B.Sc. (Blended) ENVIRONMENTAL SCIENCE MAJOR Program

Savitribai Phule Pune University

Revision and Amendment

B. Sc. (Blended) **ENVIRONMENTAL SCIENCE MAJOR**

Four Year undergraduate program

Syllabus for SEM I – IV (88 Credits)

In accordance with guidelines of NEP 2020

(To Be Implemented from Academic Year 2023 – 2024)

Semester 1			
	Course Name	Title allocation as per NEP	
EVS 101 MJ (T)	Introductory to Environemental Sciences I +Python for Environmental Science	DSC (Discipline Specific Course)- Major Core	4
EVS 101 MJ (P)	Environmental Science Practical	DSC (Discipline Specific Course)- Major Core	2
CC 101 PHY (T)	Introductory Classical Physics	Curricular course	2
SEC 101 CHE (T)	Introductory and Organic Chemistry	Skill Enhancement Course (SEC)	2
GE 101 MTS (T)	Calculus	GE (General Elective)/OE(Open Elective)	4
VEC 101 BIO (T)	The Diversity of Life	VEC (Value Education Course)	2
VSC 121 BIO (P)	Biology Practical	VSC (Vocational Skill course)	2
AEC 101 ENG (T)	English,/Critical Thinking / Communication skill	AEC (Ability Enhancement Course)	2
EVS 101 IKS (T)	Indian Knowledge System	IKS (Indian Knowledge System)	2
			22

EVS 101 MJ (T)	4 Credits
Introduction to Environmental Sciences I	No. of
	lectures
Introduction to Evironmental Sciences and its various branches	1
Origin of Solar System and Formation of the Sun	No. of
origin of Solar System and Formation of the Sun	lectures
Formation of the Universe and of the Sun	6
Solar Nebular hypotheses, Earth and other planetary systems,	
Geology of the Inner planets (e.g. Mars, Venus) and moon. Geology of	
the Outer planets, Meteorites-types and origin	
Rocks and minerals, the rock cycle, biogeochemical cycles, soil-	6
structure and types, land resources, and landforms	
Spheres of the Earth	No. of lectures
Process of formation of the different spheres of the Earth.	6
Characteristics of the asthenosphere, lithosphere, hydrosphere,	
biosphere and atmosphere.	
	No. of
	lectures
Ecosystems – concepts and structure, diversity and stability, concepts of biomes,	12
Energy flow in ecosystem, food chain, food web, ecological pyramids	
Biomagnification of heavy metals and toxic contaminants, etc.	
PYTHON I	
Introduction to python programming, basic arithmetic and Hello world programs • Variables, Operators and Datatypes; Operations on	12
datatypes; Input and Output • Functions: Modules, Built-in	1

EVS 101 MJ (P)	2 Credits
	No. of practicals
Field Visit - Pond / Lake ecosystem, Fresh water ecosystem	2
- Assignments	2
- Geological Time Scale	2
- Identification and description of common rock forming minerals	2
- Reading Topomaps and symbols	2
Lithological and structural symbols	2
- Presentations	

CC 101 PHY (T)	2 Credits
Classical Mechanics	No. of
	lectures
Straight line motion	10
Vectors	
Two-and three-dimensional motion	
Force and Motion: Newton's Laws	
Force and Motion: Drag and Friction	
Kinetic energy, work, power	
Potential energy, conservation of energy	
Collisions and momentum	
Rotational motion	
Angular momentum-I	
Angular momentum-II	
Gravitation	No. of
	lectures
Newton's law of gravity, superposition	5
Gravity at the earth's surface, far above the earth and within the	
earth	
Work and gravitational potential energy	
Kepler's laws: the planets and satellites	
Orbital motion and energy	
Thermal physics	
Zeroth Law of Thermodynamics	10
Thermal expansion and absorption of heat	
First Law of Thermodynamics; adiabatic processes, constant volume	
processes, enthalpy, cyclical processes, free expansions	
Heat transfer, conduction, emission, absorption. Second Law of	
Thermodynamics, Irreversible processes, entropy, free energy	
Elasticity, fluids and gases	
Equilibrium and elasticity	5
Density and Pressure, Pascal's and Archimedes' Principles	_
Continuity and Bernoulli's Equation	
· · · · · · · · · · · · · · · · · · ·	

Mean free path, molecular speed distribution	
Specific heat, adiabatic expansion	
Real world examples - eg wind power, hydro, blood circulation, water	
in plants, materials, osmosis, wind and atmosphere	
ODEs	
Applications of 2nd order ODEs: Springs	6
Applications of 2nd order ODEs: LRC series electrical circuits	
Real world contextual examples in physics and application of ODEs	

SEC 101 CHE (T) 2	
General Chemistry	No. of lectures
The Periodic Table	
Molecular Structure and Bonding	4
Acids and Bases	7 7
Stoichiometry	1
Organic Chemistry	
Carbon – the basis of life	
Structure and Bonding Alkanes (sp³Hybridisation)	1
Structure and Bonding Alkenes (sp ² Hybridisation)	1
Benzene and its derivatives	1
Structure and Bonding of Alkynes (sphybridisation)	1
Functional Groups	1
Electrophiles and Nucleophiles	10
Nucleophilic substitution reactions	1
Elimination reactions	1
Addition reactions	1
Electrophilic aromatic substitution reactions	1
Nucleophilic addition reactions	1
Organic redox reactions	1
ODEs	
Applications of 1st order ODES: ecology models	
Applications of 1st order ODES: chemical reaction rates, Newton's law	4
of cooling	

Second-order ODEs: definitions of homogeneous/inhomogeneous,	
linear/non-linear; solution of homogeneous constant-coefficient linear	
ODEs	
Physical Chemistry	
First Law of Thermodynamics; adiabatic processes, constant volume	
processes, enthalpy, cyclical processes, free expansions	
Second Law of Thermodynamics, Irreversible processes, entropy, free	6
energy	
Real world examples - eg solar energy, geothermal, wind power	

GE 101 MTS (T) 4 Cre	dits
Logic and Proof	No. of
	lectures
Basic set theory (review)	
Logical connectives (conjunction, disjunction, negation, conditional, bi-	
conditional) and truth tables	
Propositional logic, logical equivalence, logical laws	
Real numbers and their properties; completeness property	12
Proof methods: direct proof, contrapositive	12
Proof methods: contradiction, proof by cases	
Proof methods: induction	
Natural numbers, integers, rational numbers	
Real numbers	
Complex Numbers	
Review of complex numbers including algebra, Argand plane, cartesian	
and polar form	
Complex exponential	6
de Moivre's theorem; roots of complex numbers	
Differential calculus	
Review of differential calculus: limits, derivative, differentiation rules	
incl. polynomials, trigonometric, exponential, log functions; product,	6
quotient, chain rules	
Review of inverse trigonometric functions and their derivatives, implicit	6
differentiation	

Integral calculus	
Riemann integration	
Fundamental Theorem of Calculus; review of standard anti-derivatives	
Techniques of integration (review): derivative present substitution,	
linear substitution	
Techniques of integration (review): integration of trigonometric	
functions using identities	
Techniques of integration (review): integration of rational functions	
including partial fractions, integration yielding inverse trig functions	
Techniques of integration (review): trigonometric substitutions;	
integration by parts	
Improper integrals	
Applications of integration: areas between curves	
Applications of integration: volumes of surfaces of revolution	
Ordinary differential equations: definition of ODE, order, general	18
solution, initial conditions; separable ODEs	
Solving linear ODE using integrating factor	
Particular solutions of inhomogeneous constant coefficient linear	
ODEs using method of undetermined coefficients; principle of	
superposition	

VEC 101 BIO (T)	2 Credits
Evolution and the Diversity of Life	No. of
	lectures
Theory of evolution: understanding life's diversity	
Evolutionary relationships (phylogenies) are summarized in	
classifications	
Chemical evolution of life – Molecules to cells	
Cell theory and the origin of life	12
Prokaryotic Cells: Bacteria and Archaea	12
Evolution of the eukaryotic cell	
Endosymbiosis	
Protists 1 - Red and Green algae	
Protists 2 – Chromists	

Protists 3 - Dinoflagellates and apicomplexans, flagellates, ciliates,	
amoebae	
Evolution of sex, life cycles	
Origins of multi multicellularity	
Slime molds and fungi	
Fungi]
Introduction to Land Plants]
Bryophytes	
Evolution of vascular tissue, Lycophytes, fern allies, early fossil land	
plants	
Ferns	
Seed plants, the seed and secondary growth, Cycads and Ginkgo	
Conifer diversity and biology	
Angiosperm structure, biology and diversity, the flower, double	
fertilization.	
Angiosperm phylogeny and evolution	12
Introduction to animals (Metazoa)	12
Simple animals	
Protostomes-Flatworms and annelids	
Molluscs	
Arthropods	
Deuterostomes, Echinoderms-Chordates	
Fishes –sharks/rays, teleosts, coelacanth, lungfish	
Amphibians	
Reptiles	1
Birds	1
Mammals	1
The Primate story	1

VSC 121 BIO (P) 2	VSC 121 BIO (P) 2 Credits	
	No. of	
	lectures	
1. Observation of zooplankton from pond samples under microscope	2	

2. Determination of dissolved oxygen in water sample using Winkler	2
titration	
3. Collection and identification of invertebrate samples from pond by	2
using different types of nets.	
4. Visit to the museum at zoology department at Pune University and	2
observe the collected specimens.	
5. Using a taxonomic browser to identify the taxonomic lineage and	2
explain key characteristics of the species.	
6. Observe the characteristics of prokaryotic and eukaryotic cells.	2

AEC 101 ENG 2			2 Credits
Sr.	Theory	Practical	No. of
no			lectures
1	Listening - Overview,	Listening for - Description, Time,	12
	Question Types,	Frequency, Similar meanings,	
	Listening Tips,	Emotions, Explanation, Classification,	
	Completing the blanks,	Comparison and contrasts, Negative	
	Making Assumptions,	meaning, Chronology	
	understanding numbers		
	Understanding the		
	alphabet, Distinguishing		
	similar sounds		
2	Reading- Overview,	Using first paragraph to make	12
	Question Types, Reading	predictions, Using the topic sentence	
	Tips	to make predictions, looking for	
		specific details Analyzing Questions	
		and Answers, Identifying the tasks	

GEO 101 IKS	2 Credits
Indian Rhetoric	No. of
	lectures
Rhetoric as Everyday Experience:	6
Persuasion & Convincing: Advt. & Campaigns Arguments and	
Debates: Courtrooms to Politics Historical context of Classical Rhetoric	
in Greece Democracy, Public Opinion and Rhetoric	

Rhetoric: Elements & Versions	6
Context and Intent Appeals & Arrangement Instruments &	
Ornamentation Culture, History and Versions of Rhetoric	
1Nyay Shastra- Indian Framework of Debate	6
Brief background and premise Basic elements, of Nyay Shastra Logic	
and arrangement Good & Bad forms of Debate	
Natya Shastra	6
Brief background and premise Basic elements of Natya Shastra	
Sahahridaya & Sadharanikarn Rasa & Bhaav	

OR

PHY 101 IKS 2 Cre	edits
Vedic Mathematics	No. of
	lectures
Vedic Mathematics: Brief History	5
Mathematics in Ancient India. Relevance & Utility of Vedic	
Mathematics Contributions by Aryabhata & Brahmagupta	
Contributions by Mahaveer Acharya & Bharti Krishna Tirtha	
Application of Vedic Mathematics Multiplication of two numbers of two	5
digits Multiplication of two numbers of three digits multiplication of	
two numbers of three digits Nikhilam Navtashchramam Dashtaha	
Division and Divisibility Two digits divisor Three digits divisor	5
Divisibility- Two digits divisor	
Power and Root Power: Square (two-digit numbers) Cube (two-digit	5
numbers).	
Square root (four-digit number) Cube root (six-digit numbers)	
LCM and HCF	4

Semester 2			
Course Code	Course Name	Title allocation as per NEP	After
EVS 151 MJ (T)	Ecosystems and Biodiversity	DSC (Discipline Specific Course)- Major Core	4
EVS 151 MJ (P)	Environmental Science Practical II	DSC (Discipline Specific Course)- Major Core	2
CC 151 PHY (T)	Modern Physics	Curricular Course	2
SEC 151 CHE (T)	Inorganic and Physical Chemistry	Skill Enhancement Course (SEC)	2
GE 151 MTS (T)	Algebra	GE (General Elective)/OE (Open Elective)	4
VEC 151 BIO (T)	Biology of Cells	VEC (Value Education Course)	2
VSC 171 BIO (p)	Biology Practical	VSC (Vocational Skill course)	2
AEC 151 ENG	English, /Critical Thinking / Communication skill	AEC (Ability Enhancement Course)	2
EVS 191 MN	Interdisciplinary elective	Minor	2
	Total		22

EVS 151 MJ (T)	4 Credits
	No. of lectures
Fundamentals of Ecology	
Ecology Definition, Concept, and Scope, Interdisciplinary science	10
Ecosystems – nature, structure and function, autecology and	
synecology, branches of ecology	
Ecological Concepts - ecological succession, ecotone, edge effect,	
niche concept, homeostasis, ecological indicator plants and animals,	
concept of carrying capacity & limiting factors	
Bio-geographical regions of India and its characters, principals of	
classification, key species of each region	
Agro-ecological zones of India: basis of classification and	3
characteristics in brief	
Types of Ecosystems - Terrestrial (Forest Ecosystems, Grassland	4
Ecosystems, Tundra Ecosystems, Desert Ecosystem), Aquatic	
(Freshwater Ecosystem, Marine Ecosystem)	
Applied ecology - solutions for biodiversity conservation & climate	4
related issues: restoration ecology, plants and microbes in	
conservation soils, restoration of land and degraded water bodies,	
carbon sequestration, Concept of ecological foot print	
Fundamentals of Biodiversity	No. of
rundamentals of biodiversity	lectures
Biodiversity Definition, Concept, Scope	10
Genetic Diversity:Introduction, Nature and Origin of Genetic	
Variations	
Species Diversity: Definition, History and Origin of Species Diversity,	
Diversity Indices Based on Species: Species Richness, Species	
Abundance, Taxic Diversity	
Nature and importance of Urban Biodiversity, Hotspots in India –	
concept and basis of 'hotspot' identification	
Endangered, Endemic and Extinct Species of India: Threatened	
species categories of IUCN, threatened species of plants and animals	
in India and their reasons, Red data books.	
Biodiversity loss: Introduction, factors causing loss of diversity,	
founder effects, demographic bottlenecks, genetic drift, inbreeding	

depression, process responsible for species extinction, migratory	
corridors – concept and importance	
Biodiversity conservation: <i>In-Situ</i> and <i>Ex-Situ</i> conservation, social	1
approach of conservation, Convention related to biodiversity	
conservation such as - RAMSAR sites, CBD, CITES. Biodiversity Act.	
Biodiversity Management:Organizations Associated with Biodiversity	1
Management, Organizations Involved in Financing Biodiversity	
Management.	
	1
PYTHON -II	
Lists, Strings, Tuples and Dicts	
Introduction to numpy	
Introduction to matplotlib for basic plotting	12

EVS 151 MJ (P)	2 Credits
	No. of practicals
Practicals related to ecosystem and biodiversity understanding and conservation	4
Practicals related to Applied ecology - solutions for biodiversity conservation & climate related issues restoration ecology, plants and microbes in conservation soils, restoration of land and degraded water bodies, carbon sequestration,	4
Calculation of carbon footprint	4

CC 151 PHY (T)	2 Credits
Electricity and Magnetism	No. of lectures
Electric charge, conductors and insulators	18
Coulomb's Law, superposition principle	10

Electric flux	
Gauss's law, applications	
Energy and electric field; electric potential	
Calculating potential from the field, electric potential, potential energy	
surfaces.	
Electric dipoles	
Capacitance; parallel plate capacitors	
Energy storage in capacitors, dielectrics, series and parallel circuits	
Conductors, electric current, electric power, Ohm's law	
Kirchoff's rules, resistors in series and parallel circuits	
Magnetic field, magnetic force, Lorentz force, cyclotrons	
Lorentz force, ion velocity filter, Hall effect, Biot-Savart Law	
Bio-Savart Law, Ampere's Law, solenoids, earth's magnetic field	
Magnetic field due to a current, forces on current-carrying wires,	
Electromagnetic induction, magnetic flux	
Lenz' Law, Faraday's law, Maxwell's equations, applications	
Magnetic materials	
Oscillations and Waves	
	No. of
	No. of lectures
Simple harmonic motion, pendulum, diatomic molecules, Damped	
Simple harmonic motion, pendulum, diatomic molecules, Damped	
Simple harmonic motion, pendulum, diatomic molecules, Damped harmonic motion, resonance - electronic circuits, evolution of	
Simple harmonic motion, pendulum, diatomic molecules, Damped harmonic motion, resonance - electronic circuits, evolution of populations	lectures
Simple harmonic motion, pendulum, diatomic molecules, Damped harmonic motion, resonance - electronic circuits, evolution of populations One dimensional waves, Interference and standing waves, Sound	lectures
Simple harmonic motion, pendulum, diatomic molecules, Damped harmonic motion, resonance - electronic circuits, evolution of populations One dimensional waves, Interference and standing waves, Sound waves and the speed of sound, Intensity, sound level and the physics	lectures
Simple harmonic motion, pendulum, diatomic molecules, Damped harmonic motion, resonance - electronic circuits, evolution of populations One dimensional waves, Interference and standing waves, Sound waves and the speed of sound, Intensity, sound level and the physics of music	lectures
Simple harmonic motion, pendulum, diatomic molecules, Damped harmonic motion, resonance - electronic circuits, evolution of populations One dimensional waves, Interference and standing waves, Sound waves and the speed of sound, Intensity, sound level and the physics of music Doppler effect and supersonic motion, shock waves	lectures 6
Simple harmonic motion, pendulum, diatomic molecules, Damped harmonic motion, resonance - electronic circuits, evolution of populations One dimensional waves, Interference and standing waves, Sound waves and the speed of sound, Intensity, sound level and the physics of music Doppler effect and supersonic motion, shock waves	lectures 6 No. of
Simple harmonic motion, pendulum, diatomic molecules, Damped harmonic motion, resonance - electronic circuits, evolution of populations One dimensional waves, Interference and standing waves, Sound waves and the speed of sound, Intensity, sound level and the physics of music Doppler effect and supersonic motion, shock waves Optics	lectures 6 No. of
Simple harmonic motion, pendulum, diatomic molecules, Damped harmonic motion, resonance - electronic circuits, evolution of populations One dimensional waves, Interference and standing waves, Sound waves and the speed of sound, Intensity, sound level and the physics of music Doppler effect and supersonic motion, shock waves Optics Images and mirrors	lectures 6 No. of
Simple harmonic motion, pendulum, diatomic molecules, Damped harmonic motion, resonance - electronic circuits, evolution of populations One dimensional waves, Interference and standing waves, Sound waves and the speed of sound, Intensity, sound level and the physics of music Doppler effect and supersonic motion, shock waves Optics Images and mirrors Thin lenses and optical instruments	lectures 6 No. of lectures

Diffraction by gratings and X-ray diffraction	
Optical Microscopy	
Spectroscopy	
Modern Physics	No. of
	lectures
Challenges to classical physics; special relativity	
Lorentz transformation, transformation of velocities, Doppler effect	
Relativistic momentum and energy	
Photons and the photoelectric effect	6
Quantum physics, blackbody radiator, matter waves	
Trapped particles and the tunneling particles	
Nuclear physics, nuclear properties, nuclear decay	
Quarks, Leptons, The Big Bang	

SEC 151 CHE (T)	2 Credits
Chemistry of Life	No. of
	lectures
The chemical basis of life	
Bioenergetics	
Enzymes and catalyzed reactions	
Metabolism: Catabolism and anabolism	6
Concatenation and Biopolymers	
Stereochemistry and Biomolecular chirality	
Biochemistry and Biomolecular structure	
Small inorganic molecules of biological importance	
Inorganic Chemistry	No. of
	lectures
Ionic Compounds and their Solutions	
Structures of Solids	
Main Group Chemistry	
Redox reactions and electrochemistry	10
The transition metals: a survey	
Coordination Chemistry	

Bonding in complex ions	
Transition metals in biological systems	1
Simple harmonic motion, pendulum, diatomic molecules	1
Quantum Chemistry	No. of
	lectures
Schrödinger's equation and Heisenberg's Uncertainty Principle	
Bohr and Schrodinger models of the hydrogen atom	
Complex atoms; Pauli Exclusion Principle, Periodic Table of Elements,	8
selection rules and spectra	
Nuclear fission and fusion	

GE 151 MTS (T)	4 Credits	
Analysis	No. of lectures	
Limits of real-valued functions		
Proving limits using the definition		
Continuity & differentiability	7	
Examples of differentiable and non-differentiable functions; continuity		
and differentiability of standard functions including polynomials,	12	
trigonometric, exponential, log functions and their inverses	12	
Techniques for evaluating limits including L'Hopital's rule, sandwich	7	
theorem		
Mean Value Theorem and applications		
Applications of differential calculus eg related rates		
Sequence and series	No. of	
	lectures	
Sequences, limits, convergence and divergence		
Proving limits using definition		
Methods for evaluating limits: standard limits, limit theorems,		
continuity rule, sandwich theorem	1.0	
Series, convergence and divergence of series, geometric series,	12	
harmonic p-series		
Series convergence tests: divergence test, comparison test		
Series convergence tests: ratio test, integral test, alternating series test		

Power series, Taylor polynomials	
Taylor series	
Taylor's theorem, error in Taylor polynomial estimates	
Vectors	No. of
	lectures
Vector arithmetic, dot product, vector projections (review)	
Vector cross product; scalar triple product; parametric curves specified	
by vector equations	6
Lines and planes in R^3	
Lines and planes in R^3	
Linear Algebra 1	No. of
	lectures
Solving systems of linear equations with Gaussian elimination	
Solutions of systems of linear equations - consistency, uniqueness	
Geometric interpretation of solutions	
Matrices, matrix addition, multiplication, transpose and properties	
(review)	
Matrix inverse	
Determinant	
R^n as a vector space, linear independence of vectors in R^n	
Span of a set of vectors, subspaces of R^n	
Basis and dimension in R^n	18
Abstract vector space axioms; examples and non-examples of vector	
spaces	
Bases, dimension and co-ordinates in (finite dimensonal) abstract	
vector spaces	
Definition of linear transformation and examples/non-examples	
Linear transformations of the plane	1
Matrix representation of a linear transformation	1
Image and kernel of a linear transformation	1
Rank and nullity	

	VEC 151 BIO (T) 2 Cr	
The Biology of Cells		No. of
		lectures

Introduction to Cell Biology	2
Theme: The cell contained	No. of
	lectures
The plasma membrane	
Cell walls, extracellular matrix, cellulose synthesis, other cell wall	
components	6
Cytoplasm: content, chemistry and properties	
Cytoskeleton, actin filaments, microtubules	
Theme: Information flow in the cell	No. of
	lectures
Nucleus, chromosomes, DNA	
Genes and the genetic code	4
Control of gene expression	
Theme: Endomembrane system and intracellular trafficking	No. of
	lectures
ER and ribosome, proteins and enzymes	
Golgi apparatus	
Vesicles, transport and secretion, Lysosomes	
Theme: Harvesting energy	6
Mitochondria, ATP, energetic reactions, electron transport pathways,	
cellular respiration	
Chloroplasts, photosynthesis, historical experiments, pigments,	
photosystems	
Theme: Multicellularity and the Dividing Cell	No. of
	lectures
Cell division, cell cycle, mitosis, cytokinesis, division and distribution	
of organelles	
Meiosis, formation of haploid cells	6
Communication and signaling, recognizing and responding	
Cell differentiation and multicellularity	

VSC 171 BIO (P)_	2 Credits
	No. of lectures
1. Microscopy and observation recording of representative organelle readymade specimens	2
2. Staining of cell for observations of- Flagella, cell wall, endospores, etc.a. Plant call, bacterial, fungi samplesb. malachite green, safranin, Leifson flagella stain/RYU flagella stain, nitric acid,	2
crystals of potassium chlorate 3. Introduction and visualization DNA-Proteins in silico	2
4. A one day visit to IISER Pune for electron/ fluorescence microscopy observations	2
5. Observation of budding in yeast & different kinds of cells	2
6. Observation of live/dead cells using Trypan blue staining	2
7. Isolation of DNA	2
8. Mitosis in onion root tips	2

		AEC 151 ENG 2	
Sr.	Theory	Practical	No. of
no			lectures

1	Writing-	Responding to task, Coherence and cohesion,	12
	Overview,	Lexical resource, Generalizing and	
	Question types,	Qualifying, Grammatical range and accuracy	
	Writing tips		
2	Speaking-	Introduction and Overview, Giving	12
	Overview,	Information, Organizing and discussing a	
	Question type,	topic, Sequence, Comparing and contrasting	
	Speaking tips	Respond to follow up questions, ask for	
		clarification, Avoid short answers, Transition	
		and intonation	

EVS 191MN	2 Credits
Introduction to Climate Science	No. of lectures
Introduction to Climate science	8
Concept of Climate changes and factors causing climate change	4
Geological perspective on climate change	12
Climate change affecting different ecosystems and environments	

	Semester	. 3	
Course Code	Course Name	Title allocation as per NEP	credit
EVS 201 MJ (T)	Renewable Energy, Urban environment issues and sustainable development	DSC(Discipline Specific Course)- Major Core	6
EVS 201 MJ (P)	Environment Science Practical III	DSC(Discipline Specific Course)- Major Core	2
CC 201 PHY (T)	Quantum Mechanics and Thermodynamics	Curricular Course	2
MN 241 MTS (T)	Vector Calculus and Differential Equations	Minor	4
GE 201 GEO (T)	Introductory Earth Science I	GE (General Elective)/OE (Open Elective)	2
VSC 221 GEO (p)	Earth Science Practical I	VSC (Vocational Skill course)	2
AEC 201 ENG	English/Critical Thinking / Communication skill	AEC (Ability Enhancement Course)	2
EVS 231 FP	Field Project	FP (Field Project)/OJT (On job training)/CEP	2
	Total		22

EVS 201 MJ (T)	6 Credits
	No. of
	lectures
Renewable and non-renewable resources	45
Fossil fuels and nuclear energy, their limitation, need of renewable	
energy, non-conventional energy sources.	
An overview of developments in Offshore Wind Energy, Tidal Energy,	
Wave energy systems, Ocean Thermal Energy Conversion, solar energy, biomass, biochemical conversion, biogas generation,	
geothermal energy tidal energy, Hydroelectricity	
1. Natural resources and associated problems.	_
2. Forest resources: Use and over-exploitation, deforestation, case	
studies. Timber extraction, mining, dams and their effects on forest	
and tribal people.	
3. Water resources: Use and over-utilization of surface and ground	
water, floods, drought, conflicts over water, dams-benefits and	
problems.	
4. Mineral resources: Use and exploitation, environmental effects of	
extracting and using mineral resources, case studies.	
5. Food resources: World food problems, changes caused by	
agriculture and overgrazing, effects of modern agriculture, fertilizer-	
pesticide problems, water logging, salinity, case studies.	
6. Energy resources: Growing energy needs, renewable and	
nonrenewable energy sources, use of alternate energy sources. Case	
studies.	
7. Land resources: Land as a resource, land degradation, man	
induced landslides, soil erosion and desertification.	
Role of an individual in conservation of natural resources.	
• Equitable use of resources for sustainable lifestyles.	
The Urban environment and issues – internal migration, waste	
generation and management, vehicular traffic, air and water	
pollution, urban heat island, future of cities, urban green	
space and aesthetics, Concept of smart cities, sustainable cities	
Environmental issues – local, regional, and global. Concepts of	
pollution of air, water, and land, urbanization and solid wastes,	
biodiversity loss, land degradation and desertification,	

biodiversity loss, Acid rain, ozone layer depletion, Green House	
gases, climate change	
Sustainable development - What is unsustainable development and	
what is sustainable development? Definition and concept, The	
Brundtland commission and later developments, Determinants of	
sustainable development, Indicators of sustainable development,	
Sustainable society, societal prerequisites of sustainable	
development, International cooperation, Sustainable development	
goals (SDG), Millennium Development Goals (MDG)	
PYTHON -III	
Python courses related to the above topics.	12

EVS 201 MJ (P)	2 Credits
	No. of practicals
Understanding how solar energy work, study of geothermal reserves of the west coast of India.	12
Visit to a local area to document environmental assets - river / forest /grassland/hill/mountain	
Understanding how smart cities function	
Visit to a local polluted site-Urban/Rural/Industrial/Agricultural	
Study of common plants, insects, birds. Study of simple ecosystems-pond, river, hill slopes, etc.	

CC 201 PHY (T)	2 Credit
Quantum Mechanics	No. of Lectures
The Breakdown of Classical Physics	
Matter Waves and Quantum Interpretation	
Quantum Mechanics in One Dimension	18
Expectation Values, Observables and Operators	
Tunneling Phenomena	

Quantum Mechanics in 3-dimensions	
Hydrogen atom, hydrogenic ions, helium atom	
Hydrogen molecule ion, hydrogen molecule	
Thermodynamics	No. of
	Lectures
Temperature and the Zeroth Law of Thermodynamics. Thermal	
equilibrium. Ideal gases, the kinetic theory of gases, equipartition	
theory, Boltzmann distribution	
Heat, work, internal energy. First law of thermodynamics. Compression	
of an ideal gas under various conditions. Transport, conduction,	
conductivity, diffusion in gases.	12
The two-state paramagnet and the Einstein model of a solid; quantum	
deviations from classical equipartition. Partition function. Interacting	
systems, large systems, Stirling's approximation	
Second Law of Thermodynamics. Heat engines, Carnot Cycle, Otto	
Cycle, Stirling Cycle.	
PDEs	No. of
	Lectures
Wave equation	2
Heat and Diffusion equation	
Linear Algebra	No. of
	Lectures
Change of basis and linear transformations	
Definition of eigenvectors and eigenvalues	
Calculating eigenvalues and eigenvectors	4
Diagonalization of matrices; matrix powers	
Orthogonal matrices, real symmetric matrices	

MN 241 MTS (T)	4 Credit	
Linear Algebra	No. of	
	Lectures	
Change of basis and linear transformations		
Definition of eigenvectors and eigenvalues	18	
Calculating eigenvalues and eigenvectors	10	
Diagonalization of matrices; matrix powers		

Orthogonal matrices, real symmetric matrices	
Characteristic and minimal polynomial, Cayley-Hamilton Theorem	_
Applications of eigenvectors/diagonalization Markov chains	_
Inner product axioms; examples/non-examples of inner products	_
Length, angle, Cauchy-Schwarz inequality in terms of inner product	_
Orthogonality, projections in terms of inner product	_
Gram-Schmidt algorithm	_
Vector Calculus	No. of
	Lectures
Functions of several variables; level curves and cross sections of	
surfaces	
Common surfaces including paraboloid, ellipsoid, hyperboloid	-
Domains and ranges of functions of several variables	-
Limits and continuity of functions of several variables; Definition of C^N	
Partial derivatives, tangent plane	1
Differentiability of functions of several variables	-
Directional derivative, gradient	1
Chain rule and total derivative	_
Stationary points of surfaces, classification of stationary points using	_
second derivatives	
Optimization applications	-
Constrained extrema using Lagrange multiplier method	18
Double integrals, changing order of integration	
Polar co-ordinates, change of variables for double integrals	-
Triple integrals	-
Change of variables for triple integrals; cylindrical co-ordinates	-
Spherical co-ordinates	-
Vector fields, div and curl operators	_
Parameterization of paths	_
Line integrals of scalar functions	_
Line integrals of vector functions	1
Integrals of scalar functions over surfaces, applications of surface	1
integrals eg surface area, mass	
Integrals of vector functions over surfaces, flux	
Green's Theorem	1
	-

Gauss Divergence Theorem	
Stokes' Theorem	
Applications of integral theorems eg Maxwell's equations	
PDEs	No. of
	Lectures
Fourier Series	
Fourier series: Dirichlet, discontinuities and differentiation	
Fourier series: Weak convergence and series summation	
Linearity and Superposition	
Laplace equation and harmonic functions	12
Wave equation	
Heat and Diffusion equation	
Fourier transform	
Fourier transform: properties	

GE 201 GEO (T) 2 (Credit
Introduction to Earth Sciences I	No. of
	Lectures
Introduction to Earth Sciences and its various branches	2
	4
Origin of Solar System and Formation of the Sun	6
Formation of the Universe and of the Sun	4
Solar Nebular hypotheses, Earth and other planetary systems,	
Geology of the Inner planets (e.g. Mars, Venus) and moon. Geology of	8
the Outer planets	0
Meteorites-types and origin, Age of the Earth	
Earths-internal structure	
Different layers of the Interior of the Earth	
Mineralogical and geophysical structure	
Geothermal gradients- oceanic and continental gradients,	
Geochemical differentiation of the Earth	

crust-mantle-core interactions.	
Geological time scale	
Concept of Eon, Era, Period, Epoch,	
Origin and Evolution of life across the Geological time scale	
Index fossils through time.	
Introduction and concept of stratigraphy	
Introduction and concept of stratigraphy, paleontology and	
geochronology. Principles of stratigraphy, Unconformities.	

VSC 221 GEO (P)	2 Credit
1. Physical properties of different silicate minerals	No. of
	Lectures
2. Physical properties of different non-silicate minerals	24
3. Physical properties of different ore minerals	
4. Identification of different types of rocks	
5. Understanding the Geological Time Scale and various mass-	
extinction events. Identification of index fossils	
6. Understanding the concept of stratigraphic relations using geological	
maps.	

EVS 231 FP	2 Credit
Fieldwork in Environmental Science	No. of
	Lectures
Field visits to various sites to understand biodiversity loss, solid waste	45
management	
Identification of different minerals and rock types.	

Semester 4			
Course Code	Course Name	Title allocation as per NEP	After
EVS 251 MJ (T)	Pollution Studies: Air, water, soil, noise	DSC(Discipline Specific Course)- Major Core	6
EVS 251 MJ (P)	Environmental Science Practical IV	DSC(Discipline Specific Course)- Major Core	2
CC 251 PHY (T)	Electricity, Magnetism, Special Relativity, and Optics	Ability Enhancement Course (AEC)	2
SEC 251 CHE (T)	Chemistry: Structure and Properties	Skill Enhancement Course (SEC)	2
MN 291 MTS (T)	Probability and Statistics	Minor	4
GE 251 GEO (T)	Introduction to Earth Sciences II	GE (General Elective)/OE(Open Elective)	2
AEC 251 PS	English, /Critical Thinking / Presentation skill	AEC(Ability Enhancement Course)	2
EVS 281 FP	Field Project	FP(Field Project)/OJT(On job training)/CEP	2
Total			22

EVS 251 MJ (T)	4 Credits
	No. of
	lectures
Definition, Types and major sources of air pollutants	50
Effects of air pollutants on physico-chemical and biological	
properties surrounding atmosphere	
Air borne diseases and their effects on health	
Types and major sources of water pollutants,	
Effects of water pollutants on physico-chemical and biological	-
properties of water bodies,	
Water borne diseases with special reference to water pollution.	
Types and major sources of soil pollutants,	
Effects of soil pollutants on physico-chemical and biological	
properties of soil	
Air, drinking water and waste water quality standard.	
Major sources of noise pollution, effects of noise pollution on health,	
noise level standard in industrial, commercial, residential and	
silence zones.	
Radioactive and thermal pollution sources and their effects on	
surrounding environment.	
Pollution case studies.	
PYTHON -IV	
Python courses related to air pollution modelling.	12

EVS 251 MJ (P)	2 Credits
	No. of
	practicals
Practicals related to air pollution sampling and modelling	12
Practicals related to water pollution sampling and analyses	6
Practicals related to Soil pollution sampling and analyses	6
	6

CC 251 PHY (T)	2 Credit
Electricity and Magnetism	No. of Lectures
Coulomb's Law	
Gauss's Law	
Electric Field, Potential	
Conductors, Insulators	
Laplace equation	
Curl and Stoke's theorem	
Capacitors, capacitance and energy stored in E field	
Current and continuity equation	
Magnetic field and Moving Charges	
Force on Moving charges	
Magnetic Field and vector potential	18
Special relativity and E and B fields	
Induction	
Inductance and energy stored in B field	
RC circuits	
CL and RLC circuits	
Displacement current	
Complete Maxwell's Equations	
Electromagnetic Waves	
Dielectrics and Electric Dipoles	
Dielectrics	

Magnetic Dipoles	
Magnetism in Matter	
Special relativity	No. of
	Lectures
Space-time and simultaneity. Einstein axioms for special relativity. The	
Lorentz transformation.	
Relativistic kinematics; length contraction, time dilation. Doppler effect.	
Twin paradox.	
Relativistic dynamics. Mass-energy equivalence. Conservation of four-	
momentum. Centre of momentum frame. De Broglie waves and	9
photons.	
Einstein, the equivalence principle, gravity, gravitational lenses,	
gravitational waves (qualitative)	
Nuclear reactions and thermonuclear power.	-
Optics- Applications and microscopy	No. of
	Lectures
Classical optics: Fermat's Principle	
Fourier Optics: Huygens-Fresnel Principle	
Fourier Optics: Fresnel diffraction integral	
Fourier Optics: Paraxial approximation	9
Fourier Optics: Fraunhofer diffraction	9
Fourier Optics: Apertures and imaging	=
Fourier Optics: phase contrast imaging	
Microscopy applications	

SEC 251 CHE (T)	2 Credit
	No. of
	Lectures
Molecular shape and simple electronic structure, Isomerism: Orbitals,	24
hybridization and shapes of molecules, sterochemical consequences of	
tetrahedral carbon (isomers, enantiomers, R/S, D/L, optical rotation)	
Stereochemistry – optical activity: Molecules with more than one chiral	
centre (diastereomers, meso compounds, separation of racemic	
mixtures)	

Symmetry operations and elements

Group theory: Definition of reducible and irreducible representations, Use of group theory to determine the irreducible representation

Assignment of point groups

Leading to definition of components of character tables (irreducible representations, characters – at least the interpretation of the sign of the character)

Simple applications, Label molecular shapes, isomers, Identify chiral molecules, Physical properties – *e.g.* dipole moment, possible optical isomers, Orbital symmetry labels (*e.g.* s, p & d orbitals in T_d, O_h, D_{4h})

Stereochemistry and Reactions: Prochirality, chirality in Nature, Sterochemistry on atoms other than carbon, Retrosynthetic analysis

Stereochemistry and Mechanism (nucleophilic substitution, elimination from non-cyclic compounds)

Alkene addition reactions – Hydrogenation, halogenation, HX addition. Elimination Reactions epoxide ring forming reactions

Zeeman effect: Effect on the energies of a system by application of a magnetic field; Magnetochemistry, spin and orbital contribution to the magnetic moment

Magnetic resonance spectroscopies: EPR spectroscopy, hyperfine coupling application to organic radicals and to transition metal complexes

Nuclear Magnetic Resonance (NMR), energies of nuclei in magnetic fields

Chemical shift and the δ scale, resonance of different nuclei, shielding, spin-orbit coupling and coupling constants, molecular symmetry

¹³C NMR, ¹H NMR, integration, multiplicity, chemical shift typical ranges

Introduction to molecular spectroscopy and spectroscopic transitions, absorbance, transmittance, the Beer-Lambert Law, intensities of spectroscopic transitions

Quantised vibration and simply harmonic oscillator model, wave functions,

Molecular vibrational modes, vibrational spectroscopy infrared and Raman spectroscopy 3N-5, 3N-6 vibrational degrees of freedom

Vibrational symmetry and IR/Raman activity: Symmetry properties of the vibrational degrees of freedom and to deduce IR, Raman activity. Use of internal coordinates to get symmetry properties of a subset of bands

Vibrational spectroscopy: Local mode approximation. Characteristic infrared absorptions (alkyl CH, alcohol, amine RN H₂ and R₂NH, carboxylic acid, amide, ester, ketone, aldehyde, nitrile RCN, alkyne, alkene, aromatic), fingerprint regions, interpretation of IR spectra

Molecular orbital theory: Electronic spectroscopy requires understanding of electronic structure leading to Molecular orbital theory – HOMO. LUMO

Diatomic molecules, LCAO-MO, Symmetry of MO's

Photoelectron spectroscopy

Generalisation of the application of MO approaches to polyatomic molecules

Hückel Theory

Aromatic and Heterocyclic Chemistry of compounds with delocalised p orbitals: Benzene and Aromaticity/Antiaromaticity, Reactions of Aromatic Compounds Electrophilic aromatic substitution. Reactions of Polycyclic and Heteroaromatic Compounds. Reactions via Aromatic Transition States Electrophilic aromatic substitution on naphthalene. Electrophilic aromatic substitution on heteroaromatics (*e.g.* pyridine and pyrrol). Non C-based aromatic systems

Electronic spectroscopy: Chromophores and excited electronic states, electronic transitions, UV-Vis spectroscopy, Franck-Condon Principle, Franck-Condon factors

Fates of electronic excited states – fluorescence and phosphorescence, non-radiative transitions, internal conversion and intersystem crossing, fluorescence spectra

Applications – light emitting polymers

Organometallic chemistry. Types and broad applications of
organometallic complexes and catalysts. Ligand types and examples.
Group 1 (LiR) and group 2 (Grignard) and p-block chemistries. EPR
spectroscopy as a tool to probe electron distribution in carbocyclic and
organometallic species
Covalent interactions in coordination compounds – rationalisation of
spectrochemical series in terms of bonding interactions
Binary metal carbonyl complexes Synergistic bonding and the 18-
electron rule. IR and NMR spectroscopy
Substitution at metal carbonyl. Other organometallic ligand types and
complexes thereof. Alkyne and alkene complexes. <i>etc</i> .
Redox reaction in organometallic chemistry. Hydrogen complexes and
oxidative addition reactions. Reductive elimination reactions.
Activation and reactions of organometallic ligands. Insertions,
migrations.
Catalysis involving transition metals : Catalytic systems. Water gas shift
reaction, hydrogenations, acetic acid process etc. Metallocene
complexes and their chemistry leading to advanced polymerization
catalysts etc.

MN 291 MTS (T)	4 Credit
Probability	No. of
	Lectures
Review of probability, events, laws of probability	
Conditional probability, independent events	
Random variables; discrete random variables and distributions; mean,	
variance and standard deviation of discrete random variable	
Bernoulli trials, binomial distribution	
Poisson distribution and Poisson process	20
Continuous random variables and distributions, probability density	
functions, cumulative distribution function	
Mean, variance, standard deviation, median and percentiles of a	
continuous distribution	
Normal distribution	

Uniform and exponential distribution	
Uniform and exponential distribution Distributions of functions of a random variable	_
	_
Sums/differences/scalar multiples of random variables, independent	
random variables, distributions of sums/differences of independent	
random variables	
Central Limit Theorem	
Normal approximation to the binomial distribution, distribution of the	
sample mean	
Distribution of sample proportion	
Stochastic processes, Markov chains	
Limiting behavior of Markov chains	
Statistics	No. of
	Lectures
Study design: bias, confounding, precision, comparison, control	
Study design: observational studies vs designed experiments	1
Exploratory data analysis: describing and displaying categorical data	-
(tables, frequencies, bar chart)	
Exploratory data analysis: describing and displaying univariate numeric	-
data (dot plots, boxplots, histograms, mean, median,	
quartiles/percentiles, standard deviation, variance, IQR)	
Exploratory data analysis: describing and displaying bivariate numeric	-
data (scatterplot, correlation)	
Statistical modeling (single mean model, multiple means model,	-
regression model)	
Sampling distributions: population vs sample, parameter vs statistic;	28
distribution of sample mean, proportion; standard error	
Estimation: Confidence intervals, confidence interval for mean (using z),	-
confidence interval for mean using t	
Estimation: confidence interval for difference in mean, confidence	-
intervals for proportion	
Estimation: required sample size, confidence interval vs prediction	-
interval	
Theory of estimation: unbiased estimators, maximum likelihood	_
estimators	
	-
Hypothesis testing: concepts and terminology, testing a single mean	
(z and t)	

Hypothesis testing: errors, power, 2-sample test, paired test, testing	
proportion	
Hypothesis testing: Non-parametric tests for 2 samples	
Comparing multiple means: one-way ANOVA	
Theory of ANOVA	
Regression: least squares method	
Partitioning of variability in regression, significance testing in regression	
Chi-squared test for independence	
Chi-squared goodness-of-fit	

	No. of Lectures
Minerals: Definition, types of minerals, minerals versus crystals,	
branched and scope	
Classification of Minerals (Dana's Classification)	
Properties of Minerals, Physical properties and their identification	
Silicate minerals and their structure, carbonate minerals, ore minerals	
Introduction to the Periodic Table Geochemical classification of elements (Goldschmidt's classification)	
Concept of Partition coefficient and compatible and incompatible elements	
Major oxides, alkali elements, LILE's, HFSEs, REEs and their significance in geology	
Introduction to the Periodic Table	6
Geochemical classification of elements (Goldschmidt's classification)	
Concept of Partition coefficient and compatible and incompatible	
elements	
Major oxides, alkali elements, LILE's, HFSEs, REEs and their	
significance in geology	
Soil and water geochemistry, concepts, and applications	

AEC 251 PS 2 Cr	edit
Formal Presentation Skills	No. of
	Lectures
Presentation Types and Forms	6
Theme based presentations	
Purpose based presentations- informative, persuasive,	
demonstrative, entertaining	
Form based presentation- Collage making.	
News Presentation	6
Understanding facts, focusing on gestures, controlled pace and	
pitch. Topic and Illustration Based Presentation Picture and non-verbal	
presentation	
Presentation on an Article	6
Presentation on an article for a magazine on trending issues	
Presentation based on illustration: Poster presentation	
Presentation- Applications	6
Presentation: based on the current reading material	
E-Portfolio: developing a self-presentation	

EVS 281 FP 2	2 Credit	
Field Project in Earth Science	No. of	
	Lectures	
Environmental fieldwork will be carried out to understand air pollution,	45	
soil and water pollution. Case studies and actual sampling/analyses wil	1	
be carried out		