 1 (LiR) and group 2 (Grignard) and p-block chemistries. EPR spectroscopy as a tool to probe electron distribution in carbocyclic and organometallic species Covalent interactions in coordination compounds – rationalisation of spectrochemical series in terms of bonding interactions Binary metal carbonyl complexes Synergistic bonding and the 18electron rule. IR and NMR spectroscopy Substitution at metal carbonyl. Other organometallic ligand types and complexes thereof. Alkyne and alkene complexes. etc. Redox reaction in organometallic chemistry. Hydrogen complexes and oxidative addition reactions. Reductive elimination reactions. Activation and reactions of organometallic ligands. Insertions, migrations. Catalysis involving transition metals: Catalytic systems. Water gas shift reaction, hydrogenations, acetic acid process etc. Metallocene complexes

and their chemistry leading to advanced polymerization catalysts etc.

SEC 251 CHE (P)	2 Credit
Physical chemistry experiments (Any 3)	No. of lectures
Determination of the stability constant of a complex by	2
spectrophotometry.	
The reaction between potassium persulphate and potassium iodide by	2
colorimetry.	
Determine the formula and stability constant of a metal ion complex	2
(Lead Oxalate) by polarography.	
Analysis of copper oxide and copper dioxide to determine law of multiple	2
proportions.	
Behaviour of water at different temperatures	2
Inorganic chemistry experiments (Any 3)	No. of
	lectures
Photometric Analysis - To study complex formation between Fe (III) and	2
salicylic acid and find the formula and stability constant of the complex.	

Simultaneous determination of Cr+2 and Cu+2	2
To determine the strength of given mixture of carbonate and bicarbonate	2
in the given mixture by pH metric method.	
Determination of chemical oxygen demand (COD)	2
Determination of Biological oxygen demand (COD)	2
Organic chemistry experiments (Any 3)	No. of
	lectures
Organic Preparations: Double Stage	2
Glycine – Hydantoic acid – Hydantoin	2
Benzoin – Benzil - Benzilic acid	2
P-cresol – 4,6-Dimethylcoumarin – 3-Bromo-4,6 Dimethyl Coumarin	2
Benzophenone – Oxime – Benzanilide	2
Acetanilide – p-Bromoacetanilide – p-Bromoaniline	2
· ·	

MN 291 MTS (T)	4 Credit
Probability	No. of
	Lectures
Review of probability, events, laws of probability	
Conditional probability, independent events	
Random variables; discrete random variables and distributions; mean,	
variance and standard deviation of discrete random variable	
Bernoulli trials, binomial distribution	
Poisson distribution and Poisson process	
Continuous random variables and distributions, probability density	20
functions, cumulative distribution function	
Mean, variance, standard deviation, median and percentiles of a	
continuous distribution	
Normal distribution	
Uniform and exponential distribution	
Distributions of functions of a random variable	

	<u> </u>
Sums/differences/scalar multiples of random variables, independent	
random variables, distributions of sums/differences of independent	
random variables	
Central Limit Theorem	
Normal approximation to the binomial distribution, distribution of the	
sample mean	
Distribution of sample proportion	1
Stochastic processes, Markov chains	1
Limiting behavior of Markov chains	1
Statistics	No. of
	Lectures
Study design: bias, confounding, precision, comparison, control	
Study design: observational studies vs designed experiments	-
Exploratory data analysis: describing and displaying categorical data	-
(tables, frequencies, bar chart)	
Exploratory data analysis: describing and displaying univariate numeric	-
data (dot plots, boxplots, histograms, mean, median,	
quartiles/percentiles, standard deviation, variance, IQR)	
Exploratory data analysis: describing and displaying bivariate numeric	-
data (scatterplot, correlation)	
Statistical modeling (single mean model, multiple means model,	-
regression model)	
Sampling distributions: population vs sample, parameter vs statistic;	-
distribution of sample mean, proportion; standard error	28
Estimation: Confidence intervals, confidence interval for mean (using z),	-
confidence interval for mean using t	
Estimation: confidence interval for difference in mean, confidence	-
intervals for proportion	
Estimation: required sample size, confidence interval vs prediction	-
interval	
Theory of estimation: unbiased estimators, maximum likelihood	-
estimators	
Hypothesis testing: concepts and terminology, testing a single mean	1
(z and t)	
Hypothesis testing: errors, power, 2-sample test, paired test, testing	1
proportion	

Hypothesis testing: Non-parametric tests for 2 samples	
Comparing multiple means: one-way ANOVA	
Theory of ANOVA	
Regression: least squares method	
Partitioning of variability in regression, significance testing in regression	
Chi-squared test for independence	
Chi-squared goodness-of-fit	

GE 251 BIO (T) 2	Credit
Transmission Genetics	No. of Lectures
Genetic variation and behaviour of genes	
Linkage and recombination; Mapping genes	
Chromosome maps and genetic markers	
Sex linkage and sex determination	
Complementation	6
Chromosomal mutations	
Non-Mendelian inheritance	_
Extrachromosomal DNA	_
Quantitative genetics	
Population Genetics	No. of
	Lectures
Genetic variation in populations	
Mutation and Genetic drift	
Natural selection	-
Mutation/Selection balance	- 6
Balanced polymorphism	
Gene flow & inbreeding	_
Population Biology	No. of
	Lectures
Nature of populations; numbers, mixing (dispersal), structure in	
age/stage	4
Density independent, density dependent growth (exponential and logistic growth equations)	4

D 0 IV - 1 - 4' 1'C- 1-'-4 1 1'-1 - 4 1 - 4' 41	
R & K selection, life-histories and links to population growth	
parameters, (annual vs perennial life-histories, clonality)	
Demography, Life tables, matrix models (requires simple matrix	
mathematics) and Epidemiology (simple functions)	
Communities	No. of
	Lectures
Nature of communities; Community structure: how it is described,	
measured; what drives it; species composition, diversity (alpha, beta,	
gamma)	
Intra-community (interspecific) interactions (bi-partite networks);	4
Symbiosis, Predation, Competition, Host-parasite interactions	
Dynamics of communities (perturbation and succession)	
Biomes (communities on a global scale)	
Ecosystems	No. of
	Lectures
Pond ecosystem (or other integrated example)	
Food chains and webs	
Pyramids (numbers, biomass, energy), abstraction, defining trophic	
levels, the problem of omnivore (stable isotope tracers)	4
Biogeochemical cycles (water, C, N, P) pools and fluxes, mass budget	
models. Rates of processes: productivity, decomposition, trophic	
transfer, turnover and Mean Residence Time.	

PHY 281 FP (Any 2)	2 Credit
Field Project in Physics	No. of
	Lectures
Study of Fluid Dynamics in Natural Environments: Investigate fluid	12
dynamics phenomena such as river flow, ocean currents, or atmospheric	
phenomena like wind patterns. This could involve field measurements,	
mathematical modeling, and data analysis.	
Astronomy Observation : Set up telescopes in a dark-sky location to	12
observe celestial objects such as planets, stars, and galaxies. Record	
observations of celestial phenomena such as eclipses, planetary transits,	
or meteor showers.	

Study of Magnetic Fields: Explore magnetic fields in different	12
environments, such as urban areas, near power lines, or in natural	
settings. Measure magnetic field strength and map out magnetic field	
lines using appropriate instruments.	
Quantum Mechanics in Nature: Investigate phenomena that	12
Quantum Mechanics in Nature : Investigate phenomena that demonstrate quantum mechanical principles in nature, such as the	12
	12

AEC 251 PS 2 C1	redit
Formal Presentation Skills	No. of Lectures
Presentation Types and Forms Theme based presentations	6
Purpose based presentations- informative, persuasive, demonstrative, entertaining	
Form based presentation- Collage making.	
News Presentation	6
Understanding facts, focusing on gestures, controlled pace and pitch. Topic and Illustration Based Presentation Picture and non-verbal presentation	
Presentation on an Article	6
Presentation on an article for a magazine on trending issues	
Presentation based on illustration: Poster presentation	
Presentation- Applications	6
Presentation: based on the current reading material	
E-Portfolio: developing a self-presentation	