

Board of Studies B. Tech Data Science Curriculum Structure Applicable from Academic Year 2024-25

> Intake: 60 Duration: 4 Year

110

Eligibility: 1st Year: 12th Science with Maths Direct 2nd Year: Diploma/ Polytechnic in Any Branch

[]] दे। क्रियाचान् संधनिद्धिः

I. PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

Graduates can:

PEO1. Utilize their proficiencies in the fundamental knowledge of basic sciences, mathematics, Artificial Intelligence, data science and statistics to build systems that require management and analysis of large volumes of data.

PEO2. Advance their technical skills to pursue pioneering research in the field of AI and Data Science and create disruptive and sustainable solutions for the welfare of ecosystems.

PEO3. Think logically, pursue lifelong learning and collaborate with an ethical attitude in a multidisciplinary team.

PEO4. Design and model AI based solutions to critical problem domains in the real world. **PEO5.** Exhibit innovative thoughts and creative ideas for effective contribution towards economy building.

II. PROGRAM OUTCOMES (POs)

PO# Graduate Attribute

PO1 Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2 Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3 Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4 Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5 Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO6 The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7 Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9 Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10 Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11 Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12 Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

III. PROGRAM SPECIFIC OUTCOMES (PSOs)

Graduates should be able to:

- **PSO1 Efficient AI-based Processes**: Evolve AI-based efficient domain-specific processes for effective decision making in several domains such as business and governance domains.
- **PSO2 Actionable Insights**: Arrive at actionable foresight, insight, and hindsight from data for solving business and engineering problems.
- **PSO3 Theoretical and Practical Knowledge**: Create, select, and apply the theoretical knowledge of AI and Data Analytics along with practical industrial tools and techniques to manage and solve wicked societal problems.
- **PSO4 Data Analytics and Visualization**: Develop data analytics and data visualization skills, skills pertaining to knowledge acquisition, knowledge representation, and knowledge engineering, and hence be capable of coordinating complex projects.
- **PSO5 Fundamental Research**: Able to carry out fundamental research to cater the critical needs of the society through cutting-edge technologies of AI.

Ist YEAR SEMESTER-1

S. No.	Course Code	Course	L	Τ	Р	Credits
1.	BTDS 101	Linear Algebra and Calculus	3	1	0	4
2.	BTDS 102	Elements of Data Science Engineering	3	0	0	3
3.	BTDS 103	Object Oriented Programming Language	3	0	0	3
4.	BTDS 104	English for Skill Enhancement	2	0	2	4
5.	BTDS 105	IT Workshop	0	0	2	2
6.	BTDS 103L	Object Oriented Programming Language Lab	0	0	4	4
7.	BTDS 106	Seminar-I	0	0	2	2
		Induction Program				
		Total	11	1	10	22

Ist YEAR SEMESTER-2

S. No.	Course Code	Course	L	Т	Р	Credits
1.	BTDS 201	Applied Statistics*	3	1	0	4
2.	BTDS 202	Programming for Problem Solving *	3	1	0	4
3.	BTDS 203	Data Security in Data Science	3	0	1	4
4.	BTDS 204	Software Engineering	2	0	0	2
5.	BTDS 201L	Applied Statistics Lab	0	0	2	2
6.	BTDS 202L	Programming for Problem Solving	0	0	4	4
1	0	Laboratory			-4	21
7.	BTDS 205	Seminar-II	0	0	2	2
1		Total	11	2	9	22

L: Lecture, T: Tutorial, P: Practical, Cr: Credits ETE: End Term Exam, IA: Internal Assessment

Faculty can assign the topics for Seminar-I and Seminar-II based on recent current related topics.

IInd YEAR SEMESTER-3

S. No.	Course Code	Course Title	L	Т	Р	Credits
1	BTDS 301	Mathematics for Data Science	3	1	0	4
2	BTDS 302	Introduction to Data Analytics*	3	0	0	3
3	BTDS 303	Advance Data Structures	3	0	0	3
4	BTDS 304	Web Framework	3	0	0	3
5	BTDS 305	Computer Organization and Architecture	3	0	0	3
6	BTDS 303L	Advance Data Structures Lab	0	0	2	2
7	BTDS 304L	Web Framework Lab	0	0	2	2
8	BTDS 306L	Data Visualization- R Programming/		0	4	2
		Power BI				
		Total	15	1	8	22

IInd YEAR SEMESTER-4

S. No.	Course	Course Title	L	Т	Р	Credits
	Code	NAME OF THE OWNER OF	0			5
1	BTDS 401	Discrete Mathematics	3	0	0	3
2	BTDS 402	Introduction to Artificial Intelligence*	3	0	0	3
3	BTDS 403	Database Management Systems	3	0	0	3
4	BTDS 404	Operating Systems	3	0	0	3
5	BTDS 403L	Database Management Systems Lab	0	0	2	1
6	BTDS 404L	Operating Systems Lab	0	0	2	1
7	BTDS 405L	Node JS/ React JS	0	0	4	4
8	BTDS 406L	Real-time Research Project/Field Based Research Project including Seminar	0	0	4	4
		Total	12	0	12	22

IIIrd YEAR SEMESTER-5

S. No.	Course	Course Title	L	Т	Р	Credits
	Code					
1	BTDS 501	Design and Analysis of Algorithms	3	0	0	3
2	BTDS 502	R Programming	3	0	0	3
3	BTDS 503	Business Economics & Financial Analysis	2	0	0	2
4	BTDS 504	Descriptive Analytics*	3	0	0	3
5		Professional Elective-I	2	0	1	3
6	BTDS 502L	R Programming Lab	0	0	2	2
7	BTDS 503L	Descriptive Analytics Lab	0	0	2	2
8	BTDS 505L	ETL-Kafka/Talend	0	0	4	4
		Total	13	0	9	22

IIIrd YEAR SEMESTER-6 1 March

. 1

S. No.	Course Code	Course Title	L	Т	Р	Credits
1	BTDS 601	Automata Theory and Compiler Design	3	0	0	3
2	BTDS 602	Machine Learning*	3	0	0	3
3	BTDS 603	Predictive Analytics*	3	0	0	3
4	BTDS 604	Professional Practice, Law & Ethics	2	0	0	2
5		Professional Elective – II	2	0	1	3
6	BTDS 602L	Machine Learning Lab	0	0	2	2
7	BTDS 603L	Predictive Analytics Lab	0	0	2	2
8	BTDS 605L	Industrial Oriented Mini Project/ Internship/Skill	0	2	2	4
		Development Course (UI design-Flutter)				
		Total	13	2	7	22

IVth YEAR SEMESTER-7

S. No.	Course Code	Course Title	L	Т	Р	Credits
1	BTDS 701	Big Data Analytics*	3	0	0	3
2	BTDS 702	Web and Social Media Analytics	3	0	0	3
3		Professional Elective -III	3	0	0	3
4		Professional Elective -IV	3	0	0	3
5		Open Elective - I	2	0	1	3
6		Professional Elective -III Lab	0	0	2	2
7	BTDS 701L	Big Data Analytics Lab	0	0	2	2
8	BTDS 704	Project Stage – I including Seminar	0	0	3	3
		Total	14	0	11	22

IVth YEAR SEMESTER-8

S. No.	Course Code	Course Title	L	Т	Р	Credits
1	AL	Professional Elective - V	3	0	1	4
2	100	Professional Elective – VI	3	0	1	4
3	i/	Open Elective – II	3	0	0	3
4	1 Aller	Project Stage – II including Seminar*	0	0	22	11
1	1.0	Total	9	0	22	22
1	- the	Total Credits	1		176	1

71

*MC – Satisfactory/Unsatisfactory, #Skill Course - 1 credit with 2 Practical Hours

Professional Elective-I

BTDS 511PE	Graph Theory
BTDS 512PE	Advanced Computer Architecture
BTDS 513PE	Web Programming
BTDS 514PE	Image Processing
BTDS 515PE	Computer Graphics

Professional	Elective	- II

BTDS 621PE	Software Testing Methodologies

BTDS 622PE	Information Retrieval Systems
BTDS 623PE	Pattern Recognition
BTDS 624PE	Computer Vision and Robotics
BTDS 625PE	Data Warehousing and Business Intelligence

Professional Elective - III

BTDS 731PE	Internet of Things
BTDS 732PE	Data Mining
BTDS 733PE	Scripting Languages
BTDS 734PE	Mobile Application Development

[#] Courses in PE - III and PE - III Lab must be in 1-1 correspondence.

Professional Elective -IV

BTDS 741PE	Quantum Computing
BTDS 7/2PE	Event Systems
DTDS 742FE	Club
BTDS 743PE	Cloud Computing
BTDS 744PE	Game Theory
BTDS 745PE	Knowledge Representation and Reasoning

Professional Elective - V

BTDS 851PE	Social Network Analysis
BTDS 852PE	Federated Machine Learning
BTDS 853PE	Augmented Reality & Virtual Reality
BTDS 854PE	Web Security
BTDS 855PE	Ad-hoc & Sensor Networks

Professional Elective – VI

BTDS 861PE	Speech and Video Processing
BTDS 862PE	Robotic Process Automation
BTDS 863PE	Randomized Algorithms
BTDS 864PE	Cognitive Computing
BTDS 865PE	Semantic Web

Open Elective I:

- 1. BTDS 721OE: Introduction to Natural Language Processing
- 2. BTDS 722OE: AI applications

Open Elective II:

- 1. BTDS 831OE: Chatbots
- 2. BTDS 832OE: Evolutionary Computing

कवाचान स पचिछि

	Mapping of Course Outcome and Programme Outcome																					
Y ea r	Sem este r	Cours e Name	Р О 1	P O 2	P O 3	Р О 4	P O 5	P O 6	Р О 7	P O 8	P O 9	Р О 10	Р О 11	P O 12	PS 0 1	PS 0 2	PS 0 3	P E O 1	P E O 2	P E O 3	P E O 4	P E O 5
		BTDS 101: Linear Algebr a and Calcul us	3	2	3	1	2	0	0	0	1	2	1	2	3	2	3	3	2	1	2	1
		BTDS 102: Eleme nts of Data Scienc e	3	3	2	3	2	1	0	1	2	3	2	2	3	3	2	3	2	3	2	2
	1	BTDS 103: Object Orient ed Progr ammi ng	3	3	3	2	3	1	0	0	2	3	1	2	3	2	3	3	2	2	3	2
T	(BTDS 104: Englis h for Skill Enhan cemen t	2	1	2	0	1	1	0	3	3	3	2	2	1	1	× ×	1	ALL AND	2	1	1
1	1	BTDS 105: IT Works hop	3	2	3	3	3	1	1	1	3	3	2	3	3	3	2	3	2	3	3	2
	1	BTDS 106: Semin ar-I	2	1	2	2	1	1	0	2	3	3	2	2	1	2	1	2	2	3	1	1
		BTDS 201: Applie d Statist ics	3	3	2	2	2	0	0	0	0	0	0	0	3	3	2	3	3	3	3	2
	2	BTDS 202: Progr ammi ng for Proble m Solvin g	3	3	3	2	3	0	0	0	0	0	0	0	3	3	3	3	3	3	3	2
		BTDS 203: Data Securi ty in Data	3	3	2	2	2	0	0	0	0	0	0	0	3	3	3	3	3	3	3	2

B. Tech Data Science

		Scienc e																				
		BTDS 204: Softwa re Engin eering	3	3	2	3	2	0	0	0	0	0	0	0	3	3	2	3	3	3	3	2
		BTDS 201L: Applie d Statist ics Lab	3	3	2	3	2	0	0	0	0	0	0	0	3	3	3	3	3	3	3	2
		BTDS 202L: Progr ammi ng for Proble m	3	3	3	2	2	0	0	0	0	0	0	0	3	3	3	3	3	3	3	2
	1	g Lab BTDS 205: Semin ar-II	2	3	2	3	2	0	0	0	0	0	0	0	3	3	2	3	3	3	3	2
П	3	BTDS 204 Data Struct ures & Algori thms	3	3	2	3	2	2	1	0.000	NT \$5 D	1997 I	1. 1. 16	1	3	2	2	2	2	2	3	3
	1	BTDS 205 Datab ase Mana gemen t Syste ms	3	3	2	2	3	2	1	1	X = 1 = X	NE TT	N N N	1	3	3	2	2	2	2	3	3
		BTDS 304 Comp uter Netwo rks	3	3	2	3	3	2	1		17 (B) =	7	ui	1	3	2	3	2	2	2	3	3
		BTDS 205 Opera ting Syste ms	3	3	3	3	3	2	1	-	-	-	-	2	3	2	3	2	2	2	3	3
		BTDS 201 Discre te Mathe matics	3	3	2	2	2	2	1	-	-	-	-	1	3	3	2	2	2	2	3	3

II I

Savitribai Phule Pune University (Formerly University of Pune) DEPARTMENT OF TECHNOLOGY

	BTDS 202 Object - Orient ed Progr ammi	3	3	2	3	2	2	1	-	-	_	_	1	3	2	2	2	2	2	3	3
4	ng BTDS 302 Data Minin g	3	3	3	2	2	2	2	3	2	2	3	2	3	3	2	3	2	3	2	2
	BTDS 303 Opera ting Syste ms	3	3	3	2	2	3	2	2	3	2	2	3	3	2	3	2	3	3	2	2
	BTDS 304 Design and Analys is of Algori thms	3	3	3	2	3	2	3	2	3	2	3	2	3	3	3	2	3	3	2	
1	BTDS 305 Data Visual ization	3	3	3	2	2	2	3	2	3	2	2	3	3	3	2	3	3	2	3	2
	Design and Analys is of Algori thms	3	3	3	2	2		~	1.5	ANT:		1.89	2	3	3	2	11	2	5	-	-
1	Opera ting Syste ms	3	3	3	2	2	1	1. 2	11.3	ī	-	2	2	3	3	2	21	Ś	R.	1	8_
5	Data Wareh ousing and Minin	3	3	3	2	2	1001	1 1 10	B 1	(H)	4.1	5.6	1 21	3	3	2	V.C.		/	- 0	-
	6 Compi ler Design	3	3	3	2	2	-	-	-	0.1	-	-	-	3	3	2	-	-	-	_	-
	Artific ial Intelli gence	3	3	3	2	2	_	-	-	_	-	-	_	3	3	2	-	_	_	-	-
6	Machi ne Learni	3	3	2	2	3	-	-	-	-	-	-	-	3	3	3	3	3	3	3	3
U	Data Visual ization	3	3	1	2	3	_	-	-	_	-	-	_	3	3	3	3	3	3	3	3

Cloud Comp uting	3	3	2	2	3	-	-	-	-	-	-	-	3	3	3	3	3	3	3	3
Data Minin g and Wareh ousing	3	3	1	3	3	-	-	-	-	-	-	-	3	3	3	3	3	3	3	3
Opera ting Syste ms	3	3	2	2	3	-	-	-	-	-	-	-	3	3	3	3	3	3	3	3
Big Data Analyt ics*	3	3	3	2	2	2	2	3	2	2	3	2	3	3	2	3	2	3	2	2
Web and Social Media Analyt	3	3	3	2	2	3	2	2	3	2	2	3	3	2	3	2	3	3	2	2
Profes sional Electiv e -III	3	3	3	2	3	2	3	2	3	2	3	2	3	3	3	2	3	3	2	
Profes sional Electiv e -IV	3	3	3	2	2	2	3	2	3	2	2	3	3	3	2	3	3	2	3	2
Open Electiv e - I	3	3	3	2	2	2	2	3	2	2	3	2	3	3	2	3	2	3	2	2
Profes sional Electiv	3	3	3	2	2	3	2	2	3	2	2	3	3	2	3	2	3	3	2	2
Profes sional Electiv	3	3	3	2	3	2	3	2	3	2	3	2	3	3	3	2	3	3	2	ł.
Open Electiv e – II	3	3	3	2	2	2	3	2	3	2	2	3	3	3	2	3	3	2	3	2
Projec t Stage - II includi ng Semin ar*	3	3	3	2	3	2	3	2	3	2	3	2	3	3	3	2	3	3	2	

I V 7

BTDS 101: LINEAR ALGEBRA AND CALCULUS

		B.Te	ech. II Year I Sem.							
	Teaching Scl	neme:	Credit	Examination So	cheme:					
	TH: - 4 Hours	s/Week	TH: 04	In Sem. Evaluation	: 25 Marks					
				Mid Sem. Exam:	25 Marks					
				End Sem. Exam:	50 Marks					
				Total	: 100 Marks					
Cours	e Prerequisites: H	Basic understandin	g of high school mathematics	algebra, geometry, trigon	ometry).					
Cours	e Objective:									
1.	Understand fundar	mental concepts of	linear algebra and calculus.							
2.	Develop problem-	solving skills usin	g algebraic and calculus metho	ds.						
3.	Apply linear algeb	ora and calculus tec	chniques to real-world problem	s.						
4.	Integrate knowled	ge of linear algebr	a and calculus in advanced top	ics in data science and eng	gineering.					
_ earni	ng Course Outcom	ie:	^							
After s	uccessful completi	on of the course, s	students will able to:							
1.	Demonstrate a con	nprehensive under	standing of vector and matrix of	operations, including addition	tion,					
	multiplication, and	I finding determina	ants and inverses.							
2.	Solve systems of la	inear equations us	ing Gaussian elimination and C	Bauss-Jordan elimination,	and determine					
	the nature of the so	olution sets.	-							
3.	Calculate eigenval	ues and eigenvect	ors of matrices, and understand	their applications in data	science and					
	engineering contex	xts.		**						
4.	Understand and ap	oply the concepts o	f functions, limits, and continu	ity in mathematical and re	eal-world					
	problems.									
5.	Compute derivativ	ves of functions usi	ing various differentiation rule	s, and apply differentiation	n techniques					
	to optimization and	d related rates prol	olems.							
6.	Calculate indefinit	e and definite inte	grals using various techniques	of integration, and apply i	integration to					
	problems involving	g areas and volum	es.		C					
		<u> </u>	Course Contents							
	UNIT-I		Vectors and Matrice	s	07 Hours					
ntrodi	iction to vectors:	definitions opers	tions and properties. Dot p	roduct and cross produc	t Matrices:					
lefinit	ions types and or	perations Matrix	multiplication and properties	• Determinants and the	eir properties					
nverse	varse of a matrix Hands-on Evergises.									
	Vector operation	s and visualizatio	•							
•	Matrix multiplies	s and visualization	nant calculations							
•	Maura multiplica		mant calculations							
	UNIT-II		Systems of Linear Equat	ions	08 Hours					
ntrodu	iction to systems of	of linear equation	us. Gaussian elimination and	Gauss-Jordan eliminati	ion. Row					
chelo	n form and reduce	ed row echelon fo	orm. Solution sets: unique in	finite, and no solution	Applications					
n engi	neering and data s	science. Hands-	on Exercises:	in no solution,						
•	Solving systeme	of linear equation	15							
•	Applications in r	eal-world scenar								
•	r pprications in to	cui worra sconar								

UNIT-III	Eigenvalues and Eigenvectors	08 Hours
Introduction to eigenva	lues and eigenvectors, Characteristic polynomial and finding eigenvectors	alues,
finding eigenvectors corr	esponding to eigenvalues, Diagonalization of matrices, Applications	s in data
science and engineering.	Hands-on Exercises:	
Finding eigenvalu	les and eigenvectors	
Diagonalizing ma	itrices and applications	07.11
UNII-IV	Functions and Limits	07 Hours
Introduction to function	s: definitions, types, and properties, Domain and range of functions,	Composition
of functions and inverse	functions, Limits: definitions, properties, and calculation techniques	, Continuity
and its implications. Har	Ids-on Exercises:	
Function operation Calculating limits	s and exploring continuity	
	, and exploring continuity	
UNIT-V	Differentiation	08 Hours
Definition of the derivati	ve and interpretation, Basic differentiation rules (power, product, qu	iotient,
chain), Higher-order deri	vatives, Implicit differentiation, Applications: optimization, motion,	, related
rates. Hands-on Exercis	es:	
Differentiation pr	actice problems	
Real-world applie	cations of derivatives	
UNIT-VI	Integration	08 Hours
Introduction to integration	n: definitions and properties, Indefinite and definite integrals, Funda	amental
Theorem of Calculus, Te	chniques of integration: substitution, integration by parts, Application	ons: area
under curves, volume of	solids of revolution. Hands-on Exercises:	
Integration practi	ce problems	
Applications of it	itegration in various fields	
REFERENCE BOOH		
1. Linear Algebr	a and its Applications by Gilbert Strang	
2. "Introduction to	D Linear Algebra" by Gilbert Strang	
3. "Calculus: Earl	y Transcendentals" by James Stewart	
4. "Calculus" by I	Michael Spivak	

INTERNAL ASSESSMENT (IA)

Two internal assessments and an end semester examination to test students' reading and writing skills along with their grammatical and lexical competence. Assessment will include following things:

- Internal Assessment: 25 Marks 1. Attendance
 - 2. Assignments
 - 3. Case Study/Mini Project/Presentation
- Mid Semester Exam: 25 Marks
- End Semester Exam: 50 Marks

CO's-PO's & PSO's MAPPING

Course Outcomes (CO)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4
CO1	3	2	-	-	-	3	2	1 m	2
CO2	3	3		2	Sec.	3	1	. 63	2
CO3	3	2	-	12100	3	3	N 1	2	2
CO4	3	2	2	1.5		C LIFE	3	1	2
CO5	3	3	2	5	2	-	2	2	-
CO6	3	3	2	-	2	-	3	- 7 -	2
Course Outcomes (CO)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4

REALITY OF MERSON

1 - low, 2 - medium, 3 - high, '-' - no correlation

BTDS 102: ELEMENTS OF DATA SCIENCE ENGINEERING B.Tech, I Year I Sem.

Teaching Scheme:	Credit	Examination Scheme:
TH: - 4 Hours/Week	TH: 04	In Sem. Evaluation: 25 Marks
		Mid Sem. Exam: 25 Marks
		End Sem. Exam: 50 Marks
		Total : 100 Marks

Course Prerequisites: 10 + 2 Physics

Course Objective:

- 1. **Introduce Fundamental Concepts**: Provide a comprehensive understanding of the basic concepts and principles of data science.
- 2. **Explore the Data Lifecycle**: Familiarize students with the stages of the data lifecycle, including data collection, cleaning, analysis, modeling, and visualization.
- 3. **Hands-on Experience with Tools**: Equip students with practical skills using essential data science tools and programming libraries.
- 4. **Develop Analytical Skills**: Enhance students' ability to perform exploratory data analysis and interpret data insights.
- 5. **Understand Data Modeling**: Introduce machine learning concepts and algorithms, and their application in building predictive models.
- 6. Communicate Insights Effectively: Teach students to create effective data visualizations and communicate findings clearly to diverse audiences.

Learning Course Outcome:

After successful completion of the course, students will able to:

- **CO1** Understand and Define Data Science: Articulate the scope, significance, and applications of data science across various industries.
- **CO2** Navigate the Data Lifecycle: Describe and implement the stages of the data lifecycle from data collection to deployment.
- **CO3** Collect and Clean Data: Apply techniques for data collection from various sources and perform data cleaning to prepare datasets for analysis.
- **CO4 Perform Exploratory Data Analysis**: Use statistical methods and visualization techniques to explore and analyze data.
- **CO5** Build and Evaluate Models: Implement basic machine learning algorithms, evaluate their performance, and interpret the results.
- **CO6** Visualize Data Effectively: Create clear and impactful data visualizations using advanced tools and techniques.
- **CO7** Communicate Data Findings: Present data insights effectively, using storytelling techniques to convey complex information to non-technical audiences.

CO8 Apply Tools and Techniques: Demonstrate proficiency in using Python libraries (e.g., NumPy, Pandas, Matplotlib, scikit-learn) and data visualization tools (e.g., Tableau, Power BI).

	Course Contents	
UNIT-I	Introduction to Data Science	07 Hours

C	Will of D	ope							
	• What is Data Science? • Evolution and significance of Data Science								
C	• Key components and interdisciplinary nature								
	Applications of Data Science								
• Appl	• Applications of Data Science								
C	Case studi	as of successful data science projects							
	o Case studies of successful data science projects								
UNI	T-II	Data Acquisition and Collection	08 Hours						
Data	Sources: Ide	ntifying and integrating various data sources such as databases, APIs, web s	craping, IoT						
devic	es, and public	e datasets.							
Data	Collection T	ools: Tools and technologies for data collection such as Python libraries (e.g	5.,						
Beau	tifulSoup, Sci	capy), and ETL (Extract, Transform, Load) tools like Apache NiFi, Talend, a	ınd						
Infor	matica.								
• APIs	and Web Sc	raping : Techniques to gather data from the web and APIs.							
UNI	T-III	Data Storage and Management	08 Hours						
Dete	hases Relatio	onal databases (e.g. MySOL PostgreSOL) and NoSOL databases (e.g. Mou	INDB						
Cass	andra) for stru	ictured and unstructured data storage	IgoDD,						
• Data	Warehousin	σ : Systems designed for query and analysis such as Amazon Redshift Good	vle						
BigO	uery and Sno	wflake	510						
• Data	Lakes: Stora	we repositories that hold large amounts of raw data in its native format such	as Hadoon						
HDE	S and Amazon	n S3	us Hudoop						
	o und / muzo	n 55.							
τ	UNIT-IV	Data Processing and Cleaning	07						
			Hanna						
Data	Cleaning [.] Te	echniques for handling missing values outliers and duplicates using librarie	Hours						
Dutu	a and duly	seminques for numering missing values, outliers, and aupheates using noralle	s like						
panda	as and odivr.		s like						
pandaData	as and upryr. Transforma	tion: Methods for data normalization, encoding, and scaling using tools such	s like						
• Data Pytho	as and uppyr. Transforma on's pandas at	tion: Methods for data normalization, encoding, and scaling using tools such a scikit-learn.	s like						
 panda Data Pytho Batc 	as and uppyr. Transforma on's pandas an h and Stream	tion : Methods for data normalization, encoding, and scaling using tools such a scikit-learn. Processing : Frameworks for large-scale data processing, like Apache Spar	s like as k for batch						
 Data Pytho Batch 	as and uppyr. Transforma on's pandas an h and Stream essing and Ap	tion : Methods for data normalization, encoding, and scaling using tools such a scikit-learn. Processing : Frameworks for large-scale data processing, like Apache Spar ache Kafka for stream processing.	s like as k for batch						
 Data Pytho Batch proce 	as and uppyr. Transforma on's pandas an h and Stream essing and Ap	 tion: Methods for data normalization, encoding, and scaling using tools such a scikit-learn. Processing: Frameworks for large-scale data processing, like Apache Sparache Kafka for stream processing. 	s like as k for batch						
panda • Data Pytho • Batcl proce	Transforma on's pandas an h and Stream essing and Ap	tion: Methods for data normalization, encoding, and scaling using tools such nd scikit-learn. Processing : Frameworks for large-scale data processing, like Apache Spar ache Kafka for stream processing. Data Exploration and Visualization	s like as k for batch						
panda • Data Pytho • Batc proce	as and uppyr. Transforma on's pandas an h and Stream essing and Ap IT-V	tion: Methods for data normalization, encoding, and scaling using tools such nd scikit-learn. h Processing : Frameworks for large-scale data processing, like Apache Spar ache Kafka for stream processing. Data Exploration and Visualization	s like as k for batch 08 Hours						
 panda Data Pytho Batch proce UNI 	as and uppyr. Transforma on's pandas an h and Stream essing and Ap IT-V	tion: Methods for data normalization, encoding, and scaling using tools such a scikit-learn. 1 Processing: Frameworks for large-scale data processing, like Apache Spar ache Kafka for stream processing. Data Exploration and Visualization	s like as k for batch 08 Hours						
 panda Data Pytho Batcl proce UNI Explana 	Transforma on's pandas an h and Stream essing and Ap TT-V oratory Data	tion: Methods for data normalization, encoding, and scaling using tools such a scikit-learn. a Processing: Frameworks for large-scale data processing, like Apache Spar ache Kafka for stream processing. Data Exploration and Visualization Analysis (EDA): Techniques for summarizing and visualizing data distributed bits.	s like as k for batch 08 Hours tions and						
 panda Data Pytho Batcl proce UNI Explored Pate 	Transforma on's pandas an h and Stream essing and Ap IT-V oratory Data onships using	tion: Methods for data normalization, encoding, and scaling using tools such and scikit-learn. Processing : Frameworks for large-scale data processing, like Apache Spar ache Kafka for stream processing. Data Exploration and Visualization Analysis (EDA): Techniques for summarizing and visualizing data distribut tools like Jupyter notebooks, pandas, Matplotlib, Seaborn, and Plotly.	s like as k for batch 08 Hours tions and						
 panda Data Pytho Batch proces UNI Explands Data Data 	as and uppyr. Transforma on's pandas an h and Stream essing and Ap IT-V oratory Data onships using Visualization	tion: Methods for data normalization, encoding, and scaling using tools such a scikit-learn. Processing : Frameworks for large-scale data processing, like Apache Sparache Kafka for stream processing. Data Exploration and Visualization Analysis (EDA): Techniques for summarizing and visualizing data distributions like Jupyter notebooks, pandas, Matplotlib, Seaborn, and Plotly. n : Creating interactive and static visualizations using libraries such as Tables	s like as k for batch 08 Hours tions and au, Power						
 panda Data Pytho Batcl proce UNI Explored Data BI, D 	as and uppyr. Transforma on's pandas an h and Stream essing and Ap IT-V oratory Data onships using Visualization 03.js, and Dasi	tion: Methods for data normalization, encoding, and scaling using tools such a scikit-learn. Processing : Frameworks for large-scale data processing, like Apache Spar ache Kafka for stream processing. Data Exploration and Visualization Analysis (EDA): Techniques for summarizing and visualizing data distribu- tools like Jupyter notebooks, pandas, Matplotlib, Seaborn, and Plotly. n : Creating interactive and static visualizations using libraries such as Tablea h.	s like as k for batch 08 Hours ttions and au, Power						
 panda Data Pytho Batcl proce UNI Explared Data BI, D UNI 	as and uppyr. Transforma on's pandas an h and Stream essing and Ap IT-V oratory Data onships using Visualization 03.js, and Dasi T-VI	tion: Methods for data normalization, encoding, and scaling using tools such a scikit-learn. Processing : Frameworks for large-scale data processing, like Apache Spar ache Kafka for stream processing. Data Exploration and Visualization Analysis (EDA): Techniques for summarizing and visualizing data distribu- tools like Jupyter notebooks, pandas, Matplotlib, Seaborn, and Plotly. n: Creating interactive and static visualizations using libraries such as Tables h.	s like as for batch batc						
 panda Data Pytho Batch proce UNI Explored Data BI, D UNI 	as and uppyr. Transforma on's pandas and h and Stream essing and Ap IT-V oratory Data onships using Visualization 03.js, and Dash T-VI	tion: Methods for data normalization, encoding, and scaling using tools such a scikit-learn. Processing: Frameworks for large-scale data processing, like Apache Spar ache Kafka for stream processing. Data Exploration and Visualization Analysis (EDA): Techniques for summarizing and visualizing data distributions to the stream process, pandas, Matplotlib, Seaborn, and Plotly. n: Creating interactive and static visualizations using libraries such as Tables h.	s like as for batch batc						

- **Cloud Platforms**: Services like AWS, Google Cloud Platform (GCP), and Microsoft Azure for hosting and managing data science applications.
- **Containerization and Orchestration**: Tools like Docker and Kubernetes for deploying and managing microservices and data science models in a scalable manner.
- **Model Deployment**: Techniques for deploying machine learning models as APIs using frameworks like Flask, FastAPI, TensorFlow Serving, and AWS SageMaker.

Course Activities and Assessments

- Hands-on Labs: Practical exercises and lab sessions to apply theoretical concepts.
- Mini Projects: Small-scale projects involving real-world datasets to reinforce learning.
- Quizzes and Exams: Regular assessments to test understanding of key concepts.
- Group Discussions: Collaborative discussions and presentations on data science topics.

References

Textbooks

- 1. "Python for Data Analysis" by Wes McKinney
 - A practical guide to data manipulation and analysis using Python and its powerful libraries like Pandas, NumPy, and IPython.
- 2. "Data Science from Scratch: First Principles with Python" by Joel Grus

A hands-on guide to understanding and implementing data science algorithms from scratch using Python.

3. "Introduction to Machine Learning with Python: A Guide for Data Scientists" by Andreas C. Müller and Sarah Guido

A comprehensive introduction to machine learning, covering the fundamentals and practical applications using Python.

4. **"Data Mining: Concepts and Techniques" by Jiawei Han, Micheline Kamber, and Jian Pei** A detailed textbook on data mining techniques, covering both theory and practical applications.

[1] या क्रियापांच रा पण्डि/।

5. "The Data Warehouse Toolkit: The Definitive Guide to Dimensional Modeling" by Ralph Kimball and Margy Ross

A foundational book on data warehousing and dimensional modeling.

INTERNAL ASSESSMENT (IA)

Two internal assessments and an end semester examination to test students' reading and writing skills along with their grammatical and lexical competence.

Assessment will include following things:

- Internal Assessment: 25 Marks 1. Attendance
 - 2. Assignments
 - 3. Case Study/Mini Project/Presentation
- Mid Semester Exam: 25 Marks
- End Semester Exam: 50 Marks

CO's-PO's & PSO's MAPPING

COs/POs & PSOs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	2	- 1/-	-	1		-	3	2	1	-	-
CO2	3	3	2	2	2	- 11	-	3	3	3	2	-
CO3	3	3	1.1.5	-65	3	_ 4	-	3	3	3	2	-
CO4	3	3	1	3	3	-	-	3	3	2	2	-
CO5	3	3	1	3	3	-	-	3	3	3	2	~
CO6	2	3	-	2	3	-	-	3	3	3	3	-
CO7	2	3	2	-	3	_	_	3	3	3	3	-
CO8	3	3	1	2	3	-1.5	-	3	3	3	3	2

TO BE FULLY

1 - low, 2 - medium, 3 - high, '-' - no correlation

Tel Di Li - de

BTDS 103: OBJECT ORIENTED PROGRAMMING LANGUAGE

Teaching S	cheme:	Credit	Examination S	heme:					
TH· - 4 Hou	rs/Week		In Sem Evaluation	25 Marks					
111 4 11001	IS/ WUCK	111. 04	Mid Som Evom.	25 Marks					
			Find Som Exam.	25 Marks					
			Enu Sem. Exam:	50 Marks					
Course Prorequisites: Pasie understanding of programming concents									
Course Objective:	Dasic understand	ing of programming concep	15.						
	a tha frandamantal	concerts of chiest eviented							
	1. To introduce the fundamental concepts of object-oriented programming.								
2. To provide a and C++.	a comprehensive t	inderstanding of the differen	ces and similarities betw	ween Java					
3. To develop	problem-solving s	kills using object-oriented p	rinciples.						
4. To apply ob	ject-oriented conc	epts in software development	nt.						
5. To understa	nd the principles of	of inheritance, polymorphisn	n, encapsulation, and ab	straction.					
6. To familiari	ze students with s	tandard libraries and framew	orks in Java and C++.						
Learning Course Out	come:								
After successful comp	letion of the cour	se, students will able to:							
CO1: Understan	nd and apply the b	asic principles of object-orie	ented programming in J	ava and C++.					
CO2: Develop a	and use classes an	d objects in Java and C++.							
CO3: Implement	nt inheritance to p	comote code reuse and devel	op a hierarchical class s	tructure.					
CO4: Use poly	morphism to creat	e flexible and reusable code.	-						
CO5: Apply en	capsulation and ab	straction to design robust so	oftware.						
CO6: Handle ex	xceptions and perf	orm file I/O operations in Ja	va and C++.						
CO7: Utilize ad	lvanced features su	ich as templates, generics, a	nd multithreading.						
		Course Contents							
UNIT-I	Introduction	to Object-Oriented Prog	ramming (OOP)	07 Hours					
Procedural vs. Object	ct-Oriented Progra	mming, Basic Concepts: Cl	asses, Objects, Methods	, and					
Messages, Benefits of (OOP. Principles of	Object-Oriented Programm	ing, Benefits of OOP, I	ntroduction					
to Java and C++, Basic	Syntax and Struct	ure, Compiling and Runnin	g Programs.						
UNIT-II		Classes and Objects		08 Hours					
Defining Classes and C	Creating Objects, O	Constructors and Destructors	s, Access Specifiers, Sta	tic Members					
and Methods, This Pointer in C++ / This Keyword in Java.									
UNIT-IIIInheritance08 Hours									
Concept of Inheritance,	, Types of Inherita	nce: Single, Multiple (C++)	, Multilevel, Hierarchic	al, Hybrid,					
Constructor and Destru	ctor Calls in Inher	itance, Method Overriding,	The super Keyword in J	lava, Virtual					
Base Classes in C++									
UNIT-IV	Polymorphism 07 Hours								

Function Overloading and Operator Overloading in C++, Method Overloading in Java, Virtual Functions and Abstract Classes in C++, Interfaces and Abstract Classes in Java, Runtime Polymorphism, Type Casting.

UNIT-V	Encapsulation and Abstraction	08 Hours							
Data Hiding and Encapsulation, Access Modifiers and Their Usage, Abstract Classes and Methods,									
Packages in Java and Namespaces in C++, Implementing Abstraction									
UNIT-VI	Advanced Object-Oriented Concepts & Real-World Applications and Case Studies	08 Hours							
	Applications and Case Studies								
Exception Hand	ling in Java and C++, File Handling: Stream Classes in C++, File I/O in Java	, Templates							
and Generics, St	andard Template Library (STL) in C++, Collections Framework in Java, Mu	Itithreading							
Developing a Si	y: Thread Management in C++, Thread Class and Kunnable Interface in Java	lication							
Case Study: Lib	rary Management System, Best Practices in OOP, Debugging and Testing Ob	piect-							
Oriented Program	ms	5							
References									
TEXT BO	OKS								
1. Jeri R.	Hanly and Elliot B.Koffman, Problem solving and Program Design in	C							
7th Ed	ition, Pearson								
2. B.A. F	prouzan and R.F. Gilberg C Programming and Data Structures, Cengage								
Learnii	ng, (3rd Edition)								
3. Brian V	W. Kernighan and Dennis M. Ritchie, The C Programming Language,								
Prentic	e Hall of India								
4. E. Bala	gurusamy, Computer fundamentals and C, 2nd Edition, McGraw-Hill								
5. Yashav	ant Kanetkar, Let Us C, 18th Edition, BPB								
6. R.G. D	romey, How to solve it by Computer, Pearson (16th Impression)								
7. Program	mming in C, Stephen G. Kochan, Fourth Edition, Pearson Education.								
8. Herber	t Schildt, C: The Complete Reference, Mc Graw Hill, 4th Edition								
9. Byron	Gottfried, Schaum's Outline of Programming with C, McGraw-Hill								

INTERNAL ASSESSMENT (IA)

Two internal assessments and an end semester examination to test students' reading and writing skills along with their grammatical and lexical competence. Assessment will include following things:

- Internal Assessment: 25 Marks 1. Attendance
 - 2. Assignments
 - 3. Case Study/Mini Project/Presentation
- Mid Semester Exam: 25 Marks
- End Semester Exam: 50 Marks

CO's-PO's & PSO's MAPPING

Course Outcomes (CO)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4
CO1: Understand and apply the basic principles of object-oriented programming in Java and C++	3	3	2	2	3		-	2	2	2	2
CO2: Develop and use classes and objects in Java and C++	3	3	2	2	3	-	-	3	3	3	2
CO3: Implement inheritance to promote code reuse and develop a hierarchical class structure	3	3	2	2	3	7	R	3	3	3	2
CO4: Use polymorphism to create flexible and reusable code	3	3	2	2	3	101-10 	Ľ	3	3	3	2
CO5: Apply encapsulation and abstraction to design robust software	3	3	2	2	3	-	-	3	3	3	2
CO6: Handle exceptions and perform file I/O operations in Java and C++	3	3	2	2	3	-	-	3	3	3	2
CO7: Utilize advanced features such as templates, generics, and multithreading	3	3	2	2	3	45	10	3	3	3	2

1 - low, 2 - medium, 3 - high, '-' - no correlation

BTDS 104: ENGLISH FOR SKILL ENHANCEMENT B.Tech, I Year I Sem.

Tea TH:	ching Scheme: - 4 Hours/Week	Credit TH: 04	Examination S In Sem. Evaluation	cheme: : 25 Marks					
			Mid Sem. Exam:	25 Marks					
			End Sem. Exam:	50 Marks					
Course Prerequisites: English Grammar basic knowledge									
Course Objective:									
1. Impro	1. Improve the language proficiency of students in English with an emphasis on								
Voca	bulary. Grammar. Readin	g and Writing skills.	I I I I I I I I I I I I I I I I I I I						
2. Deve	op study skills and comm	nunication skills in various	professional situations.						
3. Equip	students to study engined	ering subjects more effectiv	ely and critically using	g the					
theore	etical and practical compo	onents of the syllabus.							
Learning Cou	rse Outcome:								
After successf	ul completion of the cour	se, students will able to:							
1. Unde	rstand the importance of v	vocabulary and sentence str	uctures.						
2. Choo	se appropriate vocabula	ry and sentence structure	es for their oral and	l					
writte	en communication.	5							
3. Demo	onstrate their understanding	ng of the rules of functional	grammar.						
4. Deve	op comprehension skills	from the known and unkno	wn passages.						
5. Take	an active part in drafting	paragraphs, letters, essays	, abstracts, précis and	l					
repor	ts in various contexts.								
6. Acau	ire basic proficiency in re	ading and writing modules	of English.						
		Course Contents							
UNIT-I	Chapter entitled 'Toaste	ed English' by R.K.Narayar	from "English:	07 Hours					
	Language, Context and	Culture" published by Ori	ent BlackSwan,						
	Hyderabad.								
Vocabulary	The Concept of W	ord Formation -The Use	of Prefixes and Suffi	ixes -					
J	Acquaintance with Pre	fixes and Suffixes from F	Foreign Languages to	form					
	Derivatives - Synonyms	s and Antonyms	8 8 8 8						
Grammar:	Identifying Common	Errors in Writing with Ref	erence to Articles and	Prepositions.					
Reading:	Reading and Its Importa	nce- Techniques for Effect	ive Reading.						
Writing:	Sentence Structures -Us	se of Phrases and Clauses i	n Sentences- Importar	nce of					
	Proper Punctuation- Techniques for Writing precisely – Paragraph Writing –								

Types, Structures and Features of a Paragraph - Creating Coherence-									
	Organizing Principles of Paragraphs in Documents.								
UNIT-II	Chapter entitled 'Appro JRD' by Sudha Murthy from	08 Hours							
0111-11	"English: Language, Context and Culture" published by								
	Orient BlackSwan, Hyderabad.								
Vocabulary:	Words Often Misspelt - Homophones, Homonyms and Homographs								
Grammar:	Identifying Common Errors in Writing with Reference to Noun-pronoun								
	Agreement and Subject-verb Agreement.								
Reading:	Sub-Skills of Reading – Skimming and Scanning – Exercises for Practice	•							
Writing	Nature and Style of Writing Defining /Describing People Objects Place								
witting.	and Events Classifying Providing Examples or Evidence	3							
	and Events — Classifying-1 loviding Examples of Evidence.								
UNIT-III	Chapter entitled 'Lessons from Online Learning' by F.Haider Alvi.	08 Hours							
	Deborah Hurst et al from								
	"English: Language, Context and Culture" published by Orient								
	BlackSwan, Hyderabad.								
Vocabulary:	Words Often Confused - Words from Foreign Languages and their Use in	L							
English. Gra	mmar: Identifying Common Errors in Writing with Reference to								
Misplaced M	odifiers and Tenses.								
Reading:	Sub-Skills of Reading – Intensive Reading and Extensive Reading –								
	Exercises for Practice.								
Writing:	Format of a Formal Letter-Writing Formal Letters E.g., Letter of Compla	int,							
	Letter of Requisition, Email Etiquette, Job Application with CV/Resume.								
UNIT-IV	Chapter entitled 'Art and Literature' by Abdul Kalam from	07 Hours							
	"English: Language, Context and Culture" published by								
	Orient BlackSwan, Hyderabad.								
Vocabulary:	Standard Abbreviations in English								
Grammar:	Redundancies and Clichés in Oral and Written Communication.								
Reading:	Survey, Question, Read, Recite and Review (SQ3R Method) - Exercises for	or Practice							
Writing:	Writing Practices- Essay Writing-Writing Introduction and Conclusion -Pro-	écis Writing.							
UNIT-V	Chapter entitled 'Go, Kiss the World' by Subroto Bagchi	08 Hours							
	• •								

B. Tech Data Science

25 | P a g e

from *"English: Language, Context and Culture"* published by Orient BlackSwan, Hyderabad.

Vocabulary: Technical Vocabulary and their Usage
 Grammar: Common Errors in English (*Covering all the other aspects of grammar which were not covered in the previous units*)
 Reading: Reading Comprehension-Exercises for Practice
 Writing: Technical Reports- Introduction – Characteristics of a Report – Categories of Reports Formats- Structure of Reports (Manuscript Format) -Types of Reports - Writing a Report.

- Note: 1. As the syllabus of English given in AICTE Model Curriculum-2018 for B.Tech First Year is Open-ended, besides following the prescribed textbook, it is required to prepare teaching/learning materials by the teachers collectively in the form of handouts based on the needs of the students in their respective colleges for effective teaching/learning in the class.
- Note: 2. Based on the recommendations of NEP2020, teachers are requested to be flexible to adopt Blended Learning in dealing with the course contents. They are advised to teach 40 percent of each topic from the syllabus in blended mode.

TEXT BOOK:

1. "English: Language, Context and Culture" by Orient Black Swan Pvt. Ltd, Hyderabad. 2022. Print.

REFERENCE BOOKS:

- 1. Effective Academic Writing by Liss and Davis (OUP)
- 2. Richards, Jack C. (2022) Interchange Series. Introduction, 1,2,3. Cambridge University Press
- 3. Wood, F.T. (2007). Remedial English Grammar. Macmillan.
- 4. Chaudhuri, Santanu Sinha. (2018). Learn English: A Fun Book of Functional Language, Grammar and Vocabulary. (2nd ed.,). Sage Publications India Pvt. Ltd.
- (2019). Technical Communication. Wiley India Pvt. Ltd.
- 6. Vishwamohan, Aysha. (2013). English for Technical Communication for Engineering Students. Mc Graw-Hill Education India Pvt. Ltd.
- 7. Swan, Michael. (2016). Practical English Usage. Oxford University Press. Fourth Edition.

INTERNAL ASSESSMENT (IA)

Two internal assessments and an end semester examination to test students' reading and writing skills along with their grammatical and lexical competence. Assessment will include following things:

• Internal Assessment: 25 Marks - 1. Attendance

2. Assignments

3. Case Study/Mini Project/Presentation

- Mid Semester Exam: 25 Marks
- End Semester Exam: 50 Marks

CO's-PO's & PSO's MAPPING

Cos	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	3	3	3	2	2	3	3	2
2	<	3	3	1	part -1	3	3	3
3	1	2	2	2	2	3	2	1
4	1-11	2	2	2	2	3	2	2
5	1	2	2	3	3	3	3	2
Avg	3	2.4	2.4	2	2	3	2.6	2

1 - low, 2 - medium, 3 - high, '-' - no correlation

BTDS 105: IT WORKSHOP B.Tech. I Year II Sem.

Teaching Scheme:	Credit	Examination S	cheme:				
TH: - 4 Hours/Week	TH: 04	In Sem. Evaluation	: 25 Marks				
		Mid Sem. Exam:	25 Marks				
		End Sem. Exam:	50 Marks				
		Total	: 100 Marks				
Course Prerequisites: Basic Knowledge	e of computer						
Course Objective:							
The IT Workshop for engineers is a t	raining lab course spread of	over 60 hours. The mo	dules				
include training on PC Hardware, I	nternet & World Wide W	Veb and Productivity	tools				
including Word, Excel, PowerPoint a	nd Publisher.						
Learning Course Outcome:							
After successful completion of the cour	se, students will able to:						
• Perform Hardware troubleshoot	ing						
Understand Hardware compone	ents and inter dependencies						
• Safeguard computer systems fr	om viruses/worms						
• Document/ Presentation prepara	ation						
Perform calculations using spre	adsheets						
	Course Contents						
PC	Hardware		07 Hours				
Task 1: Identify the peripherals of a computer, components in a CPU and its functions. Draw							
the block diagram of the CPU along with the configuration of each peripheral and submit to							
vour instructor.							

Task 2: Every student should disassemble and assemble the PC back to working condition. Lab instructors should verify the work and follow it up with a Viva. Also students need to go through the video which shows the process of assembling a PC. A video would be given as part of the course content.

Task 3: Every student should individually install MS windows on the personal computer. Lab instructor should verify the installation and follow it up with a Viva.

Task 4: Every student should install Linux on the computer. This computer should have windows installed. The system should be configured as dual boot with both Windows and Linux. Lab instructors should verify the installation and follow it up with a Viva

Internet & World Wide Web

Task1: **Orientation & Connectivity Boot Camp:** Students should get connected to their Local Area Network and access the Internet. In the process they configure the TCP/IP setting. Finally students should demonstrate, to the instructor, how to access the websites and email. If there is no internet connectivity preparations need to be made by the instructors to simulate the WWW on the LAN.

Task 2: Web Browsers, Surfing the Web: Students customize their web browsers with the LAN proxy settings, bookmarks, search toolbars and pop up blockers. Also, plug-ins like Macromedia Flash and JRE for applets should be configured.

Task 3: Search Engines & Netiquette: Students should know what search engines are and how to use the search engines. A few topics would be given to the students for which they need to search on Google. This should be demonstrated to the instructors by the student.

Task 4: Cyber Hygiene: Students would be exposed to the various threats on the internet and would be asked to configure their computer to be safe on the internet. They need to customize their browsers to block pop ups, block active x downloads to avoid viruses and/or worms.

LaTeX and WORD

Task 1 – Word Orientation: The mentor needs to give an overview of LaTeX and Microsoft (MS) office or equivalent (FOSS) tool word: Importance of LaTeX and MS office or equivalent (FOSS) tool Word as word Processors, Details of the four tasks and features that would be covered in each, Using LaTeX and word — Accessing, overview of toolbars, saving files, Using help and resources, rulers, format painter in word.

Task 2: Using LaTeX and Word to create a project certificate. Features to be covered:-Formatting Fonts in word, Drop Cap in word, Applying Text effects, Using Character Spacing, Borders and Colors, Inserting Header and Footer, Using Date and Time option in both LaTeX and Word.

Task 3: Creating project abstract Features to be covered:-Formatting Styles, Inserting table, Bullets and Numbering, Changing Text Direction, Cell alignment, Footnote,

Hyperlink, Symbols, Spell Check, Track Changes.

Task 4: Creating a Newsletter: Features to be covered:- Table of Content, Newspaper columns, Images from files and clipart, Drawing toolbar and Word Art, Formatting Images, Textboxes, Paragraphs and Mail Merge in word.

Excel

Excel Orientation: The mentor needs to tell the importance of MS office or equivalent (FOSS) tool Excel as a Spreadsheet tool, give the details of the four tasks and features that would be covered in each. Using Excel — Accessing, overview of toolbars, saving excel files, Using help and resources.

Task 1: Creating a Scheduler - Features to be covered: Gridlines, Format Cells, Summation, auto fill, Formatting Text

Task 2 : Calculating GPA - .Features to be covered:- Cell Referencing, Formulae in excel – average, std. deviation, Charts, Renaming and Inserting worksheets, Hyper linking, Count function, LOOKUP/VLOOKUP

Task 3: Split cells, freeze panes, group and outline, Sorting, Boolean and logical operators, Conditional formatting

Powerpoint

Task 1: Students will be working on basic power point utilities and tools which help them create basic powerpoint presentations. PPT Orientation, Slide Layouts, Inserting Text, Word Art, Formatting Text, Bullets and Numbering, Auto Shapes, Lines and Arrows in PowerPoint.

Task 2: Interactive presentations - Hyperlinks, Inserting –Images, Clip Art, Audio, Video, Objects, Tables and Charts.

Task 3: Master Layouts (slide, template, and notes), Types of views (basic, presentation, slide slotter, notes etc), and Inserting – Background, textures, Design Templates, Hidden slides.

REFERENCE BOOKS:

- 1. Comdex Information Technology course tool kit Vikas Gupta, *WILEY Dreamtech*
- 2. The Complete Computer upgrade and repair book, 3rd edition Cheryl A Schmidt, *WILEY Dreamtech*
- 3. Introduction to Information Technology, ITL Education Solutions limited, *Pearson Education*.
- 4. PC Hardware A Handbook Kate J. Chase PHI (Microsoft)
- 5. LaTeX Companion Leslie Lamport, *PHI/Pearson*.
- 6. IT Essentials PC Hardware and Software Companion Guide Third Edition by David Anfinson and Ken Quamme. *CISCO Press, Pearson Education.*
- 7. IT Essentials PC Hardware and Software Labs and Study Guide Third Edition by Patrick Regan CISCO Press, *Pearson Education*.

INTERNAL ASSESSMENT (IA)

Two internal assessments and an end semester examination to test students' reading and writing skills along with their grammatical and lexical competence. Assessment will include following things:

• Internal Assessment: 25 Marks - 1. Attendance

2. Assignments

3. Case Study/Mini Project/Presentation

- Mid Semester Exam: 25 Marks
- End Semester Exam: 50 Marks

CO's-PO's & PSO's MAPPING

Cos	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	3	3	3	2	2	3	3	2
2	-	3	3	1	1	3	3	3
3	-	2	2	2	2	3	2	1
4	-	2	2	2	2	3	2	2
5	-	2	2	3	3	3	3	2
Avg	3	2.4	2.4	2	2	3	2.6	2

1 - low, 2 - medium, 3 - high, '-' - no correlation

BTDS 103L: OBJECT ORIENTED PROGRAMMING LANGUAGE LAB

B.Tech. I Year II Sem.

Teaching Scheme:	Teaching Scheme:CreditExamination Scheme:								
TH: - 4 Hours/Week	TH: 04	In Sem. Evaluation: 25 Marks							
		Mid Sem. Exam: 25 Marks							
		End Sem. Exam: 50 Marks							
		Total : 100 Marks							
Course Prerequisites: Basic Know	ledge of computer								
Course Objective:									
1. To reinforce object-oriented	programming concepts through p	ractical implementation.							
2. To provide hands-on experies	nce with C++ and Java programn	ning.							
3. To develop problem-solving	skills using object-oriented techn	iiques.							
4. To enable students to design	and implement software solution	s using OOP principles.							
5. To familiarize students with	debugging and testing in C++ and	d Java environments.							
Learning Course Outcome:									
After successful completion of the	course, students will able to:								
CO1 : Apply object-oriented	programming concepts to solve p	problems in C++ and Java.							
CO2: Design and implement	classes and objects using C++ ar	nd Java.							
CO3: Utilize inheritance and	polymorphism to create reusable	e and maintainable code.							
CO4: Implement encapsulati	on and abstraction to enhance so	ftware robustness.							
CO5: Handle exceptions and	perform file I/O operations in C-	++ and Java.							
CO6 : Use advanced features	such as templates, generics, and	multithreading in software							
development.									
CO7: Develop and test objec	t-oriented applications through a	mini-project.							
	Course Contents								
List of Experiments		60 Hours							
Experiment 1: Introduction to Dev	elopment Environments	· · ·							
Setting up development envir	conments for C++ and Java.								
Writing and running simple p	programs in C++ and Java.								
Experiment 2: Classes and Objects	Experiment 2: Classes and Objects								
• Define classes and create obi	• Define classes and create objects in $C \pm and$ lave								
Implement constructors, dest	 Implement constructors, destructors (in C++) and methods 								
Demonstrate the use of acces	 Demonstrate the use of access specifiers. 								

Experiment 3: Inheritance

- Implement single, multiple (C++), and multilevel inheritance.
- Use constructor and destructor calls in inheritance.
- Demonstrate method overriding in Java and virtual functions in C++.

Experiment 4: Polymorphism

- Implement function overloading and operator overloading in C++.
- Implement method overloading in Java.
- Create and use abstract classes and interfaces in Java.
- Demonstrate runtime polymorphism in C++ and Java.

Experiment 5: Encapsulation and Abstraction

- Implement encapsulation using access specifiers in C++ and Java.
- Design and use abstract classes in C++ and Java.
- Implement packages in Java and namespaces in C++.

Experiment 6: Exception Handling

- Implement try, catch, and finally blocks in Java.
- Use throw and throws in Java.
- Implement exception handling in C++ using try, catch, and throw.

Experiment 7: File Handling

- Perform file read/write operations in C++ using fstream.
- Perform file read/write operations in Java using FileReader, FileWriter, BufferedReader, and BufferedWriter.

Experiment 8: Templates and Generics

- Implement function templates and class templates in C++.
- Use generics in Java to create type-safe collections.

Experiment 9: Standard Template Library (STL) in C++

- Use various components of STL such as vectors, lists, and maps.
- Perform operations using iterators and algorithms provided by STL.

Experiment 10: Collections Framework in Java

- Use various collection classes such as ArrayList, LinkedList, HashSet, and HashMap.
- Perform operations using iterators and methods provided by the collections framework.

Experiment 11: Multithreading

- Create and manage threads in C++ using the standard thread library.
- Implement multithreading in Java using the Thread class and Runnable interface.

Experiment 12: Mini Project

• Develop a mini-project using C++ or Java to apply object-oriented programming concepts learned throughout the course. This could be a small application such as a student management system, a simple game, or any other real-world application.

REFERENCE BOOKS:

- 1. "The Complete Reference C++" by Herbert Schildt ISBN-13: 978-0071634809
- 2. "Effective C++: 55 Specific Ways to Improve Your Programs and Designs" by Scott Meyers ISBN-13: 978-0321334879
- 3. "Thinking in Java" by Bruce Eckel ISBN-13: 978-0131872486
- 4. "Effective Java" by Joshua Bloch ISBN-13: 978-0134685991
- 5. "Java: The Complete Reference" by Herbert Schildt ISBN-13: 978-1260440232

INTERNAL ASSESSMENT (IA)

Two internal assessments and an end semester examination to test students' reading and writing skills along with their grammatical and lexical competence. Assessment will include following things:

- Internal Assessment: 25 Marks 1. Attendance
 - 2. Assignments
 - 3. Case Study/Mini Project/Presentation
- Mid Semester Exam: 25 Marks
- End Semester Exam: 50 Marks

CO's-PO's & PSO's MAPPING

Course Outcomes (CO)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3
CO1: Apply object-oriented programming concepts to solve problems in C++ and Java	3	3	2	2	3	-	-	2	2	2
CO2: Design and implement classes and objects using C++ and Java	3	3	2	2	3	-	-	3	3	3
CO3: Utilize inheritance and polymorphism to create reusable and maintainable code	3	3	2	2	3	X	15	3	3	3
CO4: Implement encapsulation and abstraction to enhance software robustness	3	3	2	2	3		11:	3	3	3
CO5: Handle exceptions and perform file I/O operations in C++ and Java	3	3	2	2	3	4 (.) 	i.	3	3	3
CO6: Use advanced features such as templates, generics, and multithreading in software development	3	3	2	2	3	1		3	3	3
CO7: Develop and test object-oriented applications through a mini-project	3	3	2	2	3	1		3	3	3
	- 1			Sec.	and a state of the	- 3		1.000	a 9	

1 - low, 2 - medium, 3 - high, '-' - no correlation REPORTED FOR THE

1.11

BTDS 105L: ENGLISH LANGUAGE AND COMMUNICATION SKILLS LABORATORY

B.1ech. I Year I Sem.										
Teaching Scheme:	Credit	Examination Scheme:								
TH: - 4 Hours/Week	TH: 04	In Sem. Evaluation: 25 Marks								
		Mid Sem. Exam:	25 Marks							
		End Sem. Exam:	50 Marks							
		Total	: 100 Marks							
Course Prerequisites: 10+2 Level Education										
Course Objective:										
1. To facilitate computer-assisted multi-media instruction enabling individualized										
and independent language learning										
2. To sensitize the students to the nuances of English speech sounds, word accent,										
intonation and rhythm										
3. To bring about a consistent according to the second sec	3. To bring about a consistent accent and intelligibility in students' pronunciation									
of English by providing an opportunity for practice in speaking										
4. To improve the fluency of students in spoken English and neutralize the impact										
of dialects.										
5. To train students to use language appropriately for public speaking, group discussions										
and interviews.	and interviews.									
Learning Course Outcome:										
After successful completion of the course, students will able to:										
1. Understand the nuances of English language through audio- visual experience and group										
activities										
2. Neutralise their accent for intelligibility										
3. Speak with clarify and confidence which in turn enhances their employability skills										
Course Contents										
UNIT-I Commenter			07 Hours							
Computer	Assisted Language Learn	ing (CALL) Lab	07 Hours							
The following course content is prescribed for the English Language and Communication										
Skills Lab Exercise – I										
CALL Lab.										
Understand: Listening Skill, Its importance _ Purpose, Process, Types, Barriers, Effective										
Listening Practice: Introduction to Phonetics Speech Sounds Vowals and										
Listening. <i>Fractice</i> : Introduction to	Finite Source So	us – vowels and	1							
Consonants – Minimal Pairs- Consonant Clusters- Past Tense Marker and Plural Marker-										

Testing Exercises

ICS Lab:

Understand: Spoken vs. Written language- Formal and Informal English.

Practice: Ice-Breaking Activity and JAM Session- Situational Dialogues – Greetings – Taking

Leave – Introducing Oneself and Others.

Exercise – II CALL Lab:

Understand: Structure of Syllables – Word Stress– Weak Forms and Strong Forms – Stress pattern in sentences — Intonation.

Practice: Basic Rules of Word Accent - Stress Shift - Weak Forms and Strong Forms- Stress pattern in sentences — Intonation - *Testing Exercises*

ICS Lab:

Understand: Features of Good Conversation – Strategies for Effective Communication. *Practice:* Situational Dialogues – Role Play- Expressions in Various Situations – Making Requests and Seeking Permissions - Telephone Etiquette.

Exercise - III CALL Lab:

Understand: Errors in Pronunciation-Neutralising Mother Tongue Interference (MTI).

Practice: Common Indian Variants in Pronunciation – Differences between British and American Pronunciation -*Testing Exercises*

ICS Lab:

Understand: Descriptions- Narrations- Giving Directions and Guidelines – Blog Writing *Practice:* Giving Instructions – Seeking Clarifications – Asking for and Giving Directions – Thanking and Responding – Agreeing and Disagreeing – Seeking and Giving Advice – Making Suggestions.

Exercise – IV CALL Lab:

Understand: Listening for General Details.

Practice: Listening Comprehension Tests - Testing Exercises

ICS Lab:

Understand: Public Speaking - Exposure to Structured Talks - Non-verbal

Communication- Presentation Skills.

Practice: Making a Short Speech - Extempore- Making a Presentation.

Exercise – V CALL Lab:

Understand: Listening for Specific Details.

Practice: Listening Comprehension Tests -Testing Exercises

ICS Lab:

Understand: Group Discussion

Practice: Group Discussion

Minimum Requirement of infrastructural facilities for ELCS Lab: 1. Computer Assisted Language Learning (CALL) Lab:

The Computer Assisted Language Learning Lab has to accommodate 40 students with 40 systems, with one Master Console, LAN facility and English language learning software for self- study by students.

System Requirement (Hardware component):

Computer network with LAN facility (minimum 40 systems with multimedia) with the following specifications:

- i) Computers with Suitable Configuration
- ii) High Fidelity Headphones

2. Interactive Communication Skills (ICS) Lab :

The Interactive Communication Skills Lab: A Spacious room with movable chairs and audio- visual aids with a Public Address System, a T. V. or LCD, a digital stereo –audio

& video system and camcorder etc.

Source of Material (Master Copy):

• *Exercises in Spoken English. Part 1,2,3*. CIEFL and Oxford University Press

Note: Teachers are requested to make use of the master copy and get it tailor-made to suit the contents of the syllabus.

Suggested Software:

- Cambridge Advanced Learners' English Dictionary with CD.
- Grammar Made Easy by Darling Kindersley.
- Punctuation Made Easy by Darling Kindersley.
- Oxford Advanced Learner's Compass, 10th Edition.
- English in Mind (Series 1-4), Herbert Puchta and Jeff Stranks with Meredith Levy, Cambridge.
- English Pronunciation in Use (Elementary, Intermediate, Advanced) Cambridge University Press.
- English Vocabulary in Use (Elementary, Intermediate, Advanced) Cambridge University Press.
- TOEFL & GRE (KAPLAN, AARCO & BARRONS, USA, Cracking GRE by CLIFFS).
- Digital All Orell Digital Language Lab (Licensed Version)

REFERENCE BOOKS:

- (2022). English Language Communication Skills Lab Manual cum Workbook. Cengage Learning India Pvt. Ltd.
- 2. Shobha, KN & Rayen, J. Lourdes. (2019). *Communicative English A workbook*. Cambridge University Press
- 3. Kumar, Sanjay & Lata, Pushp. (2019). *Communication Skills: A Workbook*. Oxford University Press
- 4. Board of Editors. (2016). *ELCS Lab Manual: A Workbook for CALL and ICS Lab Activities*. Orient Black Swan Pvt. Ltd.
- 5. Mishra, Veerendra et al. (2020). *English Language Skills: A Practical Approach*. Cambridge University Press.

INTERNAL ASSESSMENT (IA)

Two internal assessments and an end semester examination to test students' reading and writing skills along with their grammatical and lexical competence. Assessment will include following things:

• Internal Assessment: 25 Marks - 1. Attendance

2. Assignments

3. Case Study/Mini Project/Presentation

- Mid Semester Exam: 25 Marks
- End Semester Exam: 50 Marks

CO's-PO's & PSO's MAPPING

Cos	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	3	3	3	2	- 2	3	3	2
2	-	3	3	1	1	3	3	3
3	-	2	2	2	2	3	2	1
4	-	2	2	2	2	3	2	2
5	-	2	2	3	3	3	3	2
Avg	3	2.4	2.4	2	2	3	2.6	2

1 - low, 2 - medium, 3 - high, '-' - no correlation

B. Tech Data Science 40 | P a g e

BTDS 201: APPLIED STATISTICS B.Tech. I Year II Sem.

Teaching Scheme:	Credit	Examination Scheme:		
TH: - 4 Hours/Week	TH: 04	In Sem. Evaluation: 25 Marks		
		Mid Sem. Exam: 25 Marks		
		End Sem. Exam: 50 Marks		
		Total : 100 Marks		
Course Prerequisites: Basic understan	ding of calculus, linear algebra	, and probability theory.		
Course Objective:				
1. To understand the fundamental cor	ncepts and principles of applied	statistics.		
2. To learn how to collect, organize, a	and summarize data effectively			
3. To develop proficiency in probabil	ity theory and distributions.			
4. To master techniques of inferential	statistics for hypothesis testing	g and estimation.		
5. To apply regression analysis and o	ther statistical methods for prec	lictive modeling.		
6. To gain experience in using statisti	cal software for data analysis.			
7. To interpret and communicate stati	stical findings effectively.			
8. To enhance problem-solving skills	through real-world statistical a	applications.		
9. To prepare students for advanced s	tudy and professional work in s	statistics and related fields.		
10. To introduce advanced statistical te	echniques such as non-parametr	ric tests, cluster analysis, and		
factor analysis.	factor analysis.			
Learning Course Outcome:				
After successful completion of the con	urse, students will able to:			
1. Explain and apply the basic concept	ots of descriptive and inferentia	1 statistics.		
2. Collect, organize, and summarize d	lata using appropriate statistica	l methods.		
3. Use probability theory to model an	d analyze random phenomena.			
4. Conduct hypothesis testing and con	struct confidence intervals.			
5. Perform and interpret regression ar	alysis and other predictive mo	deling techniques.		
6. Utilize statistical software such as	R, SPSS, or Python for data and	alysis.		
7. Analyze real-world data sets and de	erive meaningful insights.			
8. Communicate statistical results effe	ectively through written reports	s and presentations.		
9. Apply statistical techniques to solv	e practical problems in various	domains.		
10. Apply advanced statistical techniqu	ues such as non-parametric test	s, cluster analysis, and factor analysis to		
	Course Contents			
UNII-I	Introduction to Applied Sta	usucs U8 Hours		

B. Tech Data Science 41 | P a g e

Overview of Statis	stics			
1.1.1 Definition of Statistics				
What is Statistics?				
Branches of Statistics: Descriptive vs. Inferential Statistics				
1.1.2 Role of Statistics in Research				
Importance of Statistics in Scientific Research				
Exampl	es of Statistical Applications in Various Fields			
1.1.3 Stati	stical Thinking			
Underst	tanding Variability			
Data-Dr	riven Decision Making			
1.1.4 Kev	Statistical Concepts			
Populat	ion and Sample			
Paramet	ter and Statistic			
Variable	es: Qualitative vs. Quantitative			
1 1 5 The	Statistical Process			
Steps in	the Statistical Process: Collection Analysis Interpretation Presentation			
	The Statistical Process. Concetion, Pharysis, Interpretation, Presentation			
UNIT-II	Inferential Statistics	10 Hours		
4.1 Sampling and	Sampling Distributions			
4.1.1 Intro	duction to Sampling			
Definiti	on and Importance of Sampling			
Differer	nce Between Population and Sample			
Types o	of Sampling Methods: Random, Stratified, Systematic, Cluster			
4.1.2 Sam	pling Distributions			
Definiti	on and Concept of a Sampling Distribution			
Central	Limit Theorem (CLT)			
Properti	ies of Sampling Distributions of Sample Mean and Sample Proportion			
4.1.3 Sam	pling Techniques			
Practica	al Approaches to Implementing Sampling Methods			
Exampl	es and Applications of Different Sampling Techniques			
4.1.4 Exar	mples and Applications			
Real-wo	orld Scenarios Involving Sampling and Sampling Distributions			
4.2 Point Estimation	on and Interval Estimation			
4.2.1 Poin	t Estimation			
Definiti	on and Purpose of Point Estimation			
Properti	ies of Point Estimators: Unbiasedness, Consistency, Efficiency			
Commo	on Point Estimators: Mean, Variance, Proportion			
4.2.2 Inter	val Estimation			
Concept	t and Importance of Interval Estimation			
Confide	ence Intervals: Interpretation and Calculation			
Factors	Affecting the Width of Confidence Intervals			
4 2 3 Meth	hods for Constructing Interval Estimates			
Constru	action of Confidence Intervals for Means Proportions and Variances			
Lise of 7	7 scores and t scores in Interval Estimation			
	mplas and Applications			
4.2.4 EXal	npres and Applications			

B. Tech Data Science

Practica	1 Examples of Point and Interval Estimations	
4.3 Hypothesis Testing		
4.3.1 Null and Alternative Hypotheses		
4.3	3.1.1 Formulating Hypotheses	
	Definition of Null and Alternative Hypotheses	
	Setting Up Hypotheses for Different Types of Tests	
	One-Tailed vs. Two-Tailed Tests	
4.3	3.1.2 Examples of Hypothesis Formulation	
	Real-world Scenarios and Formulating Appropriate Hypotheses	
4.3.2 Type	e I and Type II Errors	
4.3	3.2.1 Understanding Errors in Hypothesis Testing	
	Definition and Examples of Type I Error (False Positive)	
	Definition and Examples of Type II Error (False Negative)	
4.3	3.2.2 Balancing Type I and Type II Errors	
	Relationship Between the Errors	
	Significance Level (Alpha) and Power of the Test (1 - Beta)	
4.3	3.2.3 Examples and Applications	
	Case Studies Demonstrating Type I and Type II Errors	
4.3.3 p-val	ues and Significance Levels	
4.3	3.3.1 Introduction to p-values	
	Definition and Interpretation of p-values	
	Calculating p-values for Different Statistical Tests	
4.3	3.3.2 Significance Levels and Decision Making	
	Setting Significance Levels (Alpha)	
	Making Decisions Based on p-values and Significance Levels	
4.3	3.3.3 Examples and Applications	
	Real-world Examples of Hypothesis Testing Using p-values and Significa	nce Levels
4.4 Confidence Int	ervals	
4.4.1 Conf	idence Interval for Means	
4.4	4.1.1 Constructing Confidence Intervals for Means	
	Using Z-scores for Known Population Standard Deviation	
	Using t-scores for Unknown Population Standard Deviation	
4.4	4.1.2 Examples and Applications	
	Practical Examples Involving Confidence Intervals for Means	
4.4.2 Conf	idence Interval for Proportions	
4.4	4.2.1 Constructing Confidence Intervals for Proportions	
Formula and Calculation Steps		
Considerations for Large and Small Sample Sizes		
4.4.2.2 Examples and Applications		
	Practical Examples Involving Confidence Intervals for Proportions	
UNIT-III	Regression Analysis	10 Hours

5.1 Simple Linear Regression
5.1.1 Model Assumptions
Linearity: The relationship between the independent and dependent variable is linear.
Independence: Observations are independent of each other.
Homoscedasticity: Constant variance of the errors (residuals).
Normality: The residuals of the model are normally distributed.
5.1.2 Estimation of Parameters
Least Squares Method:
Concept of minimizing the sum of squared residuals.
Calculation of slope (β 1) and intercept (β 0) parameters.
Interpretation of Parameters:
Understanding the meaning of the slope and intercept in the context of the model.
Confidence Intervals for Parameters:
Constructing and interpreting confidence intervals for $\beta 0$ and $\beta 1$.
5.1.3 Goodness of Fit: R-squared
Definition and Calculation:
Understanding the proportion of variance explained by the model.
Adjusted R-squared:
Adjusting R-squared for the number of predictors in the model.
Interpreting R-squared:
5.2 Multiple Linear Degreesion
5.2 Multiple Linear Regression 5.2 1 Model Building
J.2.1 Model Dunung
Extending simple linear regression to include multiple predictors
Model Specification:
Selecting relevant variables and model form
Assumptions in Multiple Regression:
Checking for multicollinearity and its impact on the model.
5.2.2 Interpretation of Coefficients
Understanding Coefficients:
Partial regression coefficients and their interpretation.
Statistical Significance:
T-tests for individual coefficients and p-values.
Confidence Intervals:
Constructing and interpreting confidence intervals for regression coefficients.
5.2.3 Diagnostics and Residual Analysis
Residual Plots:
Checking for homoscedasticity and non-linearity.
Influence and Leverage:
Identifying influential observations using Cook's distance and leverage statistics.
Multicollinearity Diagnostics:
Variance Inflation Factor (VIF) and tolerance.
5.3 Advanced Regression Techniques
5.3.1 Logistic Regression
Concept and Application:
P. Took Data Saianaa

B. Tech Data Science

44 | Page

Understand Model Estim Maximum Odds Ratios Interpretin Model Fit and Hosmer-La 5.3.2 Polynomia Extending Li Introductio Model Specifi	ding binary outcomes and the logistic function. ation: likelihood estimation of parameters. and Interpretation: og the coefficients as odds ratios. d Validation: emeshow test, ROC curves, and AUC. al Regression inear Models: on to polynomial terms in regression. fication: the degree of the polynomial and interpreting coefficients	
Curve Fitting	g:	
Comparing Overfitting at	g polynomial regression to linear regression. nd Model Complexity:	
Understand	ding the trade-off between bias and variance.	
UNIT-IV	Advanced Statistical Techniques	07 Hours
6.1 Non-parametric Tess Non-parametric tests are such as normal distribut that are not normally dis 6.1.1 Chi-Squar Introduction Overview Chi-Square T Testing the Constructi Calculating Interpretin Chi-Square C Testing if a Calculating Degrees of 6.1.2 Mann-Wh Introduction Non-paran Suitable fo Procedure: Ranking al Calculating Interpretin Assumptions	e statistical methods used when data do not fit the assumptions of tion or homogeneity of variance. They are useful for analyzing ord stributed. re Test and Application: of the Chi-Square test for independence and goodness-of-fit. Fest for Independence: e independence between two categorical variables. ng and interpreting contingency tables. g expected frequencies. g Chi-Square statistics and p-values. Goodness-of-Fit Test: a sample distribution fits an expected distribution. g observed and expected frequencies. f freedom and significance testing. hitney U Test and Application: netric alternative to the independent samples t-test. or comparing differences between two independent groups. Il the observations from both groups together. g the U statistic and its distribution. g the test results and p-values. and Limitations: g the assumptions of the Mann-Whitney U test.	parametric tests, linal data or data

B. Tech Data Science

45 | P a g e

6.1.3 Kruskal-Wallis Test
Introduction and Application:
Non-parametric alternative to one-way ANOVA
Suitable for comparing differences between more than two independent groups.
Procedure:
Ranking all observations across all groups
Calculating the H statistic and its distribution
Interpreting the test results and p-values
Assumptions and Limitations:
Discussing the assumptions of the Kruskal-Wallis test
Post-hoc analysis for nairwise comparisons
6.2 Multivariate Analysis
Multivariate analysis involves examining multiple variables simultaneously to understand relationships and
natterns in the data
6.2.1 Cluster Analysis
Introduction and Types
Overview of clustering techniques: Hierarchical and K-means clustering
Hierarchical Clustering:
Concepts of agglomerative and divisive clustering
Dendrogram construction and interpretation
Linkage criteria single complete average and Ward's method
K-means Clustering.
Algorithm steps and iteration process
Selecting the number of clusters (k)
Interpretation of clustering results
Applications and Interpretation:
Practical applications in market segmentation image analysis etc
Validating and interpreting clusters
6 2 2 Factor Analysis
Introduction and Objectives.
Identifying underlying factors that explain the data structure.
Differentiating between exploratory and confirmatory factor analysis
Exploratory Factor Analysis (EFA):
Steps involved: extraction rotation and interpretation
Methods of extraction: Principal Axis Factoring Maximum Likelihood
Rotation methods: Varimax Promax
Confirmatory Factor Analysis (CFA):
Model specification and testing
Goodness-of-fit indices
Applications and Interpretation
Applications in psychology, social sciences, and marketing research
Interpretation of factor loadings and communalities.
6.2.3 Principal Component Analysis (PCA)
Introduction and Objectives:
Reducing dimensionality while preserving variance
Difference between PCA and Factor Analysis

B. Tech Data Science

46 | Page

Procedure:				
Standardizing the data.				
Calculating the covariance matrix and eigenvalues/eigenvectors.				
Determining the number of principal components.				
Interpreting PCA Results:				
Scree plot and explained variance.				
Loading	plots and score plots.			
Application	is and interpretation:			
Applicat	ons in data compression, visualization, and reature extraction.			
Flactical	examples and interpretation of components.			
		00 II		
UNIT-V	Statistical Software Applications	08 Hours		
7.1 Introduction to Sta	atistical Software			
Overview of Statist	ical Software:			
Importance and b	penefits of using statistical software in data analysis.			
Comparison of p	opular statistical software: R, SPSS, and Python.			
Choosing the Right	Tool:			
Criteria for selec	ting appropriate statistical software based on the type of analysis an	d user expertise.		
Installation and Set				
Step-by-step guid	de for installing R, SPSS, and Python.			
Introduction to the	ne user interface of each software.			
7.2 Data Analysis Usi P is a powerf	Ing K	d in acadamia and		
industry due t	in tool for statistical analysis and data visualization. It is widely used	u ili acauciilia allu		
7.2.1 Data Manipulation				
Data Impor	ting			
Reading	data from various sources: CSV Excel databases and web			
Data Clean	ing:			
Handling	g missing values and duplicates.			
Data trar	nsformation: filtering, sorting, and summarizing.			
Data Struct	tures:			
Overview	w of data frames, lists, and matrices.			
Applying	g functions to manipulate data structures.			
7.2.2 Statistic	al Analysis			
Descriptive	e Statistics:			
Calculati	ing measures of central tendency and dispersion.			
Generati	ng summary statistics for data exploration.			
Inferential	Statistics:			
Performi	ing hypothesis tests: t-tests, chi-square tests.			
Construc	A nelvoier			
Kegression	Allalysis.			
Inpleme	ing model coefficients and diagnostic plots			
7 2 3 Visualiz	7.2.3 Visualization			
Rasic Plots	· · · ·			
Dasie 1 1018	B. Took Data Science			
	D. Tech Data Science			

Creating histograms, bar plots, and box plots.
Advanced Visualization:
Using ggplot2 for complex and customizable plots.
Plotting time series data and multi-panel plots.
Interactive Visualization:
Introduction to Shiny for building interactive web applications.
/.3 Data Analysis Using SPSS
SPSS (Statistical Package for the Social Sciences) is user-friendly software widely used for
statistical analysis in social sciences and other fields.
7.3.1 Data Entry and Management
Data Entry: Manual data antra and importing data from outernal files
Manual data entry and importing data from external files.
Defining variables and variable types.
Data Management.
Date transformation: recoding and computing new variables
7.3.2 Descriptive Statistics
Generating Descriptive Statistics:
Calculating mean median mode and standard deviation
Creating frequency distributions and cross-tabulations
Graphical Representation:
Producing histograms pie charts and scatter plots
Customizing graphs and charts for publication-quality output.
7.3.3 Inferential Statistics
Hypothesis Testing:
Performing t-tests, ANOVA, and chi-square tests.
Interpreting test results and p-values.
Regression Analysis:
Conducting linear and logistic regression.
Evaluating model fit and assumptions.
Non-parametric Tests:
Implementing Mann-Whitney U test and Kruskal-Wallis test.
Analyzing data with non-parametric methods.
7.4 Data Analysis Using Python
Python is a versatile programming language with powerful libraries for data analysis and
visualization. It is popular for its readability and extensive community support. 74.14
7.4.1 Libraries: NumPy, Pandas, Matplotlib, SciPy
Introduction to Libraries:
Overview of NumPy for numerical computations.
Pandas for data manipulation and analysis.
Matpionio for data visualization.
7.4.2 Data Cleaning and Propagation
Data Importing
Reading data from CSV Excel SOL databases and web APIs
Data Cleaning
B Tach Data Science
D. Tech Data Science

Handling missing data and outliers. Data transformation: filtering, merging, and grouping. Data Preparation: Creating new features and engineering existing ones. Normalizing and standardizing data. 7.4.3 Statistical Modeling and Analysis Descriptive Statistics: Calculating summary statistics and generating descriptive reports. Inferential Statistics: Conducting hypothesis tests and calculating confidence intervals. Regression Analysis: Building and evaluating linear and logistic regression models. Using statsmodels and scikt-learn for statistical modeling. Advanced Analysis: Implementing time series analysis and forecasting. Performing cluster analysis and principal component analysis (PCA). UNTI-VI Real-World Applications and Case Studies 8.1 Business Analytics Business analytics in section focuses on practical applications in various business data to make informed decisions. This section focuses on practical applications. Seles and Revenue Analysis: Using descriptive statistics to analyze sales data. Identifying trends and patterns in revenue streams. Customer Segmentation: Segmentation: Sequenting eustomers based on purchasing behavior.				
Data transformation: Tutering, merging, and grouping. Data Preparation: Creating new features and engineering existing ones. Normalizing and standardizing data. 7.4.3 Statistical Modeling and Analysis Descriptive Statistics: Calculating summary statistics and generating descriptive reports. Inferential Statistics: Conducting hypothesis tests and calculating confidence intervals. Regression Analysis: Building and evaluating linear and logistic regression models. Using statsmodels and scikit-learn for statistical modeling. Advanced Analysis: Implementing time series analysis and forecasting. Performing cluster analysis and principal component analysis (PCA). UNIT-VI Real-World Applications and Case Studies 08 Hours 8.1 Business Analytics Business Analytics Business Analytics in Susiness Sales and Revenue Analysis: Using descriptive statistical techniques to analyze and interpret business data to make informed decisions. This section focuses on practical applications in various business contexts. 8.1.1 Descriptive Analytics in Business Sales and Revenue Analysis: Using descriptive statistics to analyze sales data. Identifying trends and patterns in revenue streams. Customer Segmentation: Segmenting clustering techniques for market segmentation. 8.1.2 Predictive Analytics in Business Sales Forecasting: Implementing regression models to predict future sales. Evaluating model accuracy and making adjustments. Churn Prediction: Applying logistic regression to predict customer churn. Interpreting model results to develop retention strategies. 8.1.3 Case Study: Financial Risk Management Risk Assessment: Analyzing financial data to assess risk. Using statistical models to predict customer churn. Interpreting model results to develop retention strategies. 8.1.2 Engineering Statistics Balancing risk and return through diversification strategies. 8.2 Engineering Statistics Engineering Statistics involves the application of statistical methods to solve engineering problems. This sec	Handling	g missing data and outliers.		
Creating new features and engineering existing ones. Normalizing and standardizing data. 7.4.3 Statistical Modeling and Analysis Descriptive Statistics: Calculating summary statistics and generating descriptive reports. Inferential Statistics: Conducting hypothesis tests and generating descriptive reports. Regression Analysis: Building and evaluating linear and logistic regression models. Using statsmodels and scikit-learn for statistical modeling. Advanced Analysis: Implementing time series analysis and forecasting. Performing cluster analysis and principal component analysis (PCA). UNIT-VI Real-World Applications and Case Studies 08 Hours 8.1 Business Analytics Business Analytics Business Analytics in Sustastical techniques to analyze and interpret business data to make informed decisions. This section focuses on practical applications in various business contexts. 8.1.1 Descriptive Analysis: Using descriptive statistics I calculate shares and sciences Sales and Revenue Analysis: Using descriptive tatistics to analyze sales data. Identifying trends and patterns in revenue streams. Customer Segmentation: Segmentation: Segmentation: Segmentation: L12 Predictive Analytics in Business Sales Forecasting: Implementing regression models to predict future sales. Evaluating model accuracy and making adjustments. Churn Prediction: Applying logistic regression to predict customer churn. Interpreting model results to develop retention strategies. 8.1.3 Case Study: Financial Risk Management Risk Assessment: Analyzing financial data to assess risk. Using statistical motels to predict customer churn. Interpreting model results to develop retention strategies. 8.2 Engineering Statistics Engineering Statistical methods to optimize investment portfolios. Balancing risk and return through diversification strategies. 8.2 Engineering Statistics Engineering Statistics involves the application of statistical methods to solve engineering problems. This section covers key applications in quality control, reliability analysis, and	Data transformation: filtering, merging, and grouping.			
Normalizing and standardizing data. 7.4.3 Statistical Modeling and Analysis Descriptive Statistics: Calculating summary statistics and generating descriptive reports. Inferential Statistics: Conducting hypothesis tests and calculating confidence intervals. Regression Analysis: Building and evaluating linear and logistic regression models. USing statsmodels and scikit-learn for statistical modeling. Advanced Analysis: Implementing time series analysis and forecasting. Performing cluster analysis and principal component analysis (PCA). UNIT-VI Real-World Applications and Case Studies 08 Hours 8.1 Business Analytics Business analytics involves applying statistical techniques to analyze and interpret business data to make informed decisions. This section focuses on practical applications in various business contexts. 8.1.1 Descriptive Analysis: Using descriptive statistics to analyze sales data. Identifying trends and patterns in revenue streams. Customer Segmentation: Segmenting customers based on purchasing behavior. Using clustering techniques for market segmentation. 8.1.2 Predictive Analytics in Business Sales Forecasting: Implementing regression to predict custome	Data Preparation: Creating new features and engineering existing ones			
 7.4.3 Satistical Modeling and Analysis Descriptive Statistics: Calculating summary statistics and generating descriptive reports. Inferential Statistics: Conducting hypothesis tests and calculating confidence intervals. Regression Analysis: Building and evaluating linear and logistic regression models. Using statsmodels and sekit-learn for statistical modeling. Advanced Analysis: Implementing time series analysis and principal component analysis (PCA). VINIT-VI Real-World Applications and Case Studies 08 Hours 8.1 Business Analytics Business Analytics Business analytics involves applying statistical techniques to analyze and interpret business data to make informed decisions. This section focuses on practical applications in various business contexts. 8.1.1 Descriptive Analysis: Using descriptive statistics to analyze sales data. Identifying trends and patterns in revenue streams. Customer Segmentation: Segmenting customers based on purchasing behavior. Using dustering techniques for market segmentation. 8.1.2 Predictive Analytics in Business Sales Forecasting: Implementing regression models to predict future sales. Evaluating model accuracy and making adjustments. Churn Prediction: Applying logistic regression to predict customer churn. Interpreting model results to develop retention strategies. 8.1.3 Case Study: Financial Risk Management Risk Assessment: Analyzing financial data to assess risk. Using statistical methods to optimize investment portfolios. Balancing risk and return through diversification strategies. 8.2 Engineering Statistics 8.2 Engineering statistics	Normalizing and standardizing data			
Discriptive Statistics: Calculating summary statistics and generating descriptive reports. Inferential Statistics: Conducting hypothesis tests and calculating confidence intervals. Regression Analysis: Building and evaluating linear and logistic regression models. Using statsmodels and scikit-learn for statistical modeling. Advanced Analysis: Implementing time series analysis and forecasting. Performing cluster analysis and principal component analysis (PCA). UNIT-VI Real-World Applications and Case Studies 08 Hours 8.1 Business Analytics Business analytics involves applying statistical techniques to analyze and interpret business data to make informed decisions. This section focuses on practical applications in various business contexts. 8.1.1 Descriptive Analytics in Business Sales and Revenue Analysis: Using descriptive statistics to analyze sales data. Identifying trends and patterns in revenue streams. Customer Segmentation: Segmenting customers based on purchasing behavior. Using clustering techniques for market segmentation. 8.1.2 Predictive Analytics in Business Sales Forecasting: Implementing regression to predict customer chum. Interpreting model accuracy	Normalizing and standardizing data.			
Calculating summary statistics and generating descriptive reports. Inferential Statistics: Conducting hypothesis tests and calculating confidence intervals. Regression Analysis: Building and evaluating linear and logistic regression models. Using statsmodels and scikit-learn for statistical modeling. Advanced Analysis: Implementing time series analysis and forecasting. Performing cluster analysis and forecasting. Performing cluster analysis and forecasting. Performing cluster analysis and forecasting. Performing cluster analysis and principal component analysis (PCA). UNIT-VI Real-World Applications and Case Studies 08 Hours 8.1 Business Analytics Business Analytics Business analytics involves applying statistical techniques to analyze and interpret business data to make informed decisions. This section focuses on practical applications in various business contexts. 8.1.1 Descriptive Analytics to analyze sales data. Identifying trends and patterns in revenue streams. Customer Segmentiation: Segmenting customers based on purchasing behavior. Using clustering techniques for market segmentation. 8.1.2 Predictive Analytics in Business Sales Forecasting: Implementing regression models to predict future sales. Evaluating model accuracy and making adjustments. Churn Prediction: Applying logistic regression to predict customer churn. Interpreting model results to develop retention strategies. 8.1.3 Case Study: Financial Risk Management Risk Assessment: Analyzing financial data to assess risk. Using statistical models to predict and mitigate financial risks. Portfolio Optimization: Applying statistical models to predict and mitigate financial risks. Portfolio Optimization: Applying statistical models to optimize investment portfolios. Balancing risk and return through diversification strategies. 8.2 Engineering Statistics Engineering statistics involves the application of statistical methods to solve engineering problems. This section covers key applications in quality control, re	Descriptive	• Statistics		
Inferential Statistics: Conducting hypothesis tests and calculating confidence intervals. Regression Analysis: Building and evaluating linear and logistic regression models. Using statsmodels and scikit-learn for statistical modeling. Advanced Analysis: Implementing time series analysis and forecasting. Performing cluster analysis and principal component analysis (PCA). UNIT-VI Real-World Applications and Case Studies 8.1 Business Analytics Business analytics involves applying statistical techniques to analyze and interpret business data to make informed decisions. This section focuses on practical applications in various business contexts. 8.1.1 Descriptive Analytics in Business Sales and Revenue Analysis: Using descriptive statistics to analyze sales data. Identifying trends and patterns in revenue streams. Customer Segmentian: Segmenting customers based on purchasing behavior. Using clustering techniques for market segmentation. 8.1.2 Predictive Analytics in Business Sales Forecasting: Implementing regression models to predict future sales. Evaluating model accuracy and making adjustments. Churn Prediction: Applying logistic regression to predict customer churn. Interpreting model results to develop retention strategies. 8.1.3 Case Study: Financial Risk Management Risk Assessment: Analyzing financial data to assess risk. Using statistical models to predict and mitigate financial risks. Portfolio Optimization: Applying statistical methods to optimize investment portfolios. Balancing risk and return through diversification strategies. 8.2 Engineering statistics involves the application of statistical methods to solve engineering problems. This section covers key applications in quality control, reliability analysis, and process optimization.	Calculat	ing summary statistics and generating descriptive reports		
Conducting hypothesis tests and calculating confidence intervals. Regression Analysis: Building and evaluating linear and logistic regression models. Using statsmodels and scikit-learn for statistical modeling. Advanced Analysis: Implementing time series analysis and forecasting. Performing cluster analysis and principal component analysis (PCA). UNIT-VI Real-World Applications and Case Studies 08 Hours 8.1 Business Analytics Business analytics involves applying statistical techniques to analyze and interpret business data to make informed decisions. This section focuses on practical applications in various business contexts. 8.1.1 Descriptive Analytics in Business Sales and Revenue Analysis: Using descriptive statistics to analyze sales data. Identifying trends and patterns in revenue streams. Customer Segmentation: Segmenting customers based on purchasing behavior. Using clustering techniques for market segmentation. 8.1.2 Predictive Analytics in Business Sales Forecasting: Implementing regression models to predict future sales. Evaluating model accuracy and making adjustments. Churn Prediction: Applying logistic regression to predict customer churn. Interpreting model results to develop retention strategies. 8.1.3C case Study: Financial Risk Management Risk Assessment: Analyzing financial data to assess risk. Using statistical models to predict and mitigate financial risks. Portfolio Optimization: Applying financial data to assess risk. Using statistical models to predict and mitigate financial risks. Portfolio Optimization: Applying financial Risk Management Risk Assessment: Analyzing financial data to assess risk. Using statistical models to predict and mitigate financial risks. Portfolio Optimization: Applying statistical methods to optimize investment portfolios. Balancing risk and return through diversification strategies. 8.2 Engineering statistics Engineering statistics involves the application of statistical methods to solve engineering problems. This sectio	Inferential	Statistics:		
Regression Analysis: Building and evaluating linear and logistic regression models. Using statsmodels and scikit-learn for statistical modeling. Advanced Analysis: Implementing time series analysis and forecasting. Performing cluster analysis and principal component analysis (PCA). UNIT-VI Real-World Applications and Case Studies 08 Hours 8.1 Business Analytics Business analytics involves applying statistical techniques to analyze and interpret business data to make informed decisions. This section focuses on practical applications in various business contexts. 8.1.1 Descriptive Analytics in Business Sales and Revenue Analysis: Using descriptive statistics to analyze sales data. Identifying trends and patterns in revenue streams. Customer Segmentation: Segmenting customers based on purchasing behavior. Using clustering techniques for market segmentation. 8.1.2 Predictive Analytics in Business Sales Forecasting: Implementing regression models to predict future sales. Evaluating model accuracy and making adjustments. Churn Prediction: Applying logistic regression to predict customer churn. Interpreting model results to develop retention strategies. 8.1.3 Case Study: Financial Risk Management Risk Assessment: Analyzing financial data to assess risk. Using statistical models to predict and mitigate financial risks. Portofio Optimization:	Conduct	ing hypothesis tests and calculating confidence intervals.		
Building and evaluating linear and logistic regression models. Using statsmodels and scikit-learn for statistical modeling. Advanced Analysis: Implementing time series analysis and forecasting. Performing cluster analysis and principal component analysis (PCA). UNIT-VI Real-World Applications and Case Studies 08 Hours 8.1 Business Analytics Business analytics involves applying statistical techniques to analyze and interpret business data to make informed decisions. This section focuses on practical applications in various business contexts. 8.1.1 Descriptive chalytics in Business Sales and Revenue Analysis: Using descriptive statistics to analyze sales data. Identifying trends and patterns in revenue streams. Customer Segmentation: Segmenting customers based on purchasing behavior. Using clustering techniques for market segmentation. 8.1.2 Predictive Analytics in Business Sales Forecasting: Implementing regression models to predict future sales. Evaluating model accuracy and making adjustments. Churn Prediction: Applying logistic regression to predict customer churn. Interpreting model results to develop retention strategies. 8.1.3 Case Study: Financial Risk Management	Regression	Analysis:		
Using statsmodels and scikit-learn for statistical modeling. Advanced Analysis: Implementing time series analysis and forecasting. Performing cluster analysis and principal component analysis (PCA). UNIT-VI Real-World Applications and Case Studies 8.1 Business Analytics Business analytics involves applying statistical techniques to analyze and interpret business data to make informed decisions. This section focuses on practical applications in various business contexts. 8.1.1 Descriptive Analytics in Business Sales and Revenue Analysis: Using descriptive statistics to analyze sales data. Identifying trends and patterns in revenue streams. Customer Segmentation: Segmenting customers based on purchasing behavior. Using clustering techniques for market segmentation. 8.1.2 Predictive Analytics in Business Sales Forecasting: Implementing regression models to predict future sales. Evaluating model accuracy and making adjustments. Churn Prediction: Applying logistic regression to predict customer churn. Interpreting model results to develop retention strategies. 8.1.3 Case Study: Financial Risk Management Risk Assessment: Analyzing financial data to assess risk. Using statistical models to predict and mitigate financial risks. Portfolio Optimization: Applying logistic regression to diversification strategies. 8.2 Engineering Statistics involves the application of statistical methods to solve engineering problems. This section covers key applications in quality control, reliability analysis, and process optimization.	Building	and evaluating linear and logistic regression models.		
Advanced Analysis: Implementing time series analysis and forecasting. Performing cluster analysis and principal component analysis (PCA). UNIT-VI Real-World Applications and Case Studies 08 Hours 8.1 Business Analytics Business analytics involves applying statistical techniques to analyze and interpret business data to make informed decisions. This section focuses on practical applications in various business contexts. 8.1.1 Descriptive Analytics in Business Sales and Revenue Analysis: Using descriptive statistics to analyze sales data. Identifying trends and patterns in revenue streams. Customer Segmentation: Segmenting customers based on purchasing behavior. Using clustering techniques for market segmentation. 8.1.2 Predictive Analytics in Business Sales Forecasting: Implementing regression models to predict future sales. Evaluating model accuracy and making adjustments. Churn Prediction: Applying logistic regression to predict customer churn. Interpreting model results to develop retention strategies. 8.1.3 Case Study: Financial Risk Management Risk Assessment: Analyzing financial data to assess risk. Using statistical models to predict and mitigate financial risks. Portofolio Optimization: Applying logistic regression to diversification strategies. 8.2 Engineering statistical methods to optimize investment portfolios. Balancing risk and return t	Using st	atsmodels and scikit-learn for statistical modeling.		
Implementing time series analysis and forecasting. Performing cluster analysis and principal component analysis (PCA). UNIT-VI Real-World Applications and Case Studies 08 Hours 8.1 Business Analytics Business analytics involves applying statistical techniques to analyze and interpret business data to make informed decisions. This section focuses on practical applications in various business contexts. 8.1.1 Descriptive Analytics in Business Sales and Revenue Analysis: Using descriptive statistics to analyze sales data. Identifying trends and patterns in revenue streams. Customer Segmentation: Segmenting customers based on purchasing behavior. Using clustering techniques for market segmentation. 8.1.2 Predictive Analytics in Business Sales Forecasting: Implementing regression models to predict future sales. Evaluating model accuracy and making adjustments. Churn Prediction: Applying logistic regression to predict customer churn. Interpreting model results to develop retention strategies. 8.1.3 Case Study: Financial Risk Management Risk Assessment: Analyzing financial data to assess risk. Using statistical models to predict and mitigate financial risks. Portfolio Optimization: Applying logistic regression to optimize investment portfolios. Balancing risk and return through diversification strategies. 8.2 Engineering Statistics Engineering statistics involves the application of statistical methods to solve engineering problems. This section covers key applications in quality control, reliability analysis, and process optimization.	Advanced	Analysis:		
Performing cluster analysis and principal component analysis (PCA). UNIT-VI Real-World Applications and Case Studies 08 Hours 8.1 Business Analytics Business analytics involves applying statistical techniques to analyze and interpret business data to make informed decisions. This section focuses on practical applications in various business contexts. 8.1.1 Descriptive Analytics in Business Sales and Revenue Analysis: Using descriptive statistics to analyze sales data. Identifying trends and patterns in revenue streams. Customer Segmentation: Segmenting customers based on purchasing behavior. Using clustering techniques for market segmentation. 8.1.2 Predictive Analytics in Business Sales Forecasting: Implementing regression models to predict future sales. Evaluating model accuracy and making adjustments. Churn Predictive Churl Statistical Risk Management Risk Assessment: Analyzing financial data to assess risk. Using statistical models to predict and mitigate financial risks. Portfolio Optimization: Applying statistical methods to optimize investment portfolios. Balancing risk and return through diversification strategies. 8.2 Engineering Statistics Selemetring transitical methods to optimize investment portfolios. Balancing risk and return through diversification strategies.	Impleme	enting time series analysis and forecasting.		
UNIT-VIReal-World Applications and Case Studies08 Hours8.1 Business AnalyticsBusiness analytics involves applying statistical techniques to analyze and interpret business data to make informed decisions. This section focuses on practical applications in various business contexts.8.1.1 Descriptive Analytics in Business Sales and Revenue Analysis: Using descriptive statistics to analyze sales data. Identifying trends and patterns in revenue streams. Customer Segmentation: Segmenting customers based on purchasing behavior. Using clustering techniques for market segmentation.8.1.2 Predictive Analytics in Business Sales Forecasting: Implementing regression models to predict future sales. Evaluating model accuracy and making adjustments. Churn Prediction: Applying logistic regression to predict customer churn. Interpreting model results to develop retention strategies.8.1.3 Case Study: Financial Risk Management Risk Assessment: Analyzing financial data to assess risk. Using statistical methods to optimize investment portfolios. Balancing risk and return through diversification strategies.8.2 Engineering Statistics Engineering Statistics involves the application of statistical methods to solve engineering problems. This section covers key applications in quality control, reliability analysis, and process optimization.	Performi	ing cluster analysis and principal component analysis (PCA).		
 8.1 Business Analytics Business analytics involves applying statistical techniques to analyze and interpret business data to make informed decisions. This section focuses on practical applications in various business contexts. 8.1.1 Descriptive Analytics in Business Sales and Revenue Analysis: Using descriptive statistics to analyze sales data. Identifying trends and patterns in revenue streams. Customer Segmentation: Segmenting customers based on purchasing behavior. Using clustering techniques for market segmentation. 8.1.2 Predictive Analytics in Business Sales Forecasting: Implementing regression models to predict future sales. Evaluating model accuracy and making adjustments. Churn Prediction: Applying logistic regression to predict customer churn. Interpreting model results to develop retention strategies. 8.1.3 Case Study: Financial Risk Management Risk Assessment: Analyzing financial data to assess risk. Using statistical methods to optimize investment portfolios. Balancing risk and return through diversification strategies. 8.2 Engineering Statistics involves the application of statistical methods to solve engineering problems. This section covers key applications in quality control, reliability analysis, and process optimization. 	UNIT-VI	Real-World Applications and Case Studies	08 Hours	
Business analytics involves applying statistical techniques to analyze and interpret business data to make informed decisions. This section focuses on practical applications in various business contexts. 8.1.1 Descriptive Analytics in Business Sales and Revenue Analysis: Using descriptive statistics to analyze sales data. Identifying trends and patterns in revenue streams. Customer Segmentation: Segmenting customers based on purchasing behavior. Using clustering techniques for market segmentation. 8.1.2 Predictive Analytics in Business Sales Forecasting: Implementing regression models to predict future sales. Evaluating model accuracy and making adjustments. Churn Prediction: Applying logistic regression to predict customer churn. Interpreting model results to develop retention strategies. 8.1.3 Case Study: Financial Risk Management Risk Assessment: Analyzing financial data to assess risk. Using statistical models to predict and mitigate financial risks. Portfolio Optimization: Applying statistical methods to optimize investment portfolios. Balancing risk and return through diversification strategies. 8.2 Engineering Statistics Engineering statistics involves the application of statistical methods to solve engineering problems. This section covers key applications in quality control, reliability analysis, and process optimization.	8.1 Business Analytic	'S		
 informed decisions. This section focuses on practical applications in various business contexts. 8.1.1 Descriptive Analytics in Business Sales and Revenue Analysis: Using descriptive statistics to analyze sales data. Identifying trends and patterns in revenue streams. Customer Segmentation: Segmenting customers based on purchasing behavior. Using clustering techniques for market segmentation. 8.1.2 Predictive Analytics in Business Sales Forecasting: Implementing regression models to predict future sales. Evaluating model accuracy and making adjustments. Churn Prediction: Applying logistic regression to predict customer churn. Interpreting model results to develop retention strategies. 8.1.3 Case Study: Financial Risk Management Risk Assessment: Analyzing financial data to assess risk. Using statistical methods to optimize investment portfolios. Balancing risk and return through diversification strategies. 8.2 Engineering Statistics Engineering statistics involves the application of statistical methods to solve engineering problems. This section covers key applications in quality control, reliability analysis, and process optimization. 	Business analytics inv	volves applying statistical techniques to analyze and interpret busines	ss data to make	
 8.1.1 Descriptive Analytics in Business Sales and Revenue Analysis: Using descriptive statistics to analyze sales data. Identifying trends and patterns in revenue streams. Customer Segmentation: Segmenting customers based on purchasing behavior. Using clustering techniques for market segmentation. 8.1.2 Predictive Analytics in Business Sales Forecasting: Implementing regression models to predict future sales. Evaluating model accuracy and making adjustments. Churn Prediction: Applying logistic regression to predict customer churn. Interpreting model results to develop retention strategies. 8.1.3 Case Study: Financial Risk Management Risk Assessment: Analyzing financial data to assess risk. Using statistical models to predict and mitigate financial risks. Portfolio Optimization: Applying statistical methods to optimize investment portfolios. Balancing risk and return through diversification strategies. 8.2 Engineering Statistics Engineering statistics involves the application of statistical methods to solve engineering problems. This section covers key applications in quality control, reliability analysis, and process optimization. 	informed decisions. T	his section focuses on practical applications in various business cont	exts.	
Sales and Revenue Analysis: Using descriptive statistics to analyze sales data. Identifying trends and patterns in revenue streams. Customer Segmentation: Segmenting customers based on purchasing behavior. Using clustering techniques for market segmentation. 8.1.2 Predictive Analytics in Business Sales Forecasting: Implementing regression models to predict future sales. Evaluating model accuracy and making adjustments. Churn Prediction: Applying logistic regression to predict customer churn. Interpreting model results to develop retention strategies. 8.1.3 Case Study: Financial Risk Management Risk Assessment: Analyzing financial data to assess risk. Using statistical models to predict and mitigate financial risks. Portfolio Optimization: Applying statistical methods to optimize investment portfolios. Balancing risk and return through diversification strategies. 8.2 Engineering Statistics Engineering statistics involves the application of statistical methods to solve engineering problems. This section covers key applications in quality control, reliability analysis, and process optimization.	8.1.1 Descrip	tive Analytics in Business		
Using descriptive statistics to analyze sales data. Identifying trends and patterns in revenue streams. Customer Segmentation: Segmenting customers based on purchasing behavior. Using clustering techniques for market segmentation. 8.1.2 Predictive Analytics in Business Sales Forecasting: Implementing regression models to predict future sales. Evaluating model accuracy and making adjustments. Churn Prediction: Applying logistic regression to predict customer churn. Interpreting model results to develop retention strategies. 8.1.3 Case Study: Financial Risk Management Risk Assessment: Analyzing financial data to assess risk. Using statistical models to predict and mitigate financial risks. Portfolio Optimization: Applying statistical methods to optimize investment portfolios. Balancing risk and return through diversification strategies. 8.2 Engineering Statistics involves the application of statistical methods to solve engineering problems. This section covers key applications in quality control, reliability analysis, and process optimization.	Sales and F	Revenue Analysis:		
Identifying trends and patterns in revenue streams. Customer Segmentation: Segmenting customers based on purchasing behavior. Using clustering techniques for market segmentation. 8.1.2 Predictive Analytics in Business Sales Forecasting: Implementing regression models to predict future sales. Evaluating model accuracy and making adjustments. Churn Prediction: Applying logistic regression to predict customer churn. Interpreting model results to develop retention strategies. 8.1.3 Case Study: Financial Risk Management Risk Assessment: Analyzing financial data to assess risk. Using statistical models to predict and mitigate financial risks. Portfolio Optimization: Applying statistical methods to optimize investment portfolios. Balancing risk and return through diversification strategies. 8.2 Engineering Statistics Engineering statistics involves the application of statistical methods to solve engineering problems. This section covers key applications in quality control, reliability analysis, and process optimization.	Using de	escriptive statistics to analyze sales data.		
Customer Segmentation: Segmenting customers based on purchasing behavior. Using clustering techniques for market segmentation. 8.1.2 Predictive Analytics in Business Sales Forecasting: Implementing regression models to predict future sales. Evaluating model accuracy and making adjustments. Churn Prediction: Applying logistic regression to predict customer churn. Interpreting model results to develop retention strategies. 8.1.3 Case Study: Financial Risk Management Risk Assessment: Analyzing financial data to assess risk. Using statistical models to predict and mitigate financial risks. Portfolio Optimization: Applying statistical methods to optimize investment portfolios. Balancing risk and return through diversification strategies. 8.2 Engineering Statistics Engineering statistics involves the application of statistical methods to solve engineering problems. This section covers key applications in quality control, reliability analysis, and process optimization.	Identifyi	ing trends and patterns in revenue streams.		
 Segmenting customers based on purchasing behavior. Using clustering techniques for market segmentation. 8.1.2 Predictive Analytics in Business Sales Forecasting: Implementing regression models to predict future sales. Evaluating model accuracy and making adjustments. Churn Prediction: Applying logistic regression to predict customer churn. Interpreting model results to develop retention strategies. 8.1.3 Case Study: Financial Risk Management Risk Assessment: Analyzing financial data to assess risk. Using statistical models to predict and mitigate financial risks. Portfolio Optimization: Applying statistical methods to optimize investment portfolios. Balancing risk and return through diversification strategies. 8.2 Engineering Statistics Engineering statistics involves the application of statistical methods to solve engineering problems. This section covers key applications in quality control, reliability analysis, and process optimization. 	Customer	Segmentation:		
 8.1.2 Predictive Analytics in Business Sales Forecasting: Implementing regression models to predict future sales. Evaluating model accuracy and making adjustments. Churn Prediction: Applying logistic regression to predict customer churn. Interpreting model results to develop retention strategies. 8.1.3 Case Study: Financial Risk Management Risk Assessment: Analyzing financial data to assess risk. Using statistical models to predict and mitigate financial risks. Portfolio Optimization: Applying statistical methods to optimize investment portfolios. Balancing risk and return through diversification strategies. 8.2 Engineering Statistics Engineering statistics involves the application of statistical methods to solve engineering problems. This section covers key applications in quality control, reliability analysis, and process optimization. 	Segment	ting customers based on purchasing behavior.		
 Sales Forecasting: Implementing regression models to predict future sales. Evaluating model accuracy and making adjustments. Churn Prediction: Applying logistic regression to predict customer churn. Interpreting model results to develop retention strategies. 8.1.3 Case Study: Financial Risk Management Risk Assessment: Analyzing financial data to assess risk. Using statistical models to predict and mitigate financial risks. Portfolio Optimization: Applying statistical methods to optimize investment portfolios. Balancing risk and return through diversification strategies. 8.2 Engineering Statistics Engineering statistics involves the application of statistical methods to solve engineering problems. This section covers key applications in quality control, reliability analysis, and process optimization. 		ustering techniques for market segmentation.		
 Implementing regression models to predict future sales. Evaluating model accuracy and making adjustments. Churn Prediction: Applying logistic regression to predict customer churn. Interpreting model results to develop retention strategies. 8.1.3 Case Study: Financial Risk Management Risk Assessment: Analyzing financial data to assess risk. Using statistical models to predict and mitigate financial risks. Portfolio Optimization: Applying statistical methods to optimize investment portfolios. Balancing risk and return through diversification strategies. 8.2 Engineering Statistics involves the application of statistical methods to solve engineering problems. This section covers key applications in quality control, reliability analysis, and process optimization. 	8.1.2 Predicti	ve Analytics in Business		
 Evaluating regression models to predict nutrie sales. Evaluating model accuracy and making adjustments. Churn Prediction: Applying logistic regression to predict customer churn. Interpreting model results to develop retention strategies. 8.1.3 Case Study: Financial Risk Management Risk Assessment: Analyzing financial data to assess risk. Using statistical models to predict and mitigate financial risks. Portfolio Optimization: Applying statistical methods to optimize investment portfolios. Balancing risk and return through diversification strategies. 8.2 Engineering Statistics Engineering statistics involves the application of statistical methods to solve engineering problems. This section covers key applications in quality control, reliability analysis, and process optimization. 	Sales Foleo	vasuing.		
 Churn Prediction: Applying logistic regression to predict customer churn. Interpreting model results to develop retention strategies. 8.1.3 Case Study: Financial Risk Management Risk Assessment: Analyzing financial data to assess risk. Using statistical models to predict and mitigate financial risks. Portfolio Optimization: Applying statistical methods to optimize investment portfolios. Balancing risk and return through diversification strategies. 8.2 Engineering Statistics Engineering statistics involves the application of statistical methods to solve engineering problems. This section covers key applications in quality control, reliability analysis, and process optimization. 	Evaluati	ng model accuracy and making adjustments		
Applying logistic regression to predict customer churn. Interpreting model results to develop retention strategies. 8.1.3 Case Study: Financial Risk Management Risk Assessment: Analyzing financial data to assess risk. Using statistical models to predict and mitigate financial risks. Portfolio Optimization: Applying statistical methods to optimize investment portfolios. Balancing risk and return through diversification strategies. 8.2 Engineering Statistics Engineering statistics involves the application of statistical methods to solve engineering problems. This section covers key applications in quality control, reliability analysis, and process optimization.	Churn Pred	liction.		
Interpreting model results to develop retention strategies. 8.1.3 Case Study: Financial Risk Management Risk Assessment: Analyzing financial data to assess risk. Using statistical models to predict and mitigate financial risks. Portfolio Optimization: Applying statistical methods to optimize investment portfolios. Balancing risk and return through diversification strategies. 8.2 Engineering Statistics Engineering statistics involves the application of statistical methods to solve engineering problems. This section covers key applications in quality control, reliability analysis, and process optimization.	Applyin	g logistic regression to predict customer churn.		
 8.1.3 Case Study: Financial Risk Management Risk Assessment: Analyzing financial data to assess risk. Using statistical models to predict and mitigate financial risks. Portfolio Optimization: Applying statistical methods to optimize investment portfolios. Balancing risk and return through diversification strategies. 8.2 Engineering Statistics Engineering statistics involves the application of statistical methods to solve engineering problems. This section covers key applications in quality control, reliability analysis, and process optimization. 	Interpret	ing model results to develop retention strategies.		
Risk Assessment: Analyzing financial data to assess risk. Using statistical models to predict and mitigate financial risks. Portfolio Optimization: Applying statistical methods to optimize investment portfolios. Balancing risk and return through diversification strategies. 8.2 Engineering Statistics Engineering statistics involves the application of statistical methods to solve engineering problems. This section covers key applications in quality control, reliability analysis, and process optimization.	8.1.3 Case St	udy: Financial Risk Management		
 Analyzing financial data to assess risk. Using statistical models to predict and mitigate financial risks. Portfolio Optimization: Applying statistical methods to optimize investment portfolios. Balancing risk and return through diversification strategies. 8.2 Engineering Statistics Engineering statistics involves the application of statistical methods to solve engineering problems. This section covers key applications in quality control, reliability analysis, and process optimization. 	Risk Asses	sment:		
Using statistical models to predict and mitigate financial risks. Portfolio Optimization: Applying statistical methods to optimize investment portfolios. Balancing risk and return through diversification strategies. 8.2 Engineering Statistics Engineering statistics involves the application of statistical methods to solve engineering problems. This section covers key applications in quality control, reliability analysis, and process optimization.	Analyzir	ng financial data to assess risk.		
 Portfolio Optimization: Applying statistical methods to optimize investment portfolios. Balancing risk and return through diversification strategies. 8.2 Engineering Statistics Engineering statistics involves the application of statistical methods to solve engineering problems. This section covers key applications in quality control, reliability analysis, and process optimization. 	Using sta	atistical models to predict and mitigate financial risks.		
 Applying statistical methods to optimize investment portfolios. Balancing risk and return through diversification strategies. 8.2 Engineering Statistics Engineering statistics involves the application of statistical methods to solve engineering problems. This section covers key applications in quality control, reliability analysis, and process optimization. 	Portfolio C	Optimization:		
Balancing risk and return through diversification strategies. 8.2 Engineering Statistics Engineering statistics involves the application of statistical methods to solve engineering problems. This section covers key applications in quality control, reliability analysis, and process optimization.	Applying	g statistical methods to optimize investment portfolios.		
8.2 Engineering Statistics Engineering statistics involves the application of statistical methods to solve engineering problems. This section covers key applications in quality control, reliability analysis, and process optimization.	Balancin	ng risk and return through diversification strategies.		
Engineering statistics involves the application of statistical methods to solve engineering problems. This section covers key applications in quality control, reliability analysis, and process optimization.	8.2 Engineering Statis	stics		
This section covers key applications in quality control, reliability analysis, and process optimization.	Engineering s	statistics involves the application of statistical methods to solve engin	neering problems.	
optimization.	This section c	covers key applications in quality control, reliability analysis, and pro-	ocess	
	optimization.			

8.2.1 Quality Control and Six Sigma	
Control Charts:	
Constructing and interpreting control charts for process monitoring.	
Identifying special cause variations and taking corrective actions.	
Process Capability Analysis:	
Assessing process capability using Cp and Cpk indices.	
Improving process performance through statistical analysis.	
8.2.2 Reliability Engineering	
Reliability Modeling:	
Estimating product reliability using life data analysis.	
Applying Weibull analysis for reliability assessment.	
Failure Mode and Effect Analysis (FMEA):	
Identifying and prioritizing potential failure modes.	
Using statistical techniques to mitigate risks and improve reliability.	
8.2.3 Case Study: Manufacturing Process Improvement	
Lean Manufacturing:	
Analyzing production data to identify waste and inefficiencies.	
Implementing statistical methods to streamline processes.	
Process Optimization:	
Using Design of Experiments (DoE) for process optimization.	
Enhancing product quality and reducing production costs.	
3.3 Social Science Research	
Social science research utilizes statistical methods to study human behavior, social phenomena,	
and societal trends. This section explores applications in survey analysis, experimental design, and	
data interpretation.	
8.3.1 Survey Design and Analysis	
Questionnaire Design:	
Designing effective survey instruments.	
Ensuring validity and reliability of survey questions.	
Sampling Techniques:	
Implementing random and stratified sampling methods.	
Calculating sample size and ensuring representativeness.	
8.3.2 Experimental Design	
Design of Experiments:	
Planning and conducting experiments in social sciences.	
Analyzing experimental data using ANOVA and regression techniques.	
Quasi-Experimental Designs:	
Applying quasi-experimental designs for causal inference.	
Addressing confounding variables and bias in social research.	
8.3.3 Case Study: Public Opinion Research	
Opinion Polls:	
Conducting and analyzing opinion polls.	
Interpreting poll results and assessing public sentiment.	
Behavioral Studies:	
Analyzing behavioral data to understand social trends.	
Using statistical models to predict social behaviors.	
R Tech Data Science	

50|Page

8.4 Health Sciences
Health sciences apply statistical methods to study medical data, analyze clinical trials, and improve
public health outcomes. This section focuses on biostatistics, epidemiology, and health data
analysis.
8.4.1 Biostatistics
Clinical Trials:
Designing and analyzing clinical trials.
Applying statistical methods to evaluate treatment efficacy.
Survival Analysis:
Conducting survival analysis using Kaplan-Meier curves and Cox proportional hazards
models.
Interpreting survival data and making clinical recommendations.
8.4.2 Epidemiology
Epidemiological Studies:
Designing cohort, case-control, and cross-sectional studies.
Analyzing epidemiological data to identify risk factors and disease patterns.
Disease Surveillance:
Monitoring and analyzing disease outbreak data.
Applying statistical techniques for disease prevention and control.
8.4.3 Case Study: Public Health Data Analysis
Health Surveys:
Analyzing data from national health surveys.
Identifying health disparities and priority areas for intervention.
Health Policy Evaluation:
Evaluating the impact of health policies using statistical methods.
Making evidence-based recommendations for policy improvements.

REFERENCE BOOKS:

- 1. "Numerical Methods for Engineers" by Steven C. Chapra and Raymond P. Canale
- 2. "Applied Numerical Methods with MATLAB" by Steven C. Chapra
- 3. "Elements of Information Theory" by Thomas M. Cover and Joy A. Thomas
- 4. "Information Theory, Inference, and Learning Algorithms" by David J.C. MacKay

INTERNAL ASSESSMENT (IA)

Two internal assessments and an end semester examination to test students' reading and writing skills along with their grammatical and lexical competence. Assessment will include following things:

- Internal Assessment: 25 Marks 1. Attendance
 - 2. Assignments
 - 3. Case Study/Mini Project/Presentation
- Mid Semester Exam: 25 Marks
- End Semester Exam: 50 Mark

CO's-PO's & PSO's MAPPING

Cos	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	3	3	3	2	2	3	3	2
2	- #/ · · ·	3	3	1	1	3	3	3
3	1.1	2	2	2	2	3	2	1
4	- N.	2	2	2	2	3	2	2
5	- A	2	2	3	3	3	3	2
Avg	3	2.4	2.4	2	2	3	2.6	2

1 - low, 2 - medium, 3 - high, '-' - no correlation

En arteria

BTDS 202: PROGRAMMING FOR PROBLEM SOLVING B.Tech. I Year II Sem.

	Teaching Scheme: TH: - 4 Hours/Week		Credit TH: 04	Examination S In Sem. Evaluation Mid Sem. Exam: End Sem. Exam:	Scheme: n: 25 Marks 25 Marks 50 Marks				
G	D			Total	: 100 Marks				
Course	Prerequisites:	10 + 2 Science							
	To introduce the	for domental con		Deutheau					
1.	To introduce the		cepts of programming using	g Python.					
2.	To develop probl	em-solving skill	s through programming.						
3.	To teach the basi	c constructs of P	ython for algorithmic thinki	ng.					
4.	To familiarize stu	idents with Pythe	on's data structures and stan	dard libraries.					
5.	To enable studen	ts to write efficie	ent, readable, and modular co	ode.					
6.	To prepare stude	nts for advanced	courses in data science, mad	chine learning, and sof	tware				
	development.								
Learni	ng Course Outco	ome:							
After s	uccessful comple	etion of the cour	se, students will able to:						
	COI: Understand	d the basic conce	pts of programming and pro	blem-solving using Py	thon.				
	CO2: Apply con	trol structures for	r decision making and looping	ng in Python programs	•				
	CO3: Develop fu	inctions and moc	lules for modular and reusab	le code.					
	CO4: Utilize Pyt	hon's built-in dat	ta structures for efficient dat	a manipulation.					
	CO5: Perform fil	le handling opera	tions for reading and writing	g data.					
	CO6: Implement	object-oriented	programming concepts in P	ython.					
	CO7: Use basic	libraries for data	science to manipulate and v	isualize data.					
			Course Contents						
	UNIT-I		Introduction to Pytho	n	08 Hours				
Introdu	ction to Program	ming and Proble	m Solving, Basics of Python	: Installing Python, ID	Es, Python				
Interpre	eter, Python Synta	ax, Keywords, Id	entifiers, and Variables, Bas	sic Input/Output Opera	tions, Data				
Types a	Types and Type Conversion, Comments and Documentation								
	UNIT-II		Control Structures		08 Hours				
Decisio continu	n Making: if, if-e e, pass, List Com	else, nested if-els prehensions, Pra	e, Looping: for, while, neste actical Applications of Contr	d loops, Control State ol Structures.	ments: break,				
	UNIT-III		Functions and Modul	es	08 Hours				

B. Tech Data Science

Defining and Calling Functions, Function Arguments and Return Values, Lambda Functions, Recursion, Adules and Packages, Built-in Functions and Standard Libraries.										
UNIT-IVData Structures08 Hours										
Lists: Operations, Methods, and Applications, Tuples: Operations and Applications, Dictionaries:										
Operations, Methods, and	d Applications, Sets: Operations and Methods, String Manipulation	n and								
Methods, Arrays and the	ir Applications.	00 11								
UNII-V	File Handling	08 Hours								
Reading from and Writin	g to Files, File Methods and Attributes, Working with Text and Bi	inary Files,								
Exception Handling in Fi	ile Operations, CSV File Handling.									
UNIT-VI	Advanced Topics	08 Hours								
 Object-Oriented Prog Encapsulation and Abstr Introduction to Libra Series, Matplotlib: Basic Introduction to Regu 	ramming in Python: Classes and Objects, Inheritance and Polym raction, ries for Data Science: NumPy: Arrays and Matrices, Pandas: Dat c Plotting lar Expressions	orphism, taFrames and								
REFERENCE BOOH	KS:									
1. "Python Crash C	Course" by Eric Matthes ISBN-13: 978-1593276034									
2. "Automate the H	Boring Stuff with Python" by Al Sweigart ISBN-13: 978-15932759	990								
3. "Learning Pytho	on" by Mark Lutz ISBN-13: 978-1449355739									
4. "Python for Dat	4. "Python for Data Analysis" by Wes McKinney ISBN-13: 978-1491957660									
N. 1213		L.								

INTERNAL ASSESSMENT (IA)

Two internal assessments and an end semester examination to test students' reading and writing skills along with their grammatical and lexical competence. Assessment will include following things:

- Internal Assessment: 25 Marks 1. Attendance
 - 2. Assignments
 - 3. Case Study/Mini Project/Presentation
- Mid Semester Exam: 25 Marks
- End Semester Exam: 50 Marks

B. Tech Data Science

54 | P a g e

CO's-PO's & PSO's MAPPING

Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3
(CO)										
CO1: Understand the basic concepts of	3	3	2	2	3	-	-	2	2	2
and problem- solving using Python		- 2	N	(2	10	5			
CO2: Apply control structures for decision	3	3	2	2	3	1月	27	3	3	3
making and looping in Python programs	C	1			1000			5	1 m	
CO3: Develop functions and modules for modular and reusable code	3	3	2	2	3	2	1	3	3	3
CO4: Utilize Python's built-in data structures for efficient data manipulation	3	3		2	3	「「「「「「「「」」「「」」「「」」」」		3	3	3
CO5: Perform file handling operations for reading and writing data	3	3	2	2	3	-	-	3	3	3
CO6: Implement object- oriented	3	3	2	2	3	-	-	3	3	3

programming concepts in Python										
CO7: Use basic libraries for data science to manipulate and visualize data	3	3	2	2	3	-	-	3	3	3

1 - low, 2 - medium, 3 - high, '-' - no correlation

BTDS 203: Data Security in Data Science B.Tech. I Year II Sem.

Teaching Scheme:	Teaching Scheme:CreditExamination Scheme:TH:4 Hours/WookTH: 04In Som Evoluation: 25 Mork									
In: - 4 Hours/ week	1 11; 04	Mid Sem. Exam:	25 Marks 25 Marks							
		End Sem. Exam:	50 Marks							
Come Provo guidito a Dogio un dogato da		Total	: 100 Marks							
Course Prerequisites: Basic understanding of computer networks and operating systems, Familiarity with data science concepts, tools, and programming languages										
Course Objective:	ogramming languages.									
• To understand the fundamenta	al concepts of data security	in the context of data s	science.							
• To learn various cryptographi	c techniques and their appli	cations in data science								
• To explore methods for securi	ing data during storage, tran	smission, and process	ing in data							
science workflows.		_	-							
• To examine security protocols	s and standards relevant to c	lata science.								
• To gain practical experience i	n implementing data securit	y measures in data sci	ence							
projects.										
Learning Course Outcome:										
After successful completion of the cou	rse, students will able to:	and muchtices in data a								
Demonstrate an understanding Apply cryptographic technique	g of data security principles	and practices in data s	cience.							
 Appry cryptographic technique Implement security measures 	for data storage transmissi	a science.	lata science							
workflows.	for data storage, transmission	on, and processing in e	lata science							
• Evaluate and use security prot	cocols and standards in data	science projects.								
• Analyze security risks in data	science and develop strateg	tes to mitigate them.								
	Course Contents									
UNIT-I Introdu	iction to Data Security in	Data Science	07 Hours							
Overview of Data Security: Imp	portance and Challenges	in Data Science, I	Basic							
Concepts: Confidentiality, Integrit	y, Availability, Threats an	nd Vulnerabilities in	Data							
Science: Types and Examples, R	isk Management and Ass	sessment in Data Sc	ience							
Projects, Legal and Ethical Issues i	n Data Security for Data S	cience								
UNIT-II	Cryptography for Data S	Science	08 Hours							
Introduction to Cryptography: Goa	ls and Applications in Dat	a Science, Symmetric	c Key							
Cryptography: Algorithms (AES,	DES), Asymmetric Key	Cryptography: Algorithms	ithms							
(RSA, ECC), Hash Functions and I	Digital Signatures, Key Ma	nagement and Distrib	oution							
in Data Science										
UNIT-III Data	Security in Storage for I	Data Science	08 Hours							

B. Tech Data Science

57 | P a g e

Data Encryption at Rest: Techniques and Tools, Secure Data Storage Solutions: Databases, Data Lakes, and Cloud Storage, Access Controls and Authentication								
Mechanisms, Backup and Recovery Strategies for Data Science Projects, Case Studies:								
Implementing Data Security in Storage for Data Science								
UNIT-IV	Data Security in Transmission for Data Science	07 Hours						
Data Encryption in	Transit: Techniques and Tools, Secure Communication Proto	cols:						
SSL/TLS, HTTPS, N	etwork Security Measures: Firewalls, Intrusion Detection Syst	ems,						
Virtual Private Netw	orks (VPNs) for Data Science, Case Studies: Implementing	Data						
Security in Transmis	sion for Data Science							
UNIT-V	Security Protocols and Standards for Data Science	08 Hours						
Overview of Securi	ity Protocols: Importance and Applications in Data Scie	ence,						
Authentication Proto	ocols: Kerberos, OAuth, Secure Data Sharing Protocols: Se	ecure						
Multiparty Computa	tion, Differential Privacy, Security Standards and Framewo	orks:						
ISO/IEC 27001, NIS	ST, GDPR, Case Studies: Implementing Security Protocols	and						
Standards in Data Sci	ience Projects	00 11						
UNII-VI	Advanced Topics and Emerging Trends in Data Security for Data Science	08 Hours						
Advanced Encryption	n Techniques: Quantum Cryptography, Homomorphic Encryp	tion,						
Data Privacy and A	Anonymization Techniques: GDPR, CCPA Compliance, C	loud						
Security for Data Sc	cience: Challenges and Solutions, Security in Big Data and	IoT:						
Techniques and Best	Practices, Future Trends in Data Security for Data Science							
TEXT BOOKS:								
1. "Cryptography	and Network Security: Principles and Practice" by William Stall	ings						
2. "Data Security	and Privacy: A Practical Guide for Protecting Data" by David							
Salomon								
3. "Security and P	rivacy in Data Mining and Machine Learning" by Charu C.							
Aggarwal								
4. "Applied Crypt	ography: Protocols, Algorithms, and Source Code in C" by Bruce	e						
Schneier								
5. "Database Secu	urity: Concepts, Approaches, and Challenges" by Alfred Basta and	d						
Melissa Zgola								
U								

INTERNAL ASSESSMENT (IA)

Two internal assessments and an end semester examination to test students' reading and writing skills along with their grammatical and lexical competence. Assessment will include following things:

• Internal Assessment: 25 Marks - 1. Attendance

2. Assignments

3. Case Study/Mini Project/Presentation

- Mid Semester Exam: 25 Marks
- End Semester Exam: 50 Marks

CO's-PO's & PSO's MAPPING

Course Outcome	PO1	PO2	PO3	PO4	PO6
CO1: Understand data security principles	2	2	(Hith)	-	3
CO2: Apply cryptographic techniques	2	-	3	- 1	-
CO3: Implement security measures	ditric.	2	3		1.
CO4: Evaluate security protocols and standards	inter C	2	Ū.	3	5
CO5: Analyze security risks	- 5	2	-53	360	3

1 - low, 2 - medium, 3 - high, '-' - no correlation

BTDS 204: SOFTWARE ENGINEERING B.Tech. II Year II Sem.

Teaching Scheme:	Credit	Examination S	cheme:						
TH: - 4 Hours/Week	TH: 04	In Sem. Evaluation	: 25 Marks						
		Mid Sem. Exam:	25 Marks						
		End Sem. Exam:	50 Marks						
	D	Total	: 100 Marks						
Course Prerequisites: Software Flow	Basic								
Course Objective:	avide on understanding of th	o wonking knowlodge	of the						
• The aim of the course is to pro	Svide an understanding of the	e working knowledge	or the						
techniques for estimation, de	sign, testing and quality ma	nagement of large sof	tware						
development projects.	1 0	C 1 C							
• Topics include process mod	els, software requirements,	software design, soft	ware						
testing, software process/proc	luct metrics, risk managemen	nt, quality managemen	t and						
UML diagrams									
Learning Course Outcome:									
After successful completion of the cou	rse, students will able to:								
Ability to translate end-user r	equirements into system and	l software requirement	s,						
using e.g. UML, and structure	e the requirements in a Softw	vare Requirements							
Document (SRD).									
• Identify and apply appropriate	e software architectures and	patterns to carry out hig	gh						
level design of a system and l	be able to critically compare	alternative choices.							
• Will have experience and/or a	wareness of testing problem	s and will be able to							
develop a simple testing report	rt								
	Course Contents								
UNIT-I In	troduction to Software En	gineering	07 Hours						
The evolving role of software, changi	ng nature of software, softw	are myths. A Generic	view						
of process: Software engineering- a l	ayered technology, a proces	s framework, the capa	ıbility						
maturity model integration (CMMI). I	Process models: The waterf	all model, Spiral mode	el and						
Agile methodology		-							
UNIT-II Software Requirements 08 Hours									
Functional and pon-functional requ	lirements, user requireme	nts, system requiren	nents.						
interface specification, the software re	interface specification the software requirements document								
Requirements engineering process.	Feasibility studies requirem	ents elicitation and ana	lvsis						
requirements validation requirements	management	ents enertation and and	, 010,						
requirements validation, requirements management.									

UNIT-III	Design Engineering	08 Hours							
Design process and design quality, design concepts, the design model. Creating an									
architectural design: so	ftware architecture, data design, architectural styles and patterns,								
architectural design, co	nceptual model of UML, basic structural modeling, class diagrams	,							
sequence diagrams, collaboration diagrams, use case diagrams, component diagrams.									
UNIT-IV	Testing Strategies	07 Hours							
A strategic approach to	software testing, test strategies for conventional software, black-bo	X							
and white-box testing,	validation testing, system testing, the art of debugging.								
Metrics for Process and	Products: Software measurement, metrics for software quality.								
UNIT-V	Risk management	08 Hours							
Reactive Vs proactive	risk strategies, software risks, risk identification, risk projection,	risk							
refinement, RMMM. (Quality Management: Quality concepts, software quality assurate	nce,							
software reviews, form	hal technical reviews, statistical software quality assurance, softw	vare							
reliability, the ISO 900	0 quality standards.								
TEXT BOOKS:									
1. Software Engin	neering, A practitioner's Approach-Roger S. Pressman, 6th edition,	,							
McGraw Hill I	International Edition.								
2. Software Engin	neering- Sommerville, 7th edition, Pearson Education.								
REFERENCE BOO	KS:								
1. The unified mo	odeling language user guide Grady Booch, James Rambaugh, Ivar								
Jacobson, Pear	rson Education.								
2. Software Engin	neering, an Engineering approach- James F. Peters, Witold Pedrycz, J	ohn Wiley							
3. Software Engi	neering principles and practice- Waman S Jawadekar, The								
McGraw-Hill	Companies.								
4. Fundamentals	of object-oriented design using UML Meiler page-Jones: Pearson E	ducation.							
INTERNAL ASSE	SSMENT (IA)								
Two internal assess	ments and an end semester examination to test students' reading and	writing							

skills along with their grammatical and lexical competence. Assessment will include following things:

- Internal Assessment: 25 Marks 1. Attendance
 - 2. Assignments
 - 3. Case Study/Mini Project/Presentation
- Mid Semester Exam: 25 Marks
- End Semester Exam: 50 Marks

CO's-PO's & PSO's MAPPING

Cos	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	3	3	3	2	2	3	3	2
2	- 60	3	3	1	1	3	3	3
3	9	2	2	2	2	3	2	1
4	1.	2	2	2	2	3	2	2
5	100	2	2	3	3	3	3	2
Avg	3	2.4	2.4	2	2	3	2.6	2

Sec.

1 - low, 2 - medium, 3 - high, '-' - no correlation

11.00

1 - low, 2 - medium, 3 - high, '-' - no correlation

स्वाधान् संधन्त्र

BTDS 202L: PROGRAMMING FOR PROBLEM SOLVING LABORATORY B.Tech. I Year II Sem.

2110			
Teaching Scheme:	Credit	Examination So	cheme:
TH: - 4 Hours/Week	TH: 04	In Sem. Evaluation:	: 25 Marks
		Mid Sem. Exam:	25 Marks
		End Sem. Exam:	50 Marks
		Total	: 100 Marks
Course Prerequisites: Familiarity wi	th basic programming concept	s and syntax, preferably in	another
language, and an understanding of fundamen	tal computer science principles	s.	
Course Objective:			
To impart the basic concepts of data str	cuctures and algorithms. To un	derstand concepts about	
searching and sorting techniques. To U	nderstand basic concepts abou	t stacks, queues, lists, tree	es and
graphs To understand the algorithms ar	nd develop the step by step solu	itions of problems with the	e help
of data			
Learning Course Outcome:			
After successful completion of the cour	se, students will able to:		
The experiments will make the studen	t gain skills on:		
CO1: Understand Basic Programming Con	structs		
CO2: Implement Data Structures and Algo	rithms		
CO3: Develop Object-Oriented Programm	ing Skills		
CO4: Use Python Libraries for Data Handl	ing and Analysis		
CO5: Apply File Handling and Exception	Handling Techniques		
CO6: Implement and Analyze Sorting and	Searching Algorithms		
CO7: Develop Skills in Problem Solving a	nd Debugging		
CO8: Gain Exposure to Advanced Topics			
	Course Contents		
			0.000

[1] या क्रियाचाम् स धनिद्धराः ।।

Experiment 1: Introduction to Python

- Write a Python program to print "Hello, World!".
- Write a Python program to take user input and print it.
- Write a Python program to swap two numbers.

Experiment 2: Control Structures

- Write a Python program to check if a number is even or odd.
- Write a Python program to find the factorial of a number using loops.
- Write a Python program to print Fibonacci series up to n terms.

Experiment 3: Functions and Modules

- Write a Python program to find the largest number among three numbers using a function.
- Write a Python program to check if a number is prime or not using a function.
- Write a Python program to generate a random number between a given range using a module.

Experiment 4: Lists and Strings

- Write a Python program to find the sum and average of elements in a list.
- Write a Python program to count the number of vowels in a string.
- Write a Python program to reverse a string using slicing.

Experiment 5: Dictionaries and Sets

- Write a Python program to demonstrate dictionary operations (add, delete, update).
- Write a Python program to find the intersection and union of two sets.
- Write a Python program to count the frequency of elements in a list using a dictionary.

Experiment 6: File Handling

- Write a Python program to read and display the contents of a file.
- Write a Python program to write user input to a file.
- Write a Python program to count the number of words in a file.

Experiment 7: Object-Oriented Programming (OOP)

- Write a Python program to demonstrate class and object creation.
- Write a Python program to demonstrate inheritance (base and derived classes).
- Write a Python program to demonstrate method overriding.

Experiment 8: Exception Handling

• Write a Python program to handle ZeroDivisionError and IndexError exceptions.

B. Tech Data Science

64 | P a g e

- Write a Python program to demonstrate the use of try-except-else-finally block.
- Write a Python program to create a custom exception and raise it.

Experiment 9: Recursion

- Write a Python program to find the factorial of a number using recursion.
- Write a Python program to calculate the nth Fibonacci number using recursion.
- Write a Python program to implement binary search using recursion.

Experiment 10: Sorting and Searching Algorithms

- Write a Python program to implement bubble sort and analyze its time complexity.
- Write a Python program to implement binary search on a sorted list.
- Write a Python program to implement linear search and analyze its time complexity.

Experiment 11: Data Structures (Optional)

- Write a Python program to implement a stack using lists.
- Write a Python program to implement a queue using lists.
- Write a Python program to implement a binary search tree (BST).

Experiment 12: Introduction to NumPy and Pandas (Data Handling)

- Write a Python program to create a NumPy array and perform basic operations (addition, subtraction).
- Write a Python program to create a Pandas DataFrame and perform basic operations (selection, filtering).

REFERENCE BOOKS:

- 1. "Python Programming: An Introduction to Computer Science" by John Zelle
- 2. Official documentation of Python (python.org)
- 3. Official documentation of NumPy (numpy.org)
- 4. Official documentation of Pandas (pandas.pydata.org)

- Internal Assessment: 25 Marks 1. Attendance
 - 2. Assignments
 - 3. Case Study/Mini Project/Presentation
- Mid Semester Exam: 25 Marks
- End Semester Exam: 50 Marks

CO's-PO's & PSO's MAPPING

Course Outcomes	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
(CO)								
CO1: Understand	3	3	-	-	-	3	-	3
Basic Programming								
Constructs								
CO2: Implement	3	3	-	-	-	3	2	3
Data Structures and								
Algorithms								
CO3: Develop	3	3	2	-	-	2	3	3
Object-Oriented								
Programming Skills			1	1 miles				
CO4: Use Python	3	3	2	2	-	3	-	3
Libraries for Data		1.0	/	b	1.20			
Handling and		10		130	NO.			
Analysis	1	1111			10.23	Page 1		
CO5: Apply File	3	3	-	2		2	5	3
Handling and		SIL	1000	1.	A1196	- N		
Exception Handling		A	194	1.85	1000	- W	1	
Techniques		111			1.75		1	
CO6: Implement and	3	3	 1.138 		-	2	2	3
Analyze Sorting and				21			10.5	
Searching				1		in the	115	
Algorithms		and a	0.457	No.		1 24	L' R	
CO7: Develop Skills	3	3	-	1000	-77	3	2	3
in Problem Solving	111	1200	-		I too	12 2		
and Debugging					1	1 8	- 100	
CO8: Gain Exposure	3	2	-	1000	-	2	2	3
to Advanced Topics	Sec. into		1000	dim.		in la	1.1.1	- Art

1 - low, 2 - medium, 3 - high, '-' - no correlation

BTDS 201L: APPLIED STATISTICS LAB B Tech I Vear II Sem

Dilt				
Teaching Scheme:	Credit	Examination Scheme:		
TH: - 4 Hours/Week	TH: 04	In Sem. Evaluation: 25 Marks		
		Mid Sem. Exam: 25 Marks		
		End Sem. Exam: 50 Marks		
		Total : 100 Marks		

Course Prerequisites: Basic knowledge of Python programming

Course Objective:

- 1. Introduce students to essential Python packages used in data analytics.
- 2. Provide hands-on experience in using these packages for data manipulation, analysis, and visualization.
- 3. Develop the ability to implement data analytics workflows using Python.
- 4. Enhance problem-solving skills using Python for real-world data analytics problems.
- 5. Understand the integration of Python packages for comprehensive data science solutions.

Learning Course Outcome:

After successful completion of the course, students will able to:

CO1: Understand and set up the Python environment for data analytics. Know the applications of various devices.

CO2: Demonstrate proficiency in using NumPy and Pandas for data manipulation and preprocessing.

CO3: Create and customize data visualizations using Matplotlib and Seaborn.

CO4: Perform statistical analysis and hypothesis testing using SciPy and Statsmodels.

CO5: Implement machine learning algorithms using Scikit-Learn for both supervised and unsupervised learning tasks.

CO6: Integrate multiple Python packages to develop comprehensive data analytics workflows.

CO7: Explore advanced Python packages for deep learning and apply best practices in data analytics projects.

List of Experiments

Lab Exercises:

Unit 1: Introduction to Applied Statistics

Lab 1: Understanding Types of Data and Levels of Measurement

- Objective: Learn to classify different types of data (nominal, ordinal, interval, ratio) and their levels of measurement.
- Tools: Python (Pandas), R
- Activities: Identify types of data and levels of measurement in a given dataset.

Unit 2: Descriptive Statistics

Lab 2: Data Collection Methods

- Objective: Explore various methods of data collection.
- Tools: Python, R
- Activities: Simulate data collection using surveys, experiments, and observational studies.

Lab 3: Data Organization and Presentation

- Objective: Organize and present data using frequency distributions and graphical representations.
- Tools: Python (Pandas, Matplotlib), R

- Activities: Create frequency distributions, histograms, pie charts, and box plots.
- Lab 4: Measures of Central Tendency
 - Objective: Calculate mean, median, and mode.
 - Tools: Python (Pandas), R
 - Activities: Compute and interpret mean, median, and mode for a dataset.

Lab 5: Measures of Dispersion

- Objective: Calculate range, variance, and standard deviation.
- Tools: Python (Pandas), R
- Activities: Compute and interpret range, variance, and standard deviation for a dataset.
- Lab 6: Measures of Shape and Position
 - Objective: Analyze skewness, kurtosis, percentiles, and quartiles.
 - Tools: Python (SciPy, Pandas), R
 - Activities: Calculate and interpret skewness, kurtosis, percentiles, and quartiles.

Unit 3: Probability Theory

Lab 7: Basics of Probability

- Objective: Understand basic probability concepts.
- Tools: Python, R
- Activities: Solve probability problems using Python or R.

Lab 8: Probability Distributions

- Objective: Work with discrete and continuous probability distributions.
- Tools: Python (NumPy, SciPy), R
- Activities: Generate and analyze binomial, Poisson, normal, and exponential distributions.

Lab 9: Conditional Probability and Independence

- Objective: Explore conditional probability and independence.
- Tools: Python, R
- Activities: Calculate conditional probabilities and test for independence in datasets.

Unit 4: Inferential Statistics

Lab 10: Sampling and Sampling Distributions

- Objective: Understand sampling techniques and sampling distributions.
- Tools: Python (Pandas, NumPy), R
- Activities: Perform random sampling and create sampling distributions.

Lab 11: Point Estimation and Interval Estimation

- Objective: Perform point and interval estimation.
- Tools: Python (SciPy), R
- Activities: Estimate population parameters using point and interval estimation.
- Lab 12: Hypothesis Testing
 - Objective: Conduct hypothesis tests.
 - Tools: Python (SciPy, Statsmodels), R
 - Activities: Perform and interpret t-tests, chi-square tests, and ANOVA.

Lab 13: Confidence Intervals

- Objective: Construct and interpret confidence intervals.
- Tools: Python (SciPy, Statsmodels), R
- Activities: Calculate confidence intervals for means and proportions.

Unit 5: Regression Analysis

Lab 14: Simple Linear Regression

- Objective: Perform simple linear regression analysis.
- Tools: Python (Statsmodels, Scikit-learn), R
- Activities: Fit a simple linear regression model and interpret the results.

Lab 15: Multiple Linear Regression

- Objective: Conduct multiple linear regression analysis.
- Tools: Python (Statsmodels, Scikit-learn), R
- Activities: Build and evaluate a multiple linear regression model.

Lab 16: Advanced Regression Techniques

- Objective: Explore logistic regression and polynomial regression.
- Tools: Python (Scikit-learn), R
- Activities: Fit and interpret logistic and polynomial regression models.
- Unit 6: Advanced Statistical Techniques

Lab 17: Non-parametric Tests

- Objective: Conduct non-parametric statistical tests.
- Tools: Python (SciPy), R
- Activities: Perform chi-square, Mann-Whitney U, and Kruskal-Wallis tests.

Lab 18: Cluster Analysis

- Objective: Perform cluster analysis.
- Tools: Python (Scikit-learn), R
- Activities: Implement k-means and hierarchical clustering.

Lab 19: Factor Analysis

- Objective: Conduct factor analysis.
- Tools: Python (FactorAnalyzer), R
- Activities: Perform and interpret factor analysis.

Lab 20: Principal Component Analysis (PCA)

- Objective: Apply PCA for dimensionality reduction.
- Tools: Python (Scikit-learn), R
- Activities: Implement PCA and interpret the results.

Unit 7: Statistical Software Applications

Lab 21: Introduction to Statistical Software

- Objective: Get familiar with statistical software.
- Tools: R, SPSS, Python
- Activities: Basic operations and data management in R, SPSS, and Python.

Lab 22: Data Analysis Using R

- Objective: Perform data analysis using R.
- Tools: R
- Activities: Data manipulation, statistical analysis, and visualization in R.
- Lab 23: Data Analysis Using SPSS
 - Objective: Conduct data analysis using SPSS.
 - Tools: SPSS
 - Activities: Data entry, descriptive statistics, and inferential statistics in SPSS.
- Lab 24: Data Analysis Using Python
 - Objective: Perform data analysis using Python.

- Tools: Python (Pandas, NumPy, Matplotlib, SciPy)
- Activities: Data cleaning, preparation, and statistical modeling in Python.

Unit 8: Real-World Applications and Case Studies

Lab 25: Business Analytics

- Objective: Apply statistical techniques to business problems.
- Tools: Python, R, SPSS
- Activities: Analyze business datasets and derive insights.

Lab 26: Social Science Research

- Objective: Apply statistics in social science research.
- Tools: Python, R, SPSS
- Activities: Analyze social science data and interpret results.

Lab 27: Health Sciences

- Objective: Apply statistical methods to health science data.
- Tools: Python, R, SPSS
- Activities: Analyze health datasets and interpret findings.

INTERNAL ASSESSMENT (IA)

Two internal assessments and an end semester examination to test students' reading and writing skills along with their grammatical and lexical competence. Assessment will include following things:

• Internal Assessment: 25 Marks - 1. Attendance

2. Assignments

3. Case Study/Mini Project/Presentation

山口北市

- Mid Semester Exam: 25 Marks
- End Semester Exam: 50 Marks

CO's-PO's & PSO's MAPPING

Course	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
Outcomes								
(CO)								
CO1	3	3	-	-	-	3	-	3
CO2	3	3	-	-	3	3	3	3
CO3	3	-	3	-	3	-	3	-
CO4	3	3	-	3	-	3	-	3
CO5	3	3	-	-	3	3	-	3

B. Tech Data Science

CO6	3	3	3	-	3	-	3	3
CO7	3	3	3	-	3	3	3	-

1 - low, 2 - medium, 3 - high, '-' - no correlation

BTDS 301: MATHEMATICS FOR DATA SCIENCE B.Tech. I Year I Sem.

Teaching Scheme:	Credit	Examination Scheme:		
TH: - 4 Hours/Week	TH: 04	In Sem. Evaluation: 25 Marks		
		Mid Sem. Exam: 25 Marks		
		End Sem. Exam: 50 Marks		
		Total : 100 Marks		

Course Prerequisites: High School Mathematics

Course Objective:

- 1. Introduce the basics of linear algebra and its importance in data science.
- 2. Develop an understanding of vectors, matrices, and their operations.
- 3. Cover the fundamental concepts of calculus that are applicable to data science.
- 4. Understand differentiation and integration in the context of data functions.
- 5. Introduce the fundamental principles of probability theory.
- 6. Apply probability concepts to data science problems.
- 7. Develop an understanding of descriptive and inferential statistics.
- 8. Apply statistical methods to analyze data.
- 9. Introduce discrete mathematics concepts relevant to data science.
- 10. Develop logical reasoning and problem-solving skills.
- 11. Introduce optimization techniques and their applications in data science.
- 12. Solve optimization problems using mathematical methods.

Learning Course Outcome:

After successful completion of the course, students will able to:

CO1: Apply Linear Algebra Techniques

- Understand and apply concepts of vectors, matrices, and linear transformations in data science problems.
- Compute eigenvalues and eigenvectors and use them in dimensionality reduction techniques like Principal Component Analysis (PCA).

CO2: Perform Calculus Operations

- Perform differentiation and integration of functions, and apply these techniques to optimize and analyze data-driven models.
- Utilize multivariable calculus to solve problems involving multiple variables and optimize complex functions.

CO3: Apply Probability Theory

- Understand and apply fundamental concepts of probability, including random variables, probability distributions, and expectation.
- Use probability theory to model uncertainty and variability in data.

CO4: Utilize Statistical Methods

- Employ descriptive statistics to summarize and visualize data effectively.
- Conduct inferential statistical analyses, including hypothesis testing and confidence interval estimation, to draw valid conclusions from data.

CO5: Implement Discrete Mathematics

- Apply concepts from set theory, logic, and combinatorics to solve problems in data science.
- Utilize discrete mathematics to understand and implement algorithms and data structures used in data processing.

CO6: Solve Optimization Problems

- Formulate and solve linear and nonlinear optimization problems relevant to data science.
- Use optimization techniques to improve machine learning models and enhance decision-making processes in data-driven applications.

Course Contents									
	UNIT-I	Linear Algebra	07 Hours						
1.	Vectors and Spa	ices							
	 Definition of vectors and vector spaces 								
	• Linear co	mbinations, span, and basis							
	 Dot product and orthogonality 								
2.	Matrices and Ma	atrix Operations							
	 Matrix ad 	dition, multiplication, and transposition							
	\circ Identity as	nd inverse matrices							
	 Determina 	ants and their properties							
3.	Eigenvalues and	Eigenvectors							
	 Definition 	n and properties							
	• Calculation	on of eigenvalues and eigenvectors							
	 Application 	ons in dimensionality reduction (e.g., PCA)							
ab/P	ractical:								
•	• Implementation of matrix operations and eigenvalue computations using Python libraries (e.g., NumPy).								
	UNIT-II	Calculus	08 Hours						
1	Differentiation								
1.	Limits and	d continuity							
	• Derivative	a continuity							
	• Derivatives of functions • Derivatives and gradients								
2	• I atual uchivalives allu graulellis								
2.	• Definite and indefinite integrals								
	 Techniques of integration 								
	• Applications in probability and statistics								
3	3 Multivariable Calculus								
5.	- Functions of multiple variables								
	• Gradient	divergence and curl							
	\circ Ontimizat	tion: maxima, minima, and saddle points							
	o optimiza	The subscripting and subscripting							

Lab/Practical:

Practical examples of differentiation and integration using Python (e.g., SymPy for symbolic computation).

	UNIT-III	Probability	08 Hours									
1.	Basic Probabilit	y Concepts										
	• Sample s	paces and events										
	 Probability axioms and rules Conditional probability and independence 											
	• Condition	al probability and independence										
2.	Random Variab	les										
	• Discrete a	and continuous random variables										
	• Probabilit	ty mass functions (PMF) and probability density functions (PDF)										
	 Expectati 	on, variance, and moments										
3.	Common Proba	bility Distributions										
	• Binomial	, Poisson, and Normal distributions										
	• Properties	s and applications										
	• Central L	imit Theorem										
	3.1 Basics of Prob	ability										
	3.1.1 Defin	nitions and Concepts										
	Experin	nent, Sample Space, and Events										
	Types o	f Events: Simple, Compound, Mutually Exclusive, Exhaustive										
	Basic P	robability Principles: Classical, Relative Frequency, Subjective										
	3.1.2 Prob	ability Axioms										
	Non-neg	gativity										
	A dditiy	ity										
	3 1 3 Calc	ulation of Probabilities										
	Countin	g Techniques: Permutations and Combinations										
	Calcula	tion of Probabilities Using Counting Methods										
	3.1.4 Exar	nples and Applications										
	Real-wo	orld Examples Illustrating Basic Probability Concepts										
	3.2 Probability Ru	les and Theorems										
	3.2.1 Addi	tion Rule										
	Additio	n Rule for Mutually Exclusive Events										
		Addition Kule										
	5.2.2 Multin	iplication Rule for Independent Events										
	General	Multiplication Rule										
	3.2.3 Com	plementary Rule										
	Definiti	on and Calculation										
	Applica	tions of Complementary Rule										
	1											

Statement and Interpretation Applications of Bayes' Theorem in Real-world Scenarios 3.2.5 Law of Total Probability Statement and Interpretation Using the Law of Total Probability to Solve Problems 3.2.6 Examples and Applications Practical Examples Using Probability Rules and Theorems 3.3 Conditional Probability and Independence 3.3.1 Conditional Probability Definition and Calculation Conditional Probability in Real-world Contexts 3.3.2 Independent Events Definition and Identification Properties of Independent Events 3.3.3 Dependent Events Definition and Identification Calculating Probability for Dependent Events 3.3.4 Applications and Examples Solving Problems Involving Conditional Probability and Independence Real-world Applications of Conditional Probability and Independence Real-world Applications of Conditional Probability and Independence Real-world Applications of Conditional Probability and Independence 3.4.1 Discrete Distribution 3.4.1.1 Binomial Distribution Definition and Characteristics Probability Mass Function (PMF) Binomial Coefficient and Calculations Mean and Variance of Binomial Distribution 3.4.1.2 Poisson Distribution 3.4.1.2 Poisson Distribution Applications of Poisson Distribution 3.4.2.1 Normal Distribution Definition and Characteristics Probability Dessity Function (PMF) Mean and Variance of Poisson and Binomial Distributions 3.4.2.1 Normal Distribution Definition and Characteristics Probability Density Function (PMF) Standard Normal Distribution 3.4.2.2 Exponential Distribution Definition and Characteristics Probability Density Function (PDF) Standard Normal Distribution Definition and Characteristics Probability Density Function (PDF) Mean and Variance of Exponential Distribution Definition and Characteristics Probability Density Function (PDF) Mean and Variance of Exponential Distribution		3.2.4 Bayes' Theorem
Applications of Bayes' Theorem in Real-world Scenarios 3.2.5 Law of Total Probability Statement and Interpretation Using the Law of Total Probability to Solve Problems 3.2.6 Examples and Applications Practical Examples Using Probability Rules and Theorems 3.3 Conditional Probability and Independence 3.3.1 Conditional Probability in Real-world Contexts 3.3.2 Independent Events Definition and Calculation Conditional Probability in Real-world Contexts 3.3.2 Independent Events 3.3.3 Independent Events 3.3.3 Dependent Events Definition and Identification Properties of Independent Events 3.3.3 Dependent Events Definition and Identification Calculating Probability for Dependent Events 3.3.4 Applications and Examples Solving Problems Involving Conditional Probability and Independence Real-world Applications of Conditional Probability and Independence Real-world Applications of Conditional Probability and Independence 8.4 Probability Distributions 3.4.1 Discrete Distribution 3.4.1.1 Binomial Distribution 3.4.1.1 Binomial Distribution 3.4.1.2 Poisson Distribution 3.4.1.2 Poisson Distribution 3.4.1.2 Poisson Distribution 3.4.1.2 Poisson Distribution 3.4.1.2 Poisson Distribution 3.4.1.2 Poisson Distribution Applications of Poisson Distribution Applications of Poisson Distribution Applications Of Poisson Distribution 3.4.2.1 Normal Distribution 3.4.2.1 Normal Distribution 3.4.2.2 Exponential Distribution Definition and Characteristics Probability Density Function (PDF) Mean and Wariance of Exponential Distribution Mem oryless Property		Statement and Interpretation
 3.2.5 Law of Total Probability Statement and Interpretation Using the Law of Total Probability to Solve Problems 3.2.6 Examples and Applications Practical Examples Using Probability Rules and Theorems 3.3 Conditional Probability Definition and Calculation Conditional Probability in Real-world Contexts 3.3.2 Independent Events Definition and Identification Properties of Independent Events 3.3.3 Dependent Events Definition and Identification Reporties of Independent Events 3.3.3 Dependent Events Definition and Identification Calculating Probability for Dependent Events 3.3.4 Applications and Examples Solving Problems Involving Conditional Probability and Independence Real-world Applications of Conditional Probability and Independence A.1.1 Binomial Distribution Definition and Characteristics Probability Mass Function (PMF) Binomial Coefficient and Calculations Mean and Variance of Poisson Distribution A.1.2 Poisson Distribution A.1.2 Poisson Distribution A.2.1 Normal Distribution A.2.2 Continuous Distribution A.2.1 Normal Distribution A.2.1 Normal Distribution A.2.1 Normal Distribution A.2.1 Normal Distribution A.2.2 Exponential Distribution A.2.2 Exponential Distribution A.2.2 Exponential Distribution A.2.2 Exponential Distribution Definition and Characteristics Probability De		Applications of Bayes' Theorem in Real-world Scenarios
Statement and Interpretation Using the Law of Total Probability to Solve Problems 3.2.6 Examples and Applications Practical Examples Using Probability Rules and Theorems 3.3 Conditional Probability Definition and Calculation Conditional Probability in Real-world Contexts 3.3.1 Conditional Probability Definition and Calculation Conditional Probability in Real-world Contexts 3.3.2 Independent Events Definition and Identification Properties of Independent Events 3.3.3 Dependent Events Definition and Identification Calculating Probability for Dependent Events 3.3.4 Applications and Examples Solving Problems Involving Conditional Probability and Independence Real-world Applications of Conditional Probability and Independence Real-world Applications of Conditional Probability and Independence 8.4.1 Discrete Distribution Definition and Characteristics Probability Distribution 3.4.1.1 Binomial Distribution Definition and Characteristics Probability Mass Function (PMF) Binomial Coefficient and Calculations Mean and Variance of Binomial Distribution Applications of Binomial Distribution 3.4.1.2 Poisson Distribution Befinition and Characteristics Probability Mass Function (PMF) Mean and Variance of Poisson Distribution Applications of Poisson Distribution Buting Applications of Poisson Distribution Applications of Poisson Distribution Applications of Poisson Distribution Befinition and Characteristics Probability Density Function (PDF) Standard Normal Distribution Befinition and Characteristics Probability Density Function (PDF) Standard Normal Distribution Definition and Characteristics Probability Density Function (PDF) Mean and Variance of Exponential Distribution Definition and Characteristics Probability Density Function (PDF) Mean and Variance of Exponential Distribution Definition and Characteristics Probability Density Function (PDF) Mean and Variance of Exponential Distribution Definition and Characteristics Probability Density Function (PDF) Mean and Variance of Exponential Distribution Definition and Characteri		3.2.5 Law of Total Probability
Using the Law of Total Probability to Solve Problems 3.1.6 Examples and Applications Practical Examples Using Probability Rules and Theorems 3.3 Conditional Probability and Independence 3.3.1 Conditional Probability Definition and Calculation Conditional Probability in Real-world Contexts 3.3.2 Independent Events Definition and Identification Properties of Independent Events 3.3.3 Dependent Events 3.3.3 Dependent Events 3.3.3 Dependent Events 3.3.4 Applications and Examples Solving Problems Involving Conditional Probability and Independence Real-world Applications of Conditional Probability and Independence Real-world Applications 3.4.1 Discrete Distribution 3.4.1 Discrete Distribution 3.4.1.1 Binomial Distribution Definition and Characteristics Probability Mass Function (PMF) Binomial Coefficient and Calculations Mean and Variance of Binomial Distribution 3.4.1.2 Poisson Distribution 3.4.1.2 Poisson Distribution 3.4.1.2 Poisson Distribution 3.4.1.2 Noisson Distribution 3.4.1.2 Poisson Distribution 3.4.1.2 Noisson Distribution 3.4.1.2 Poisson Distribution 3.4.1.2 Poisson Distribution 3.4.1.2 Poisson Distribution 3.4.1.2 Poisson Distribution 3.4.1.2 Poisson Distribution 3.4.2.1 Normal Distribution 3.4.2.1 Normal Distribution 3.4.2.1 Normal Distribution 3.4.2.1 Normal Distribution 3.4.2.1 Normal Distribution 3.4.2.2 Exponential Distribution		Statement and Interpretation
 3.2.6 Examples and Applications Practical Examples Using Probability Rules and Theorems 3.3 Conditional Probability and Independence 3.3.1 Conditional Probability in Real-world Contexts 3.3.2 Independent Events Definition and Identification Properties of Independent Events 3.3.3 Dependent Events Definition and Identification Calculating Probability for Dependent Events 3.3.4 Applications and Examples Solving Problems Involving Conditional Probability and Independence Real-world Applications of Conditional Probability and Independence Real-world Applications 3.4.1 Discrete Distributions 3.4.1 Discrete Distributions 3.4.1.1 Binomial Distribution Definition and Characteristics Probability Mass Function (PMF) Binomial Coefficient and Calculations Mean and Variance of Binomial Distribution Applications of Poisson Distribution 3.4.2 Continuous Distribution 3.4.2.1 Normal Distribution 3.4.2.2.1 Normal Distribution 3.4.2.2.2.1 Normal Distribution 3.4.2.2.2.3.2.2.2.2.2.2.2.2.2.2.2.2.2.2.		Using the Law of Total Probability to Solve Problems
Practical Examples Using Probability Rules and Theorems 3.3 Conditional Probability Definition and Idependence 3.3.1 Conditional Probability Definition and Calculation Conditional Probability in Real-world Contexts 3.3.2 Independent Events Definition and Identification Properties of Independent Events 3.3.3 Dependent Events Definition and Identification Calculating Probability for Dependent Events 3.3.4 Applications and Examples Solving Problems Involving Conditional Probability and Independence Real-world Applications of Conditional Probability and Independence Real-world Applications of Conditional Probability and Independence Real-world Applications of Conditional Probability and Independence 3.4 Probability Distributions 3.4.1.1 Binomial Distribution Definition and Characteristics Probability Mass Function (PMF) Binomial Coefficient and Calculations Mean and Variance of Binomial Distribution 3.4.1.2 Poisson Distribution Definition and Variance OPisson Distribution Applications of Poisson Distribution Applications of Poisson Distribution Applications of Poisson Distribution 3.4.2.1 Normal Distribution 3.4.2.1 Normal Distribution 3.4.2.2 Exponential Distribution Definition and Characteristics Probability Density Function (PDF) Mean and Variance of Exponential Distribution 3.4.2.2 Exponential Distribution Definition and Characteristics Probability Density Function (PDF) Mean and Variance of Exponential Distribution 3.4.2.2 Exponential Distribution Definition and Characteristics Probability Density Function (PDF) Mean and Variance of Exponential Distribution Applications of Normal Distribution 3.4.2.2 Exponential Distribution Mean and Variance of Poisson Distribution Applications of Poisson Distribution Definition and Characteristics Probability Density Function (PDF) Mean and Variance of Exponential Distribution Definition and Characteristics Probability Density Fu		3.2.6 Examples and Applications
 3.3 Conditional Probability and Independence 3.3.1 Conditional Probability Definition and Calculation Conditional Probability in Real-world Contexts 3.3.2 Independent Events Definition and Identification Properties of Independent Events 3.3.3 Dependent Events 3.3.3 Dependent Events 3.3.3 Dependent Events Definition and Identification Calculating Probability for Dependent Events 3.3.4 Applications and Examples Solving Problems Involving Conditional Probability and Independence Real-world Applications of Conditional Probability and Independence Real-world Applications of Conditional Probability and Independence 8.4.1 Discrete Distributions 3.4.1.1 Binomial Distribution Definition and Characteristics Probability Mass Function (PMF) Binomial Coefficient and Calculations Mean and Variance of Binomial Distribution 3.4.1.2 Poisson Distribution 3.4.1.2 Poisson Distribution Applications of Poisson Distribution A.2.1.1 Normal Distribution 3.4.2.1 Normal Distribution 3.4.2.1 Normal Distribution Applications of Normal Distribution A.2.1.1 Normal Distribution A.2.2.2.2.2.9.9.7 Rule) Applications of Normal Distribution 3.4.2.2.2.2.2.9.9.7 Physication A.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2		Practical Examples Using Probability Rules and Theorems
 3.3.1 Conditional Probability Definition and Calculation Conditional Probability in Real-world Contexts 3.3.2 Independent Events Definition and Identification Properties of Independent Events 3.3.3 Dependent Events Definition and Identification Calculating Probability for Dependent Events 3.3.4 Applications and Examples Solving Problems Involving Conditional Probability and Independence Real-world Applications of Conditional Probability and Independence Real-world Applications of Conditional Probability and Independence 8.4.1 Discrete Distributions 3.4.1 Discrete Distributions 3.4.1 Discrete Distributions 3.4.1.1 Binomial Distribution Definition and Characteristics Probability Mass Function (PMF) Binomial Coefficient and Calculations Mean and Variance of Binomial Distribution Applications of Binomial Distribution 3.4.1.2 Poisson Distribution Definition and Characteristics Probability Mass Function (PMF) Mean and Variance of Poisson Distribution Applications of Nenal Distribution 3.4.2.1 Normal Distribution Definition and Characteristics Probability Density Function (PDF) Standard Normal Distribution and Z-scores Empirical Rule (68-95-99.7 Rule) Applications of Normal Distribution 3.4.2.2.2.2.5 ponential Distribution A.2.2.2.2.2.5 ponential Distribution Definition and Characteristics Probability Density Function (PDF) <	3.3 Con	ditional Probability and Independence
Definition and Calculation Conditional Probability in Real-world Contexts 3.3.2 Independent Events Definition and Identification Properties of Independent Events 3.3.3 Dependent Events Definition and Identification Calculating Probability for Dependent Events 3.3.4 Applications and Examples Solving Problems Involving Conditional Probability and Independence Real-world Applications of Conditional Probability and Independence Real-world Applications of Conditional Probability and Independence 3.4 Probability Distributions 3.4.1 Discrete Distribution Definition and Characteristics Probability Mass Function (PMF) Binomial Coefficient and Calculations Mean and Variance of Binomial Distribution 3.4.1.2 Poisson Distribution Definition and Characteristics Probability Mass Function (PMF) Binomial Coefficient and Calculations Mean and Variance of Binomial Distribution 3.4.1.2 Poisson Distribution S.4.1.2 Poisson Distribution Befinition and Characteristics Probability Mass Function (PMF) Mean and Variance of Poisson Distribution Applications of Poisson Distribution Applications for Soloson Distribution Applications of Poisson Distribution Befinition and Characteristics Probability Density Function (PDF) Standard Normal Distribution 0.4.2.2 Exponential Distribution 3.4.2.2 Exponential Distribution 3.4.2.2 Exponential Distribution Mean and Variance of Exponential Distribution Memoryless Property		3.3.1 Conditional Probability
Conditional Probability in Real-world Contexts 3.3.2 Independent Events Definition and Identification Reproperties of Independent Events 3.3.3 Dependent Events Definition and Identification Calculating Probability for Dependent Events 3.3.4 Applications and Examples Solving Problems Involving Conditional Probability and Independence Real-world Applications of Conditional Probability and Independence Real-world Applications of Conditional Probability and Independence Real-world Applications of Conditional Probability and Independence 3.4 Probability Distributions 3.4.1.1 Binomial Distribution Definition and Characteristics Probability Mass Function (PMF) Binomial Coefficient and Calculations Mean and Variance of Binomial Distribution 3.4.1.2 Poisson Distribution Definition and Characteristics Probability Mass Function (PMF) Mean and Variance of Binomial Distribution Applications of Poisson Distribution Relationship Between Poisson and Binomial Distribution 3.4.2 Continuous Distribution Binomial Characteristics Probability Mass Function (PMF) Mean and Variance of Poisson and Binomial Distributions 3.4.2.1 Normal Distribution Definition and Characteristics Probability Density Function (PDF) Standard Normal Distribution 3.4.2.2 Exponential Distribution 3.4.2.2 Exponential Distribution 3.4.2.2 Exponential Distribution Memoryless Property		Definition and Calculation
 3.3.2 Independent Events Definition and Identification Properties of Independent Events 3.3.3 Dependent Events Definition and Identification Calculating Probability for Dependent Events 3.3.4 Applications and Examples Solving Problems Involving Conditional Probability and Independence Real-world Applications of Conditional Probability and Independence 3.4.1 Discrete Distributions 3.4.1.1 Binomial Distribution Definition and Characteristics Probability Mass Function (PMF) Binomial Coefficient and Calculations Mean and Variance of Binomial Distribution 3.4.1.2 Poisson Distribution 3.4.1.2 Poisson Distribution 3.4.1.2 Poisson Distribution 3.4.1.2 Poisson Distribution Befinition and Characteristics Probability Mass Function (PMF) Binomial Coefficient and Calculations Mean and Variance of Poisson Distribution A.1.2 Poisson Distribution Definition and Characteristics Probability Mass Function (PMF) Mean and Variance of Poisson Distribution Applications of Poisson Distribution Applications of Poisson Distribution Belionship Between Poisson and Binomial Distributions 3.4.2 Continuous Distribution Definition and Characteristics Probability Density Function (PDF) Standard Normal Distribution and Z-scores Empirical Rule (68-95-99.7 Rule) Applications of Normal Distribution 3.4.2.2 Exponential Distribution Definition and Characteristics Probability Density Function (PDF) Mean and Variance of Exponential Distribution A.2.2 Exponential Distribution Mean and Variance of Exponential Distribution 		Conditional Probability in Real-world Contexts
Definition and Identification Properties of Independent Events 3.3.3 Dependent Events Definition and Identification Calculating Probability for Dependent Events 3.3.4 Applications and Examples Solving Problems Involving Conditional Probability and Independence Real-world Applications of Conditional Probability and Independence Real-world Applications of Conditional Probability and Independence 3.4 Probability Distributions 3.4.1.1 Binomial Distribution Definition and Characteristics Probability Mass Function (PMF) Binomial Coefficient and Calculations Mean and Variance of Binomial Distribution 3.4.1.2 Poisson Distribution 3.4.1.2 Poisson Distribution 3.4.1.2 Poisson Distribution 3.4.1.2 Poisson Distribution Applications of Binomial Distribution 3.4.1.2 Poisson Distribution 3.4.1.2 Poisson Distribution Befinition and Characteristics Probability Mass Function (PMF) Mean and Variance of Poisson Distribution Applications of Poisson Distribution 8.4.2.1 Normal Distribution Befinition and Characteristics Probability Density Function (PMF) Mean and Variance of Poisson and Binomial Distributions 3.4.2.1 Normal Distribution 3.4.2.2 Exponential Distribution 3.4.2.2 Exponential Distribution 3.4.2.2 Exponential Distribution 3.4.2.2 Exponential Distribution 3.4.2.2 Exponential Distribution 3.4.2.2 Exponential Distribution Memoryless Property		3.3.2 Independent Events
Properties of Independent Events 3.3.3 Dependent Events Definition and Identification Calculating Probability for Dependent Events 3.3.4 Applications and Examples Solving Problems Involving Conditional Probability and Independence Real-world Applications of Conditional Probability and Independence 3.4 Probability Distributions 3.4.1 Discrete Distributions 3.4.1.1 Binomial Distribution Definition and Characteristics Probability Mass Function (PMF) Binomial Coefficient and Calculations Mean and Variance of Binomial Distribution 3.4.1.2 Poisson Distribution 3.4.1.2 Poisson Distribution 3.4.1.2 Poisson Distribution 3.4.1.2 Poisson Distribution 3.4.1.2 Poisson Distribution Mean and Variance of Poisson Distribution 3.4.1.2 Poisson Distribution Befinition and Characteristics Probability Mass Function (PMF) Mean and Variance of Poisson Distribution Applications of Poisson Distribution 3.4.2.1 Normal Distribution 3.4.2.1 Normal Distribution Definition and Characteristics Probability Density Function (PDF) Standard Normal Distribution 3.4.2.2 Exponential Distribution 3.4.2.2 Exponential Distribution 3.4.2.2 Exponential Distribution Definition and Characteristics Probability Density Function (PDF) Man and Variance of POISP) Mean and Variance of Exponential Distribution Memoryless Property		Definition and Identification
 3.3.3 Dependent Events Definition and Identification Calculating Probability for Dependent Events 3.3.4 Applications and Examples Solving Problems Involving Conditional Probability and Independence Real-world Applications of Conditional Probability and Independence 3.4 Probability Distributions 3.4.1 Discrete Distributions 3.4.1.1 Binomial Distribution Definition and Characteristics Probability Mass Function (PMF) Binomial Coefficient and Calculations Mean and Variance of Binomial Distribution 3.4.1.2 Poisson Distribution 3.4.1.2 Poisson Distribution 3.4.1.2 Poisson Distribution Applications of Normal Distribution 3.4.2.1 Normal Distribution Definition and Characteristics Probability Density Function (PDF) Standard Normal Distribution 3.4.2.2 Exponential Distribution 3.4.2.2 Exponential Distribution Definition and Characteristics Probability Density Function (PDF) Mean and Variance of Exponential Distribution 3.4.2.2 Exponential Distribution A.2.2 Exponential Distribution Mean and Variance of Exponential Distribution Mean and Variance of Exponential Distribution 		Properties of Independent Events
Definition and Identification Calculating Probability for Dependent Events 3.3.4 Applications and Examples Solving Problems Involving Conditional Probability and Independence Real-world Applications of Conditional Probability and Independence 3.4 Probability Distributions 3.4.1 Discrete Distribution Definition and Characteristics Probability Mass Function (PMF) Binomial Coefficient and Calculations Mean and Variance of Binomial Distribution Applications of Binomial Distribution 3.4.1.2 Poisson Distribution Definition and Characteristics Probability Mass Function (PMF) Binomial Coefficient and Calculations Mean and Variance of Binomial Distribution Applications of Binomial Distribution 3.4.1.2 Poisson Distribution Definition and Characteristics Probability Mass Function (PMF) Mean and Variance of Poisson Distribution Applications of Poisson Distribution Relationship Between Poisson and Binomial Distributions 3.4.2 Continuous Distribution Definition and Characteristics Probability Density Function (PDF) Standard Normal Distribution and Z-scores Empirical Rule (68-95-99.7 Rule) Applications of Normal Distribution 3.4.2.2 Exponential Distribution Definition and Characteristics Probability Density Function (PDF) Mean and Variance of Exponential Distribution Memoryless Property		3.3.3 Dependent Events
Calculating Probability for Dependent Events 3.3.4 Applications and Examples Solving Problems Involving Conditional Probability and Independence Real-world Applications of Conditional Probability and Independence 3.4 Probability Distributions 3.4.1 Discrete Distribution 3.4.1.1 Binomial Distribution Definition and Characteristics Probability Mass Function (PMF) Binomial Coefficient and Calculations Mean and Variance of Binomial Distribution Applications of Binomial Distribution 3.4.1.2 Poisson Distribution Definition and Characteristics Probability Mass Function (PMF) Mean and Variance of Poisson Distribution 3.4.1.2 Poisson Distribution Definition and Characteristics Probability Mass Function (PMF) Mean and Variance of Poisson Distribution Applications of Poisson Distribution Relationship Between Poisson and Binomial Distributions 3.4.2 Continuous Distribution Definition and Characteristics Probability Density Function (PDF) Standard Normal Distribution 3.4.2.1 Normal Distribution Definition and Characteristics Probability Density Function (PDF) Standard Normal Distribution 3.4.2.2 Exponential Distribution 3.4.2.2 Exponential Distribution Definition and Characteristics Probability Density Function (PDF) Mean and Variance of Exponential Distribution Definition and Characteristics Probability Density Function (PDF) Mean and Variance of Exponential Distribution Memoryless Property		Definition and Identification
 3.3.4 Applications and Examples Solving Problems Involving Conditional Probability and Independence Real-world Applications of Conditional Probability and Independence 3.4 Probability Distributions 3.4.1 Discrete Distribution Definition and Characteristics Probability Mass Function (PMF) Binomial Coefficient and Calculations Mean and Variance of Binomial Distribution 3.4.1.2 Poisson Distribution Definition and Characteristics Probability Mass Function (PMF) Mean and Variance of Poisson Distribution A.4.1.2 Poisson Distribution Definition and Characteristics Probability Mass Function (PMF) Mean and Variance of Poisson Distribution Applications of Poisson Distribution Applications of Poisson Distribution Applications of Poisson Distribution Applications of Poisson and Binomial Distributions 3.4.2 Continuous Distributions 3.4.2.1 Normal Distribution Definition and Characteristics Probability Density Function (PDF) Standard Normal Distribution and Z-scores Empirical Rule (68-95-99.7 Rule) Applications of Normal Distribution 3.4.2.2 Exponential Distribution 3.4.2.2 Exponential Distribution Definition and Characteristics Probability Density Function (PDF) Mean and Variance of Exponential Distribution Mean and Variance of Exponential Distribution 		Calculating Probability for Dependent Events
Solving Problems Involving Conditional Probability and Independence Real-world Applications of Conditional Probability and Independence 3.4 Probability Distributions 3.4.1 Discrete Distribution Definition and Characteristics Probability Mass Function (PMF) Binomial Coefficient and Calculations Mean and Variance of Binomial Distribution Applications of Binomial Distribution 3.4.1.2 Poisson Distribution Definition and Characteristics Probability Mass Function (PMF) Mean and Variance of Poisson Distribution Applications of Poisson Distribution Relationship Between Poisson Distribution 3.4.2.1 Normal Distribution Definition and Characteristics 3.4.2.1 Normal Distribution Definition and Characteristics Arobability Density Function (PDF) Standard Normal Distribution Definition and Characteristics Probability Density Function (PDF) Standard Normal Distribution Definition and Characteristics Probability Density Function (PDF) Standard Normal Distribution 3.4.2.2 Exponential Distribution 3.4.2.2 Exponential Distribution Definition and Characteristics Probability Density Function (PDF) Mean and Variance of Exponential Distribution Memoryless Property		3.3.4 Applications and Examples
Real-world Applications of Conditional Probability and Independence 3.4 Probability Distributions 3.4.1.1 Binomial Distribution Definition and Characteristics Probability Mass Function (PMF) Binomial Coefficient and Calculations Mean and Variance of Binomial Distribution Applications of Binomial Distribution 3.4.1.2 Poisson Distribution Definition and Characteristics Probability Mass Function (PMF) Mean and Variance of Poisson Distribution Applications of Poisson Distribution Relationship Between Poisson Distribution 3.4.2 Continuous Distribution Definition and Characteristics 3.4.2 I Normal Distribution Definition and Characteristics Probability Density Function (PDF) Standard Normal Distribution and Z-scores Empirical Rule (68-95-99.7 Rule) Applications of Normal Distribution 3.4.2.2 Exponential Distribution Definition and Characteristics Probability Density Function (PDF) Mean and Variance of Exponential Distribution Memoryless Property		Solving Problems Involving Conditional Probability and Independence
 3.4 Probability Distributions 3.4.1.1 Binomial Distribution Definition and Characteristics Probability Mass Function (PMF) Binomial Coefficient and Calculations Mean and Variance of Binomial Distribution Applications of Binomial Distribution 3.4.1.2 Poisson Distribution Definition and Characteristics Probability Mass Function (PMF) Mean and Variance of Poisson Distribution Definition and Characteristics Probability Mass Function (PMF) Mean and Variance of Poisson Distribution Applications of Poisson Distribution Relationship Between Poisson and Binomial Distributions 3.4.2 Continuous Distribution Definition and Characteristics Probability Density Function (PDF) Standard Normal Distribution and Z-scores Empirical Rule (68-95-99.7 Rule) Applications of Normal Distribution 3.4.2.2 Exponential Distribution 		Real-world Applications of Conditional Probability and Independence
 3.4.1 Discrete Distributions 3.4.1.1 Binomial Distribution Definition and Characteristics Probability Mass Function (PMF) Binomial Coefficient and Calculations Mean and Variance of Binomial Distribution Applications of Binomial Distribution 3.4.1.2 Poisson Distribution Definition and Characteristics Probability Mass Function (PMF) Mean and Variance of Poisson Distribution Applications of Poisson Distribution Applications of Poisson Distribution Applications of Poisson Distribution Relationship Between Poisson and Binomial Distributions 3.4.2.1 Normal Distribution Definition and Characteristics Probability Density Function (PDF) Standard Normal Distribution and Z-scores Empirical Rule (68-95-99.7 Rule) Applications of Normal Distribution 3.4.2.2 Exponential Distribution 	3.4 Prot	bability Distributions
 3.4.1.1 Binomial Distribution Definition and Characteristics Probability Mass Function (PMF) Binomial Coefficient and Calculations Mean and Variance of Binomial Distribution Applications of Binomial Distribution 3.4.1.2 Poisson Distribution Definition and Characteristics Probability Mass Function (PMF) Mean and Variance of Poisson Distribution Applications of Poisson Distribution Relationship Between Poisson and Binomial Distributions 3.4.2 Continuous Distribution Definition and Characteristics Probability Mass Function (PMF) Mean and Variance of Poisson Distribution Applications of Poisson Distribution Relationship Between Poisson and Binomial Distributions 3.4.2 Continuous Distribution Definition and Characteristics Probability Density Function (PDF) Standard Normal Distribution and Z-scores Empirical Rule (68-95-99.7 Rule) Applications of Normal Distribution 3.4.2.2 Exponential Distribution Definition and Characteristics Probability Density Function (PDF) Mean and Variance of Exponential Distribution Mean and Variance of Sconential Distribution Mean and Variance of Sconential Distribution 		3.4.1 Discrete Distributions
 Definition and Characteristics Probability Mass Function (PMF) Binomial Coefficient and Calculations Mean and Variance of Binomial Distribution Applications of Binomial Distribution 3.4.1.2 Poisson Distribution Definition and Characteristics Probability Mass Function (PMF) Mean and Variance of Poisson Distribution Applications of Poisson Distribution Relationship Between Poisson and Binomial Distributions 3.4.2 Continuous Distribution Definition and Characteristics Probability Density Function (PDF) Standard Normal Distribution and Z-scores Empirical Rule (68-95-99.7 Rule) Applications of Normal Distribution 3.4.2.2 Exponential Distribution 3.4.2.2 Exponential Distribution 		3.4.1.1 Binomial Distribution
 Binomial Coefficient and Calculations Mean and Variance of Binomial Distribution Applications of Binomial Distribution 3.4.1.2 Poisson Distribution Definition and Characteristics Probability Mass Function (PMF) Mean and Variance of Poisson Distribution Applications of Poisson Distribution Relationship Between Poisson and Binomial Distributions 3.4.2.1 Normal Distribution Definition and Characteristics Probability Density Function (PDF) Standard Normal Distribution and Z-scores Empirical Rule (68-95-99.7 Rule) Applications of Normal Distribution 3.4.2.2 Exponential Distribution Definition and Characteristics Probability Density Function (PDF) Mean and Variance of Exponential Distribution Mean and Variance of Exponential Distribution Mean and Variance of Exponential Distribution 		Definition and Characteristics
 Binomial Coefficient and Calculations Mean and Variance of Binomial Distribution Applications of Binomial Distribution 3.4.1.2 Poisson Distribution Definition and Characteristics Probability Mass Function (PMF) Mean and Variance of Poisson Distribution Applications of Poisson Distribution Relationship Between Poisson and Binomial Distributions 3.4.2.1 Normal Distribution Definition and Characteristics Probability Density Function (PDF) Standard Normal Distribution and Z-scores Empirical Rule (68-95-99.7 Rule) Applications of Normal Distribution 3.4.2.2 Exponential Distribution Definition and Characteristics Probability Density Function (PDF) Mean and Variance of Exponential Distribution Mean and Variance of Exponential Distribution Mean and Variance of Exponential Distribution 		Probability Mass Function (PMF)
Applications of Binomial Distribution Applications of Binomial Distribution 3.4.1.2 Poisson Distribution Definition and Characteristics Probability Mass Function (PMF) Mean and Variance of Poisson Distribution Applications of Poisson Distribution Relationship Between Poisson and Binomial Distributions 3.4.2 Continuous Distribution 3.4.2.1 Normal Distribution Definition and Characteristics Probability Density Function (PDF) Standard Normal Distribution and Z-scores Empirical Rule (68-95-99.7 Rule) Applications of Normal Distribution 3.4.2.2 Exponential Distribution Definition and Characteristics Probability Density Function (PDF) Mean and Characteristics Probability Density Function Mean and Variance of Exponential Distribution Memoryless Property		Binomial Coefficient and Calculations
 Applications of Binomia Distribution 3.4.1.2 Poisson Distribution Definition and Characteristics Probability Mass Function (PMF) Mean and Variance of Poisson Distribution Applications of Poisson Distribution Relationship Between Poisson and Binomial Distributions 3.4.2 Continuous Distribution 3.4.2.1 Normal Distribution Definition and Characteristics Probability Density Function (PDF) Standard Normal Distribution and Z-scores Empirical Rule (68-95-99.7 Rule) Applications of Normal Distribution 3.4.2.2 Exponential Distribution 3.4.2.2 Exponential Distribution Mean and Variance of Exponential Distribution Mean and Variance of Exponential Distribution 		Applications of Pinomial Distribution
Definition and Characteristics Probability Mass Function (PMF) Mean and Variance of Poisson Distribution Applications of Poisson Distribution Relationship Between Poisson and Binomial Distributions 3.4.2 Continuous Distribution 3.4.2.1 Normal Distribution Definition and Characteristics Probability Density Function (PDF) Standard Normal Distribution and Z-scores Empirical Rule (68-95-99.7 Rule) Applications of Normal Distribution 3.4.2.2 Exponential Distribution Definition and Characteristics Probability Density Function (PDF) Mean and Characteristics Probability Density Function (PDF) Mean and Variance of Exponential Distribution Memoryless Property		2 4 1 2 Poisson Distribution
Probability Mass Function (PMF) Mean and Variance of Poisson Distribution Applications of Poisson Distribution Relationship Between Poisson and Binomial Distributions 3.4.2 Continuous Distribution 3.4.2.1 Normal Distribution Definition and Characteristics Probability Density Function (PDF) Standard Normal Distribution and Z-scores Empirical Rule (68-95-99.7 Rule) Applications of Normal Distribution 3.4.2.2 Exponential Distribution Definition and Characteristics Probability Density Function (PDF) Mean and Characteristics Probability Density Function (PDF) Mean and Variance of Exponential Distribution Memoryless Property		Definition and Characteristics
Mean and Variance of Poisson Distribution Applications of Poisson Distribution Relationship Between Poisson and Binomial Distributions 3.4.2 Continuous Distribution 3.4.2.1 Normal Distribution Definition and Characteristics Probability Density Function (PDF) Standard Normal Distribution and Z-scores Empirical Rule (68-95-99.7 Rule) Applications of Normal Distribution 3.4.2.2 Exponential Distribution Definition and Characteristics Probability Density Function (PDF) Mean and Variance of Exponential Distribution Memoryless Property		Probability Mass Function (PMF)
Applications of Poisson Distribution Applications of Poisson Distribution Relationship Between Poisson and Binomial Distributions 3.4.2 Continuous Distribution 3.4.2.1 Normal Distribution Definition and Characteristics Probability Density Function (PDF) Standard Normal Distribution and Z-scores Empirical Rule (68-95-99.7 Rule) Applications of Normal Distribution 3.4.2.2 Exponential Distribution Definition and Characteristics Probability Density Function (PDF) Mean and Variance of Exponential Distribution Memoryless Property		Mean and Variance of Poisson Distribution
Relationship Between Poisson Distribution Relationship Between Poisson and Binomial Distributions 3.4.2 Continuous Distribution Definition and Characteristics Probability Density Function (PDF) Standard Normal Distribution and Z-scores Empirical Rule (68-95-99.7 Rule) Applications of Normal Distribution 3.4.2.2 Exponential Distribution Definition and Characteristics Probability Density Function (PDF) Mean and Variance of Exponential Distribution Memoryless Property		Applications of Poisson Distribution
 3.4.2 Continuous Distributions 3.4.2.1 Normal Distribution Definition and Characteristics Probability Density Function (PDF) Standard Normal Distribution and Z-scores Empirical Rule (68-95-99.7 Rule) Applications of Normal Distribution 3.4.2.2 Exponential Distribution 3.4.2.2 Exponential Distribution Definition and Characteristics Probability Density Function (PDF) Mean and Variance of Exponential Distribution Memoryless Property 		Relationship Between Poisson and Binomial Distributions
 3.4.2.1 Normal Distribution Definition and Characteristics Probability Density Function (PDF) Standard Normal Distribution and Z-scores Empirical Rule (68-95-99.7 Rule) Applications of Normal Distribution 3.4.2.2 Exponential Distribution Definition and Characteristics Probability Density Function (PDF) Mean and Variance of Exponential Distribution Memoryless Property 		3.4.2 Continuous Distributions
Definition and Characteristics Probability Density Function (PDF) Standard Normal Distribution and Z-scores Empirical Rule (68-95-99.7 Rule) Applications of Normal Distribution 3.4.2.2 Exponential Distribution Definition and Characteristics Probability Density Function (PDF) Mean and Variance of Exponential Distribution Memoryless Property		3.4.2.1 Normal Distribution
Probability Density Function (PDF) Standard Normal Distribution and Z-scores Empirical Rule (68-95-99.7 Rule) Applications of Normal Distribution 3.4.2.2 Exponential Distribution Definition and Characteristics Probability Density Function (PDF) Mean and Variance of Exponential Distribution Memoryless Property		Definition and Characteristics
Standard Normal Distribution and Z-scores Empirical Rule (68-95-99.7 Rule) Applications of Normal Distribution 3.4.2.2 Exponential Distribution Definition and Characteristics Probability Density Function (PDF) Mean and Variance of Exponential Distribution Memoryless Property		Probability Density Function (PDF)
Empirical Rule (68-95-99.7 Rule) Applications of Normal Distribution 3.4.2.2 Exponential Distribution Definition and Characteristics Probability Density Function (PDF) Mean and Variance of Exponential Distribution Memoryless Property		Standard Normal Distribution and Z-scores
Applications of Normal Distribution 3.4.2.2 Exponential Distribution Definition and Characteristics Probability Density Function (PDF) Mean and Variance of Exponential Distribution Memoryless Property		Empirical Rule (68-95-99.7 Rule)
3.4.2.2 Exponential Distribution Definition and Characteristics Probability Density Function (PDF) Mean and Variance of Exponential Distribution Memoryless Property		Applications of Normal Distribution
Definition and Characteristics Probability Density Function (PDF) Mean and Variance of Exponential Distribution Memoryless Property		3.4.2.2 Exponential Distribution
Probability Density Function (PDF) Mean and Variance of Exponential Distribution Memoryless Property		Definition and Characteristics
Mean and Variance of Exponential Distribution Memoryless Property		Probability Density Function (PDF)
Memoryless Property		Mean and Variance of Exponential Distribution
		Memoryless Property

B. Tech Data Science

		Applications of Exponential Distribution	
	3.4.3 Other	r Important Distributions	
	Overvie	w of Uniform Distribution (Discrete and Continuous)	
	Overvie	w of Gamma and Beta Distributions	
Lab/P	ractical:		
•	Simulating rando	m variables and probability distributions using Python (e.g., SciPy).	
	UNIT-IV	Statistics	07
			Hours
1.	Descriptive Stati	istics	
	• Measures	of central tendency: mean median mode	
	0 Measures	of dispersions range variance atom david deviation	
	o Measures	of dispersion: range, variance, standard deviation	
	• Data visua	alization: histograms, box plots	
2.	Inferential Statis	stics	
	 Sampling 	methods and distributions	
	• Hypothesi	is testing and p-values	
	• Confidence	ce intervals	
3	Regression Anal	lvsis	
5.	Simple lir	your regression	
	O Simple in Multiple 1		
	 Assessing 	model fit: R-squared and residual analysis	
Lah/D	matical		
	ractical:		
•	Performing descr	iptive and inferential statistics using Python (e.g., Pandas, StatsModels)	
	UNIT-V	Discrete Mathematics	08
	~ ~ ~		Hours
1.	Set Theory		
	\circ Sets, subs	ets, and power sets	
	 Operation 	is on sets: union, intersection, and difference	
	 Venn diag 	grams	
2.	Logic and Propo	ositional Calculus	
	 Proposition 	ons and logical connectives	
	• Truth tabl	es and logical equivalence	
	 Predicate 	logic and quantifiers	
3.	Combinatorics		
	\circ Basic cou	nting principles	
	 Dusie cou Dermutati 	one and combinations	
		ons in probability	
	 Application 		

Lab/Practical:

• Implementing set operations and combinatorial algorithms using Python.

UNIT-VI	Optimization	07				
		Hours				
Optimization I	Basics					
• Types of	f optimization problems: linear and nonlinear					
 Objectiv 	ve functions and constraints					
 Feasible 	regions and optimality conditions					
Linear Program	mming					
 Formula 	ting linear programming problems					
• Graphical solution method						
• Simplex algorithm						
Nonlinear Opt	imization					
 Unconst 	rained optimization: gradient descent					
• Constrai	ned optimization: Lagrange multipliers					
• Applica	tions in machine learning (e.g., logistic regression)					
ab/Practical:						
Solving optimiz	ation problems using Python libraries (e.g., SciPy, PuLP).					
Implementation	of matrix operations and eigenvalue computations using Python libraries (e.g., N	umPy).				

• Practical examples of differentiation and integration using Python (e.g., SymPy for symbolic computation).

/// दा किल्यावाच् स पचिछरा ।//

- Simulating random variables and probability distributions using Python (e.g., SciPy).
- Performing descriptive and inferential statistics using Python (e.g., Pandas, StatsModels).
- Implementing set operations and combinatorial algorithms using Python.
- Solving optimization problems using Python libraries (e.g., SciPy, PuLP)

B. Tech Data Science 11 | Page

References

Textbooks

- 1. Linear Algebra: "Linear Algebra and Its Applications" by David C. Lay, Steven R. Lay, and Judi J. McDonald
 - A comprehensive introduction to linear algebra concepts and applications, with a focus on practical problem-solving techniques.
- 2. Calculus: "Calculus: Early Transcendentals" by James Stewart
 - An in-depth exploration of calculus concepts, including differentiation, integration, and multivariable calculus, with numerous examples and exercises.
- 3. Probability: "Introduction to Probability" by Dimitri P. Bertsekas and John N. Tsitsiklis
 - A foundational text on probability theory, covering both basic and advanced topics relevant to data science applications.
- 4. Statistics: "Probability and Statistics for Engineers and Scientists" by Ronald E. Walpole, Raymond H. Myers, Sharon L. Myers, and Keying E. Ye
 - A detailed guide to statistical methods, including descriptive and inferential statistics, with a focus on engineering and scientific applications.
- 5. Discrete Mathematics: "Discrete Mathematics and Its Applications" by Kenneth H. Rosen
 - A comprehensive introduction to discrete mathematics, covering set theory, logic, combinatorics, and graph theory.
- 6. Optimization: "Introduction to Operations Research" by Frederick S. Hillier and Gerald J. Lieberman
 - An authoritative text on optimization techniques, including linear programming and nonlinear optimization, with practical applications in various fields.

INTERNAL ASSESSMENT (IA)

Two internal assessments and an end semester examination to test students' reading and writing skills along with their grammatical and lexical competence.

Assessment will include following things:

- Internal Assessment: 25 Marks 1. Attendance
 - 2. Assignments
 - 3. Case Study/Mini Project/Presentation
- Mid Semester Exam: 25 Marks
- End Semester Exam: 50 Marks

CO's-PO's & PSO's MAPPING

Course Outcomes/POs & PSOs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5
CO1: Apply Linear Algebra Techniques	3	3	-	2	3	-	-	3	2	2	-	-
CO2: Perform Calculus Operations	3	3	1	2	2	-	-	3	2	2	-	-
CO3: Apply Probability Theory	3	3	1	2	2	-	-	3	3	2	1	-
CO4: Utilize Statistical Methods	3	3	1	3	3		-	3	3	3	2	1
CO5: Implement Discrete Mathematics	3	3	-/	2	2	-	50	3	2	2	1	-
CO6: Solve Optimization Problems	3	3	2	2	3	-	SUPE	3	3	3	2	2

1 - low, 2 - medium, 3 - high, '-' - no correlation

BTDS 302: INTRODUCTION TO DATA ANALYTICS B.Tech. II Year II Sem.

21		
Teaching Scheme:	Credit	Examination Scheme:
TH: - 4 Hours/Week	TH: 04	In Sem. Evaluation: 25 Marks
		Mid Sem. Exam: 25 Marks
		End Sem. Exam: 50 Marks
		Total : 100 Marks
		•

Course Prerequisites: Software Flow Basic

Course Objective:

- Introduce learners to the essential concepts, terminologies, and methodologies in data analytics, data science, and business analytics.
- Provide a comprehensive overview of the data analytics lifecycle, spanning data preparation, exploration, analysis, visualization, and decision-making processes.
- Emphasize the significance of data in various domains, industries, and modern business decision-making.
- Develop foundational skills in data analysis, interpretation, and the creation of actionable insights.
- Address the ethical considerations, biases, and responsibilities associated with handling and analyzing data.
- Expose students to popular tools, techniques, and platforms in the realms of data analytics and business intelligence.
- Explore real-world, industry-relevant use cases to bridge the gap between theory and application.

Learning Course Outcome:

After successful completion of the course, students will able to:

- Define and articulate core concepts such as data analytics, data science, business analytics, big data, machine learning, and business intelligence.
- Navigate the entire data analytics lifecycle, from data acquisition to actionable insights presentation.
- Design and conceptualize basic data warehouses, appreciating the intricacies of multidimensional data representation.
- Utilize tools like Tableau, Excel, Python, and R for data visualization, analysis, and representation.
- Identify patterns, correlations, and trends in datasets, using both descriptive and inferential statistical methods.
- Understand the ethical dimensions, challenges, and biases inherent in data analysis and business decisionmaking.
- Evaluate the practical implications of data and business analytics across diverse industry scenarios.
- Differentiate and apply foundational techniques in data mining and machine learning in real-world contexts.

Course Contents							
UNIT-I	Introduction to Data & Business Analytics	07 Hours					
1.1 Definition and	Evolution of Data Analytics						
1.1.1 Histo	prical context						
1.1.2 Evol	ution of data analytics tools and methodologies						
	B. Tech Data Science						

14 | Page

1.2 Emerge	nce of Data Science and Business Analytics							
1.2.1 Distinctive features of data science and business analytics								
1.2.2 Interdisciplinary nature and industry applications								
1.3 The Role of Data in Modern Decision-Making								
1.3.1 Importance of data-driven decision-making								
1.3.2 Impac	1.3.2 Impact on organizational strategies							
1.4 Responsibilities	and Ethics in Data Practices							
1.4.1 Ethica	l considerations in data collection, handling, and dissemination							
1.4.2 Profes	ssional responsibilities of data practitioners							
UNIT-II	Foundational Concepts	08 Hours						
2.1 Key Terminolog	gies in Data Analytics							
2.1.1 Defini	tions and distinctions: analytics, science, business analytics, big data, i	machine						
learning, bu	isiness intelligence							
2.2 Methodologies i	n Data Science and Business Analytics							
2.2.1 Overv	iew of methodologies: CRISP-DM, Agile, and others							
2.2.2 Select	ing appropriate methodologies for different scenarios							
2.3 Understanding I	Big Data, Machine Learning, and Business Intelligence							
2.3.1 Deep	dive into big data technologies and challenges							
2.3.2 Introd	2.3.2 Introduction to machine learning algorithms and applications							
2.3.3 Busin	ess intelligence tools and their role in decision support							
UNIT-III	Data Analytics Lifecycle	08 Hours						
3.1 Introduction to t	he Stages of the Data Analytics Lifecycle							
3.1.1 Defini	ing the stages: acquisition, preparation, exploration, analysis, visualization	tion, decision-						
making								
3.2 Strategies and T	echniques for Data Acquisition							
3.2.1 Data c	collection methods: surveys, sensors, web scraping, etc.							
3.2.2 Ethica	l considerations in data acquisition							
3.3 Data Preparation	n: Cleaning and Transforming Raw Data							
3.3.1 Techn	iques for data cleaning: handling missing values, outliers, and inconsis	stencies						
3.3.2 Trans	forming data for analysis: normalization, encoding, scaling							
3.4 Exploration, An	alysis, and Visualization Techniques							
3.4.1 Explo	ratory data analysis (EDA) methods							
3.4.2 Advar	nced analysis techniques: regression, clustering, classification							
3.4.3 Visua	3.4.3 Visualization best practices and storytelling with data							
3.5 Effective Decisi	3.5 Effective Decision-Making Processes in Data Analytics							
3.5.1 Incorp	porating analytics insights into decision-making							
3.5.2 Decisi	ion-making frameworks and models							
UNIT-IV	Significance of Data in Business and Foundational Skills	07 Hours						
	Development							
4.1 Examining Data	's Impact Across Various Domains							
4.1.1 Health	ncare, finance, marketing, operations, and more							
4.2 Case Studies: In	dustry Applications of Data Analytics							
4.2.1 Real-v	world examples of successful data-driven initiatives							
4.3 Modern Paradig	ms in Business Decision-Making with Data							
4.3.1 Integr	ating data analytics into strategic planning							

B. Tech Data Science

15 | Page

4.3.2 Case stu	idies on transformative decision-making								
5.1 Techniques for Da	5.1 Techniques for Data Analysis								
5.1.1 Descrip	5.1.1 Descriptive statistics: mean, median, mode								
5.1.2 Inferent	5.1.2 Inferential statistics: hypothesis testing, regression analysis								
5.2 Interpreting Data:	5.2 Interpreting Data: From Patterns to Actionable Insights								
5.2.1 Identify	5.2.1 Identifying patterns, correlations, and trends								
5.2.2 Turning	insights into actionable business recommendations								
5.3 Creating Actional	ble Insights for Business								
5 3 1 Storvtel	ling with data: effective communication of insights								
5.3.2 Buildin	g dashboards for decision-makers								
UNIT-V	Ethical Considerations in Data Analytics, Tools,	08 Hours							
	Techniques, and Platforms								
6.1 Unpacking Ethica	l Dimensions of Data Analysis								
6.1.1 Privacy	concerns and data anonymization								
6.1.2 Ethical	challenges in handling sensitive data								
6.2 Addressing and M	litigating Biases in Data								
6.2.1 Identify	ing and mitigating bias in algorithms and datasets								
6.2.2 Ethical	considerations in machine learning model development								
6.3 Code of Ethics: R	esponsibilities of Data Practitioners								
6.3.1 Ethical	6.3.1 Ethical guidelines for data practitioners								
6.3.2 Professi	ional standards and certifications								
7.1 Overview of Data	Analytics Tools and Platforms								
7.1.1 Compar	ative analysis of popular tools: Tableau, Excel, Python, R								
7.1.2 Selectio	on criteria for tools based on use cases								
7.2 Hands-On Experie	ence with Tableau, Excel, Python, and R								
7.2.1 Practica	l exercises for each tool								
7.2.2 Integrat	ing tools for comprehensive analysis								
7.3 Integration of Too	ols for Comprehensive Analysis								
7.3.1 Develop	bing end-to-end workflows for data analysis								
7.3.2 Collabo	rative analytics: combining outputs from different tools								
UNIT-VI	Real-World Use Cases	08 Hours							
8.1 In-Depth Explorat	tion of Industry-Relevant Use Cases								
8.1.1 Case stu	idies across diverse industries								
8.1.2 Analyzi	ng challenges and solutions in real-world scenarios								
8.2 Bridging the Gap	Between Theory and Application								
8.2.1 Applyin	ng theoretical concepts to practical scenarios								
8.2.2 Group p	projects and hands-on simulations								
8.3 Analyzing and So	lving Practical Scenarios through Case Studies								
8.3.1 Problem	n-solving methodologies in analytics								
8.3.2 Evaluat	ing the success of implemented solutions.								

REFERENCE BOOKS:

- 1. "Data Science for Business" by Foster Provost and Tom Fawcett
- 2. "Python for Data Analysis" by Wes McKinney
- 3. "Data Analytics Made Accessible" by Anil Maheshwari
- 4. "Data Science for Dummies" by Lillian Pierson

5. "Introduction to Statistical Learning" by Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani

6. "Storytelling with Data" by Cole Nussbaumer Knaflic

7. "Data Mining: Practical Machine Learning Tools and Techniques" by Ian H. Witten, Eibe Frank, and Mark A. Hall

8. "R for Data Science" by Hadley Wickham and Garrett Grolemund

9. "Big Data: A Revolution That Will Transform How We Live, Work, and Think" by Viktor Mayer-Schönberger and Kenneth Cukier

10. "Data Science from Scratch: First Principles with Python" by Joel Grus

INTERNAL ASSESSMENT (IA)

Two internal assessments and an end semester examination to test students' reading and writing skills along with their grammatical and lexical competence. Assessment will include following things:

Internal Assessment: 25 Marks - 1. Attendance

2. Assignments

3. Case Study/Mini Project/Presentation

- Mid Semester Exam: 25 Marks
- End Semester Exam: 50 Marks

CO's-PO's & PSO's MAPPING

		Same - Trans			11-11-71	A STATE OF A	and the second se	C-4
Cos	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	3	3	3	2	2	3	3	2
2	-	3	3	1	1	3	3	3
3	-	2	2	2	2	3	2	1
4	-	2	2	2	2	3	2	2
5	-	2	2	3	3	3	3	2
Avg	3	2.4	2.4	2	2	3	2.6	2

1 - low, 2 - medium, 3 - high, '-' - no correlation

B. Tech Data Science

17 | Page

BTDS 303: ADVANCE DATA STRUCTURES

	B.Te	ch. II Year I Sem.								
Teaching Schem	ne:	Credit	Examination S	cheme:						
TH: - 4 Hours/W	eek	TH: 04	In Sem. Evaluation	: 25 Marks						
			Mid Sem. Exam:	25 Marks						
			End Sem. Exam:	50 Marks						
			Total	: 100 Marks						
Course Prerequisites: Prop	gramming fo	or Problem Solving								
Course Objective:										
 Exploring basic data structures such as stacks and queues. 										
Introduces a varie	ty of data stru	ctures such as hash tables	, search trees, tries, hea	ps, graphs.						
Introduces sorting	and pattern r	natching algorithms								
Learning Course Outcome										
After successful completion	n of the cour	se, students will able to:								
Ability to select th	le data structi	res that efficiently model	the information in a pro	oblem.						
• Ability to assess	efficiency tr	ade-offs among different	data structure							
implementations or combinations.										
Implement and kn	• Implement and know the application of algorithms for sorting and pattern matching.									
Design programs	• Design programs using a variety of data structures, including hash tables, binary and general									
tree structures, sea	arch trees, trie	es, heaps, graphs, and AV	L-trees.							
		Course Contents								
UNIT-I		Introduction to Dat	a	07 Hours						
Introduction to Data S	tructures, ab	stract data types, Linear	list — singly linke	d list						
implementation, insertion	on, deletion	and searching operation	ns on linear list, St	acks-						
Operations, array and	linked repr	esentations of stacks, st	ack applications, Qu	eues-						
operations, array and lin	ked represent	ations.								
	1	Dictionaries		08 Hours						
UNIT-II		Dictional ics		00 110015						
linear list representation, sl	kip list repres	entation, operations - inser	tion, deletion and searc	ching.						
Hash Table Representation	1: hash functi	ons, collision resolution-s	eparate chaining, open	addressing-						
linear probing, quadratic p	linear probing, quadratic probing, double hashing, rehashing, extendible hashing.									
		Security Trace		00 11.000						
		Search Trees		vo nours						
Binary Search Trees, Defini	tion, Impleme	entation, Operations- Search	ning, Insertion and Dele	etion,						
B- Trees, B+ Trees, AV	/L Trees, D	efinition, Height of an	AVL Tree, Operatio	ns —						
Insertion, Deletion and Se	earching, Re	d –Black, Splay Trees.								
				07.11						

UNIT-IV	Graphs	07 Hours
UNIT-IV	Graphs	07 Hour

Graph Implementation Methods. Graph Traversal Methods.

Sorting: Quick Sort, Hea	ap Sort, External Sorting- Model for external sorting, Merge Sort.	
UNIT-V	Pattern Matching and Tries	08 Hours

Pattern matching algorithms-Brute force, the Boyer –Moore algorithm, the Knuth-Morris-Pratt algorithm, Standard Tries, Compressed Tries, Suffix tries.

TEXT BOOKS:

- 1. Fundamentals of Data Structures in C, 2 nd Edition, E. Horowitz, S. Sahni and Susan Anderson Freed, Universities Press.
- 2. Data Structures using C A. S.Tanenbaum, Y. Langsam, and M.J. Augenstein, PHI/Pearson Education.

REFERENCE BOOK:

1. Data Structures: A Pseudocode Approach with C, 2 nd Edition, R. F. Gilberg and B.A.Forouzan, Cengage Learning.

INTERNAL ASSESSMENT (IA)

Two internal assessments and an end semester examination to test students' reading and writing skills along with their grammatical and lexical competence. Assessment will include following things:

- Internal Assessment: 25 Marks 1. Attendance
 - 2. Assignments

3. Case Study/Mini Project/Presentation

- Mid Semester Exam: 25 Marks
- End Semester Exam: 50 Marks

CO's-PO's & PSO's MAPPING

Cos	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
_1	3	3	3	2	2	3	3	
2	4	3	3	1	1	3	3	
3	1-4	2	2	2	2	3	2	1
4	-	2	2	2	2	3	2	1
5	2	2	2	3	3	3	3	
Avg	3	2.4	2.4	2	2	3	2.6	1

1 - low, 2 - medium, 3 - high, '-' - no correlation

BTDS 304: WEB FRAMEWORK B.Tech. II Year I Sem.

Teaching S	chama.	Credit	Examination S	chomo.
TH. 4 How	rs/Wook	TH· 04	In Som Evaluation	· 25 Marks
111 4 1100		111. 04	Mid Sem Evaluation	25 Marks
			End Sem Exam.	50 Marks
			Total	: 100 Marks
Course Prerequisites:	Basic understandin	g of Python programming.		
Course Objective:				
1. To understand th	e basics of Django a	and its applications in web deve	elopment.	
2. To learn to build	dynamic web appli	cations using the Django frame	work.	
3. To integrate data	bases with Django a	applications.		
4. To implement us	er authentication an	d authorization in Django.		
5. To develop skills	for testing and dep	loving Django applications.		
Learning Course Out	come:			
After successful comp	letion of the cour	se, students will able to:		
CO1: Underst	and the architectu	re and components of the D	ango framework.	
CO2: Develop	o dynamic web ap	plications using Django.		
CO3: Integrat	e and manage data	abases with Django ORM.		
CO4: Implem	ent user authentic	ation and authorization.		
CO5: Test and	d deploy Django a	pplications.		
		Course Contents		
UNIT-I		Overview of Djange)	07 Hours
History and evolution of	of Django, Feature	s and benefits of using Djan	go, Django architecture	: MTV
(Model-Template-View	v) pattern, setting	up Django: Installation and	configuration, Creating	g a Django
project, Overview of D	jango project strue	cture.		
		Diango Models and O	RM	08 Hours
		Djungo mouchs and on		00 110013
□ Introduction to Dja	ngo Models: Crea	ting and defining models, M	lodel fields and field ty	pes, Database
setup and configuration	h, Django ORM:	QuerySets and querying the	database, CRUD (Creat	te, Read,
Opdate, Delete) operati	ions, Relationships	s between models (One-to-C	ne, One-to-Many, Man	y-to-Many)
UNIT-III		Django Views and Temp	olates	08 Hours
Django Views: Function	on-based views (F	BV), Class-based views (CE	V), Handling forms an	d form
validation, Django Ter	nplates: Template	e language and syntax, Temp	plate inheritance and reu	usability,
Context and context pro-	ocessors.			

UNIT-IV	Django URLs and Routing	07 Hours							
RL Configuration: URL patterns and routing, Including and referencing URLs from other apps, Jamed URL patterns and reverse resolution Dynamic URLs: Capturing URL parameters URL									
dispatching and redirection.	verse resolution, Dynamic Crubs, Captaring Crub parameters,	ond							
UNIT-V	User Authentication and Authorization	08 Hours							
Authentication System: Us	ser model and user management, Authentication views and form	is, Password							
nashing and security, Autho	orization: Permissions and groups, Role-based access control, C	ustom user							
models and extending user p	profiles.								
UNIT-VI	Advanced Django Topics	08 Hours							
Django Forms: Form classe validation	es and form handling, Model forms and form sets, Custom form	fields and							
Django Admin: Customizir actions and filters	ng the admin interface, Adding models to the admin site, Custor	n admin							
Festing and Deployment: You will be a compared by the set of the	Writing and running tests, Django testing framework, Deployme cloud platforms), Configuring static and media files	ent strategies							
REFERENCE BOOKS:									
1. "Django for Beginne	ers: Build websites with Python and Django" by William S. Vind	cent							

- 2. "Two Scoops of Django 3.x: Best Practices for the Django Web Framework" by Audrey Roy Greenfeld and Daniel Roy Greenfeld
- 3. "Django 3 By Example: Build powerful and reliable Python web applications from scratch" by Antonio Mele
- 4. Official Django documentation: <u>https://docs.djangoproject.com</u>

INTERNAL ASSESSMENT (IA)

Two internal assessments and an end semester examination to test students' reading and writing skills along with their grammatical and lexical competence. Assessment will include following things:

- Internal Assessment: 25 Marks 1. Attendance
 - 2. Assignments
 - 3. Case Study/Mini Project/Presentation
- Mid Semester Exam: 25 Marks
- End Semester Exam: 50 Marks

CO's-PO's & PSO's MAPPING

Course Outcomes (CO)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4
CO1: Understand the architecture and components of the Django framework	3	2		-1152	3	11 20	7	2		2	
CO2: Develop dynamic web applications using Django	3	3	2		3			3	2	3	1
CO3: Integrate and manage databases with Django ORM	3	3	2	1	3	N		3	3	3	2
CO4: Implement user authentication and authorization	3	3	1.麻	2	3	국업	12/2	2	3	3	3
CO5: Test and deploy Django applications	3	3	2	3	3		-	3	3	3	3
Course Outcomes (CO)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4
CO1: Understand the architecture and components of the Django framework	3	2	-	-	3	-	-	2	-	2	-

1 - low, 2 - medium, 3 - high, '-' - no correlation

BTDS 305: COMPUTER ORGANIZATION AND ARCHITECTURE B.Tech. II Year I Sem.

Teaching Scheme:	Credit	Examination So	cheme:					
TH: - 4 Hours/Week	TH: 04	In Sem. Evaluation:	25 Marks					
		End Sem. Exam:	50 Marks					
		Total	: 100 Marks					
Course Prerequisites: A Course on "D	igital Electronics".							
Course Objective:								
• The purpose of the course is to	introduce principles of con	nputer organization an	nd					
the basic architectural concepts	5.							
• It begins with basic organization	on, design, and programmin	ng of a simple digital						
computer and introduces simpl	e register transfer language	e to specify various						
computer operations.								
• Topics include computer arith	metic, instruction set desi	gn, microprogrammed	1					
control unit, pipelining and ver	ctor processing, memory of	rganization and I/O						
systems, and multiprocessors								
Learning Course Outcome:								
After successful completion of the cour	se, students will able to:							
• Understand the basics of instru	ction sets and their impact	on processor design.						
• Demonstrate an understanding o	of the design of the function	al units of a digital com	puter system.					
• Evaluate cost performance and	l design trade-offs in design	ning and constructing	a					
computer processor including i	memory.							
 Design a pipeline for consisten Recognize and manipulate repr 	t execution of instructions v	with minimum hazards	s					
	Course Contents	ieu in digital computer	5					
UNIT-I	Digital Computers		07 Hours					
Introduction. Block diagram of Digit	al Computer. Definition of	of Computer Organiza	ation.					
Computer Design and Computer Archit	ecture.		,					
Register Transfer Language and Mic	ro operations: Register T	ransfer language. Re	gister					
Transfer, Bus and memory transfers, Arithmetic Micro operations, logic micro operations, shift								
micro operations, Arithmetic logic shift	unit.							
Basic Computer Organization and Design: Instruction codes, Computer Registers								
Computer instructions, Timing and Cor	ntrol, Instruction cycle, Mer	nory Reference Instruct	tions,					
Input – Output and Interrupt.		-						

		4
UNIT-II	Microprogrammed Control	08 Hours
Control memory, Addre	ess sequencing, micro program example, design of control unit.	
Central Processing Un	it: General Register Organization, Instruction Formats, Address	ing
modes, Data Transfer a	nd Manipulation, Program Control.	
UNIT-III	Data Representation	08 Hours
Data types, Compleme	nts, Fixed Point Representation, Floating Point Representation.	
Computer Arithmetic:	Addition and subtraction, multiplication Algorithms, Divis	sion
Algorithms, Floating -	- point Arithmetic operations. Decimal Arithmetic unit, Deci	mal
Arithmetic operations.		
UNIT-IV	Input-Output Organization	07
		Hours
Input-Output Interface	, Asynchronous data transfer, Modes of Transfer, Priority Interr	upt
Direct memory Access.		
Memory Organization:	Memory Hierarchy, Main Memory, Auxiliary memory, Assoc	iate
Memory, Cache Memor	ſy.	
UNIT-V	Reduced Instruction Set Computer	08 Hours
CISC Characteristics R	ISC Characteristics	IIIUIIS
Pipeline and Vector Pi	rocessing: Parallel Processing, Pipelining, Arithmetic Pipeline,	
Instruction Pipeline, RI	SC Pipeline, Vector Processing, Array Processor.	
Multi Processors: Char	racteristics of Multiprocessors, Interconnection Structures,	
Interprocessor arbitration	on, Interprocessor communication and synchronization, Cache	
Coherence.		
TEXT BOOK:		
1. Computer System	em Architecture – M. Morris Mano, Third Edition, Pearson/PHI.	
1 9		
REFERENCE BOO	KS:	
1. Computer Orga	nization – Carl Hamacher, Zvonks Vranesic, SafeaZaky, Vth Edition	on,
McGraw Hill.		

- 2. Computer Organization and Architecture William Stallings Sixth Edition, Pearson/PHI.
- 3. Structured Computer Organization Andrew S. Tanenbaum, 4 th Edition, PHI/Pearson.

INTERNAL ASSESSMENT (IA)

Two internal assessments and an end semester examination to test students' reading and writing skills along with their grammatical and lexical competence. Assessment will include following things:

• Internal Assessment: 25 Marks - 1. Attendance

2. Assignments

3. Case Study/Mini Project/Presentation

- Mid Semester Exam: 25 Marks
- End Semester Exam: 50 Marks

Cos	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	3	3	3	2	2	3	3	
2	-//	3	3	1	1	3	3	\mathcal{O}
3	1.	2	2	2	2	3	2	(C
4	<u> </u>	2	2	2	2	3	2	6
5	10	2	2	3	3	3	3	1
Avg	3	2.4	2.4	2	2	3	2.6	1 1

1 - low, 2 - medium, 3 - high, '-' - no correlation

BTDS 303L: ADVANCE DATA STRUCTURES LAB

B.Te	ch. II Year I Sem.								
Teaching Scheme:	Credit	Examination Scheme:							
TH: - 4 Hours/Week	TH: 04	In Sem. Evaluation: 25 Marks							
		Mid Sem. Exam: 25 Marks							
		End Sem. Exam: 50 Marks							
Course Prerequisites: A Course on "P	rogramming for problem	10tal : 100 Marks							
Course Objective:	rogramming for problem	solving .							
• It covers various concepts of C	programming language								
 It introduces searching and sort 	ing algorithms								
 It introduces searching and soft It provides an understanding of 	data structures such as sta	cks and queues							
Learning Course Outcome:	data structures such as sta	eks and queues.							
After successful completion of the cour	se, students will able to:								
• Ability to develop C programs	s for computing and real-l	ife applications using basic							
elements like control statement	nts, arrays, functions, poi	nters and strings, and data							
structures like stacks, queues a	nd linked lists.	-							
• Ability to Implement searching	and sorting algorithms								
Course Contents									
List of Ex	periments	07 Hours							
1. Write a program that uses f	unctions to perform the fol	lowing operations on							
singly linked list.:	-								
i) Creation ii) Insertion	n iii) Deletion iv) Traver	sal							
2. Write a program that uses f	unctions to perform the fol	lowing operations on							
doubly linked list.:									
i) Creation ii) Insertion	n iii) Deletion iv) Traver	sal							
3. Write a program that uses f	unctions to perform the fol	lowing operations on							
circular linked list.:									
i) Creation ii) Insertion	n iii) Deletion iv) Traver	sal							
4. Write a program that imple	ment stack (its operations)	using							
i) Arrays ii) P	Pointers	2							
5. Write a program that imple	ment Queue (its operations) using							
i) Arrays ii) P	ointers								
6. Write a program that implem	ents the following sorting n	nethods to sort a given list of							
integers in ascending order									
i) Quick sort ii) Heap so	rt iii) Merge sort								
7. Write a program to implement	ent the tree traversal metho	ds (Recursive and Non Recursive).							
	B. Tech Data Science	/ ·							

27 | Page

- 8. Write a program to implement
 i) Binary Search tree ii) B Trees iii) B+ Trees iv) AVL trees
 v) Red Black trees
- 9. Write a program to implement the graph traversal methods.
- 10. Implement a Pattern matching algorithms using Boyer- Moore, Knuth-Morris-Pratt

TEXT BOOKS:

- 1. Fundamentals of Data Structures in C, 2nd Edition, E. Horowitz, S. Sahni and Susan Anderson Freed, Universities Press.
- 2. Data Structures using C A. S. Tanenbaum, Y. Langsam, and M. J. Augenstein, PHI/Pearson Education.

REFERENCE BOOK:

 Data Structures: A Pseudocode Approach with C, 2nd Edition, R. F. Gilberg and B. A. Forouzan, Cengage Learning.

INTERNAL ASSESSMENT (IA)

Two internal assessments and an end semester examination to test students' reading and writing skills along with their grammatical and lexical competence. Assessment will include following things:

• Internal Assessment: 25 Marks - 1. Attendance

11.00

2. Assignments

3. Case Study/Mini Project/Presentation

- Mid Semester Exam: 25 Marks
- End Semester Exam: 50 Marks

CO's-PO's & PSO's MAPPING

Cos	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	3	3	3	2	2	3	3	2
2	-	3	3	1	1	3	3	3
3	-	2	2	2	2	3	2	1
4	-	2	2	2	2	3	2	2
5	-	2	2	3	3	3	3	2
Avg	3	2.4	2.4	2	2	3	2.6	2

1 - low, 2 - medium, 3 - high, '-' - no correlation

ACCORDENCES IN

BTDS 304L: WEB FRAMEWORK LAB B.Tech. II Year I Sem.

Teaching Scheme:	Credit	Examination S	cheme:
TH: - 4 Hours/Week	TH: 04	In Sem. Evaluation	: 25 Marks
		Mid Sem. Exam:	25 Marks
		End Sem. Exam:	50 Marks
		Total	: 100 Marks
Course Prerequisites: Programming L	ab Practice		
Lourse Objective:	ŀ		
2 Model and Database Management.	к .		
3. Dynamic Web Development.			
4. URL Routing and Navigation.			
5. Form Handling and Validation.			
6. User Authentication and Authoriza	ation.		
7. Deployment of Django Application 8. Testing and Quality Assurance	IS.		
 a. Testing and Quanty Assurance. a. Integration with Third-Party Libra 	aries and APIs		
10. Implementing Security Measures.			
Learning Course Outcome:			
After successful completion of the course	se, students will able to:		
CO1 : Set up and configure the I	Django development enviror	iment.	
CO2: Create and manage Djang	o models and perform CRU	D operations using Djar	ngo ORM.
CO3: Develop dynamic web pag	ges using Django views and	templates.	
CO4: Implement URL routing a	nd navigation in Django app	olications.	
CO5: Handle forms and perform	n validation in Django appli	cations.	
CO6: Implement user authentica	ation and authorization in D	ango.	
CO7 : Deploy Diango application	ns to live servers.		
CO8 : Write and run tests for Dia	ango applications to ensure	quality and reliability.	
CO9 : Integrate third-party librar	ries and APIs with Diango.	1 5 6 6 6 6 7 9 7	
CO10 : Implement security measured	sures in Diango applications		
	Course Contents		
Ехре	riment Of List		07 Hours

Lab Assignment 1: Setting Up Django Environment

- **Objective**: Set up a Django development environment.
- Tasks:
 - Install Python and Django.
 - Create a new Django project.
 - Understand the project structure.
 - \circ Run the development server.
- Expected Outcome: Successfully set up and run a Django project on a local server.

Lab Assignment 2: Creating Django Models

- **Objective**: Understand and create Django models.
- Tasks:
 - Define models for a sample application (e.g., Blog, E-commerce).
 - Migrate models to the database.
 - Use Django Admin to manage models.
- **Expected Outcome**: Successfully create and manage Django models.

Lab Assignment 3: Django ORM and Queries

- **Objective**: Perform CRUD operations using Django ORM.
- Tasks:
 - Insert, update, delete, and retrieve data using Django ORM.
 - Implement QuerySets and filtering.
 - Create relationships between models.
- Expected Outcome: Perform various database operations using Django ORM.

Lab Assignment 4: Building Views and Templates

- **Objective**: Develop views and templates for dynamic web pages.
- Tasks:
 - Create function-based views and class-based views.
 - Pass data to templates and render it.
 - Use template inheritance and filters.
- **Expected Outcome**: Develop dynamic web pages using Django views and templates.

Lab Assignment 5: URL Routing and Navigation

- **Objective**: Understand and implement URL routing in Django.
- Tasks:
 - Define URL patterns for different views.
 - Use named URL patterns and reverse resolution.
 - Implement navigation links in templates.
- **Expected Outcome**: Set up URL routing and navigation for a Django application.

Lab Assignment 6: Form Handling and Validation

- **Objective**: Handle forms and perform validation in Django.
- Tasks:
 - Create and process forms.
 - \circ Implement form validation.
 - Use ModelForm for database operations.
- Expected Outcome: Successfully handle and validate forms in a Django application.

Lab Assignment 7: User Authentication and Authorization

- **Objective**: Implement user authentication and authorization.
- Tasks:
 - Set up user registration, login, and logout.
 - Implement password hashing and authentication.
 - Manage user permissions and access control.
- Expected Outcome: Implement a complete user authentication system in Django.

Lab Assignment 8: Integrating with Databases

- **Objective**: Integrate Django with various databases.
- Tasks:
 - Configure different databases (SQLite, PostgreSQL, MySQL).
 - Perform database migrations.
 - Use database-specific features in Django.
- **Expected Outcome**: Integrate and work with multiple databases in Django.

Lab Assignment 9: Deploying Django Applications

- **Objective**: Deploy a Django application to a live server.
- Tasks:
 - Prepare the application for deployment.
 - Set up a production environment (using WSGI, Gunicorn).
 - Deploy on cloud platforms (Heroku, AWS, etc.).
- **Expected Outcome**: Successfully deploy a Django application to a live server.

Lab Assignment 10: Testing Django Applications

- **Objective**: Write and run tests for Django applications.
- Tasks:
 - Write unit tests for models, views, and forms.
 - Use Django's testing framework.
 - Run tests and interpret results.
- Expected Outcome: Write and execute tests to ensure the quality of Django applications.

Lab Assignment 11: Integrating Third-Party Libraries

- **Objective**: Use third-party libraries and APIs in Django.
- Tasks:
 - o Install and configure third-party libraries (e.g., Django Rest Framework, Celery).
 - Integrate external APIs.
 - Implement additional functionalities (e.g., social authentication, email services).
- **Expected Outcome**: Extend Django applications using third-party libraries and APIs.

Lab Assignment 12: Implementing Security Measures

- **Objective**: Implement security best practices in Django.
- Tasks:
 - Use Django's built-in security features (e.g., CSRF, XSS protection).
 - Implement SSL/TLS for secure communication.
 - Manage user sessions securely.
- Expected Outcome: Implement basic security measures to protect Django applications.

REFERENCE BOOK:

- "Django for Beginners" by William S. Vincent: This book is an excellent starting point for beginners. It covers the basics of Django and takes you through building your first project.
 ISBN-13: 978-1735467207
- "Two Scoops of Django 3.x: Best Practices for the Django Web Framework" by Daniel Roy Greenfeld and Audrey Roy Greenfeld: This book provides best practices and tips for Django development, making it a valuable resource for intermediate to advanced users.
 ISBN-13: 978-0692915721
- 3. **"Django Unleashed" by Andrew Pinkham**: A comprehensive guide that delves into more advanced topics in Django, including testing, deployment, and scaling applications.
 - ISBN-13: 978-0321985071
- 4. **"Django for APIs: Build web APIs with Python and Django" by William S. Vincent**: Focuses on building APIs with Django, which is essential for integrating with third-party services and creating backend systems.
 - ISBN-13: 978-1735467221

INTERNAL ASSESSMENT (IA)

Two internal assessments and an end semester examination to test students' reading and writing skills along with their grammatical and lexical competence. Assessment will include following things:

11

- Internal Assessment: 25 Marks 1. Attendance
 - 2. Assignments
 - 3. Case Study/Mini Project/Presentation
- Mid Semester Exam: 25 Marks
- End Semester Exam: 50 Marks

CO's-PO's & PSO's MAPPING

Course Outcomes (CO)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4
CO1: Set up and configure the Django development environment	3	-	27		3	1	1	2	-	-	-
CO2: Create and manage Django models and perform CRUD operations using Django ORM	3	3	2	1	3	12.3	-	3	3	3	2
CO3: Develop dynamic web pages using Django views and templates	3	3	2	2	3		14	3	2	3	2
CO4: Implement URL routing and navigation in Django applications	3	2	2	- 1	3	-		2	2	2	2
CO5: Handle forms and perform validation in Django applications	3	3	2	15	3	214	1	3	2	3	2
CO6: Implement user authentication and authorization in Django	3	3	2	-	3		C 104	3	3	3	3
CO7: Deploy Django applications to live servers	3	3	2	(and	3	1	14	3	3	3	2
CO8: Write and run tests for Django applications to ensure quality and reliability	3	3	2	3	3	\geq	-	3	3	3	2
CO9: Integrate third-party libraries and APIs with Django	3	2	2	gr. ard	3	N.F	152	3	3	3	2
CO10: Implement security measures in Django applications	3	3	2	1	3	-	-	3	3	3	2

1 - low, 2 - medium, 3 - high, '-' - no correlation

BTDS 306L: DATA VISUALIZATION - R PROGRAMMING/ POWER BI B.Tech. II Year I Sem.

Teaching Scheme:	Credit	Examination S	cheme:		
TH: - 4 Hours/Week	TH: 04	In Sem. Evaluation	: 25 Marks		
		Mid Sem. Exam:	25 Marks		
		End Sem. Exam:	50 Marks		
		Total	: 100 Marks		
Course Prerequisites: 10 +2 Math St	atistics				
Course Objective:					
Effective use of Business Int	elligence (BI) technology (Ta	ableau) to apply data vi	isualization		
To discern patterns and relat	ionships in the data.				
To build Dashboard applicat	ions.				
• To communicate the results	clearly and concisely.				
• To be able to work with diffe	erent formats of data sets.				
Learning Course Outcome:					
After successful completion of the co	urse, students will able to:				
Understand How to import d	ata into Tableau.				
Understand Tableau concept	s of Dimensions and Measure	es.			
Develop Programs and unde	rstand how to map Visual Lay	youts and Graphical Pr	operties.		
• Create a Dashboard that link	s multiple visualizations.				
• Use graphical user interfaces	to create Frames for providing	ng solutions to real wo	rld		
• problems.					
	Course Contents				
UNIT-I	Lab Problems		07 Hours		
1. Understanding Data, What is data	a, where to find data, Founda	tions for building Data	ι		
Visualizations, Creating Your First	visualization?				
2. Getting started with Tableau Sof	tware using Data file formate	s. connecting your Dat	ta to		
Tableau, creating basic charts(line,	bar charts Tree maps) Using	the Show me panel			
		, the phot me punch			
3 Tableau Calculations Overview of	SUM AVR and Aggregate f	eatures Creating custor	m		
s. Fableau Calculations, Overview of	Solvi, AVR, and Aggregate I	catures, creating custor	11		
4. Applying new data calculations to your visualizations, Formatting Visualizations,					
Formatting Tools and Menus, Formatting specific parts of the view.					
5. Editing and Formatting Axes, Ma	nipulating Data in Tableau da	ata, Pivoting Tableau d	lata.		
	B. Tech Data Science				
	1 I Page				

6. Structuring your data, Sorting and filtering Tableau data, Pivoting Tableau data.

7. Advanced Visualization Tools: Using Filters, Using the Detail panel, using the Size panels, customizing filters, Using and Customizing tooltips, Formatting your data with colors.

8. Creating Dashboards & amp; Storytelling, creating your first dashboard and Story, Design for different displays, adding interactivity to your Dashboard, Distributing & amp; Publishing your Visualization.

- 9. Tableau file types, publishing to Tableau Online, Sharing your visualizations, printing, and Exporting.
- 10. Creating custom charts, cyclical data and circular area charts, Dual Axis charts.

REFERENCE BOOKS:

- 1. Microsoft Power BI cookbook, Brett Powell, 2nd edition.
- 2. R Programming for Data Science by Roger D. Peng (References)
- 3. The Art of R Programming by Norman Matloff Cengage Learning India.

INTERNAL ASSESSMENT (IA)

Two internal assessments and an end semester examination to test students' reading and writing skills along with their grammatical and lexical competence. Assessment will include following things:

- Internal Assessment: 25 Marks 1. Attendance
 - 2. Assignments
 - 3. Case Study/Mini Project/Presentation
- Mid Semester Exam: 25 Marks
- End Semester Exam: 50 Marks

CO's-PO's & PSO's MAPPING

Cos	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	3	3	3	2	2	3	3	2
2	-	3	3	1	1	3	3	3
3	-	2	2	2	2	3	2	1
4	-	2	2	2	2	3	2	2
5	-	2	2	3	3	3	3	2
Avg	3	2.4	2.4	2	2	3	2.6	2

1 - low, 2 - medium, 3 - high, '-' - no correlation

BTDS 401: DISCRETE MATHEMATICS

B.Tech. II Year II Sem.

Teaching Scheme: TH: - 4 Hours/Week	Credit TH: 04	Examinatio In Sem. Evalua	on Scheme: tion: 25 Marks					
		Mid Sem. Exa	m: 25 Marks					
		End Sem. Exa	m: 50 Marks					
Course Prorequisites: 10 +2 discrete met	Course Prerequisites: 10 +2 discrete mathematics							
Course Objective	inclinations							
 Introduces elementary discrete m. 	athematics for computer scien	ce and engineering.						
Topics include formal logic nota	tion, methods of proof, induc	tion, sets, relations.	algebraic					
structures, elementary graph the	cory, permutations and comb	inations, counting	principles;					
recurrence relations and generating	ng functions.							
Learning Course Outcome:								
After successful completion of the course,	students will able to:							
• Understand and construct precise	mathematical proofs							
• Apply logic and set theory to form	nulate precise statements							
Analyze and solve counting problem	lems on finite and discrete stru	ctures						
Describe and manipulate sequence	es							
Apply graph theory in solving con	mputing problems							
	Course Contents							
UNIT-I	Foundations of Discre	te Mathematics	07 Hours					
Sets, subsets, and set operations, Logic and J	propositions: Propositional logi	c, logical connectives	s, truth tables,					
Direct proof proof by contradiction mathem	Quantifiers, predicates, and loginatical induction	cal equivalences, Pro	bor techniques:					
Hands-on Exercises:	intent induction							
• Set operations and Venn diagrams								
Constructing truth tables and logical	equivalences							
Writing proofs using different proof	techniques							
UNIT-II	Combinatorics and Cour	nting	08 Hours					
 Basic counting principles: Addition and multiplication rules, Permutations and combinations, Binomial theorem and Pascal's triangle, Pigeonhole principle, Inclusion-exclusion principle Hands-on Exercises: Solving combinatorial problems with permutations and combinations Applying the binomial theorem to data science problems Using inclusion-exclusion principle in real-world scenarios 								
UNIT-III	UNIT-III Graph Theory 08 Hours							
Introduction to graphs: Definitions, terminology, and types of graphs, Graph representation: Adjacency matrix, adjacency list, Graph traversal: Breadth-first search (BFS), depth-first search (DFS), Shortest path algorithms:								

Dijkstra's algorithm, Bellman-Ford algorithm, Graph applications in data science: Social network analysis, clustering

Hands-on Exercises:

- Implementing BFS and DFS in Python
- Solving shortest path problems with Dijkstra's and Bellman-Ford algorithms
- Analyzing social networks using graph theory

UNIT-IV	Relations and Functions	07 Hours

Relations: Properties, representation, equivalence relations, partial orderings, Functions: Definitions, types of functions, composition, and inverses, Recurrence relations: Solving linear recurrence relations, applications in algorithm analysis

Hands-on Exercises:

- Working with relations and their properties
- Implementing and analyzing functions in Python
- Solving and analyzing recurrence relations

UNIT-V	Number Theory and Cryptography			
Divisibility and prime numbers, Congruences and modular arithmetic, Euclidean algorithm and applications,				

Basics of cryptography: RSA algorithm, public-key

Hands-on Exercises:

- Solving problems involving divisibility and modular arithmetic
- Implementing the Euclidean algorithm in Python
- Encrypting and decrypting messages using the RSA algorithm

UNIT-VI	Probability and Statistics	08 Hours

Basic probability theory: Sample spaces, events, probability axioms, Conditional probability and Bayes' theorem, Random variables and probability distributions, Expectation, variance, and standard deviation, Applications in data science: Hypothesis testing, regression analysis

Hands-on Exercises:

- 1. Calculating probabilities and applying Bayes' theorem
- 2. Working with random variables and probability distributions
- 3. Performing hypothesis testing and regression analysis in Python

TEXT BOOKS:

- Discrete Mathematical Structures with Applications to Computer Science: J.P. Tremblay, R. Manohar, McGraw-Hill, 1st ed.
- 2. Discrete Mathematics for Computer Scientists & Mathematicians: Joe I. Mott, Abraham Kandel, Teodore P. Baker, Prentis Hall of India, 2nd ed.

REFERENCE BOOKS:

- 3. "Discrete Mathematics and Its Applications" by Kenneth H. Rosen
- 4. "Discrete Mathematics with Applications" by Susanna S. Epp
- 5. "Graph Theory with Applications" by Bondy and Murty
- 6. "Introduction to the Theory of Computation" by Michael Sipser
- 7. "Probability and Statistics for Engineers and Scientists" by Ronald E. Walpole, Raymond H. Myers, Sharon L. Myers, and Keying Ye
- 8. "Cryptography and Network Security: Principles and Practice" by William Stallings

INTERNAL ASSESSMENT (IA)

Two internal assessments and an end semester examination to test students' reading and writing skills along with their grammatical and lexical competence. Assessment will include following things:

• Internal Assessment: 25 Marks - 1. Attendance

2. Assignments

3. Case Study/Mini Project/Presentation

- Mid Semester Exam: 25 Marks
- End Semester Exam: 50 Marks

CO's-PO's & PSO's MAPPING

Course Outcomes (CO)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4
CO1	3	3	3	-	-	3	-	3	-
CO2	3	3	3	-	-	3	-	3	3
CO3	3	3	-	-	3	3	-	-	3
CO4	3	3	-	3	-	-	3	-	-
CO5	3	3	-	-	3	3	-	3	-
CO6	3	3	-	3	-	-	3	3	3

1 - low, 2 - medium, 3 - high, '-' - no correlation

B. Tech Data Science

BTDS 402: INTRODUCTION TO ARTIFICIAL INTELLIGENCE B.Tech. II Year II Sem.

Teaching Scheme:	Credit	Examination Scheme:		
TH: - 4 Hours/Week	TH: 04	In Sem. Evaluation: 25 Marks		
		Mid Sem. Exam: 25 Marks		
		End Sem. Exam: 50 Marks		
		Total : 100 Marks		

Course Prerequisites: Knowledge on Data Structures.

Course Objective:

- To understand the historical development and key milestones in the field of AI.
- To explore logical and probabilistic approaches to AI.
- To learn the principles and applications of evolutionary algorithms.
- To gain knowledge of fundamental and advanced machine learning techniques.
- To comprehend the structure and functioning of neural networks and deep learning models.
- To understand the basics of natural language processing and its applications.
- To explore generative models and their real-world applications.
- To discuss the ethical implications and considerations in AI.

Learning Course Outcome:

After successful completion of the course, students will able to:

- Describe the historical context and evolution of AI.
- Apply logical and probabilistic reasoning techniques in AI.
- Implement evolutionary algorithms for optimization problems.
- Develop and evaluate machine learning models using supervised and unsupervised learning techniques.
- Construct and train neural networks and deep learning models for various applications.
- Apply natural language processing techniques to analyze and generate text.
- Utilize generative models such as GANs and VAEs for image generation and data augmentation.
- Assess and address ethical issues related to bias, fairness, and misuse of AI technologies.

Course Contents				
UNIT-I	Introduction to Artificial Intelligence (AI)	07 Hours		
1.1: Historical I	Development of AI			
1.1.1: Early AI	Concepts			
1.1.1.1: The	e Turing Test			
1.1.1.2: Dartmouth Workshop (1956)				
1.1.2: Key Milestones in AI Development				
1.1.2.1: McCarthy's Dartmouth Proposal				
1.1.2.2: Birth of the First AI Programs (1950s)				
1.1.3: Influentia	al AI Contributors			

UNIT-III	Evolutionary Intelligence	08 Hours			
2.2.2.2: Ap	2.2.2.2: Approximate Inference (Monte Carlo Methods)				
2.2.2.1: Ex	act Inference (Variable Elimination)				
2.2.2: Inference in Bayesian Networks					
2.2.1.2: Conditional Probability Tables (CPTs)					
2.2.1.1: Directed Acyclic Graphs (DAGs)					
2.2.1: Structure and Representation					
2.2: Bayesian N	letworks				
2.1.2.2: Ma	rkov Chain Monte Carlo (MCMC)				
2.1.2. Dayesian 2.1.2.1. Pri	or, Likelihood, and Posterior				
2.1.1.2. Da	Inference				
2.1.1.1. DR 2.1.1.2. DR	ves' Theorem				
2.1.1: Probabili	ty Distributions				
2.1: Probability	Concepts in AI				
UNIT-II	r robabilistic Approaches to Ar	vo 11001 8			
1.5.5.2: Case Base Maintena	Probabilistic Approaches to AI	08 Hours			
1.3.3.1: Ke	rieval and Adaptation				
1.3.3: Case-Bas	ed Reasoning				
1.3.2.2: Ba	ckward Chaining Inference				
1.3.2.1: For	ward Chaining Inference				
1.3.2: Inference	Engines				
1.3.1.2: Kn	owledge Engineering				
1.3.1.1: Ru	le-Based Expert Systems				
1.3.1: Expert S	ystems				
1.3: Knowledge	e-Based Systems				
1 2 3 2· For	ward and Backward Chaining				
1.2.3. Kule-Bas	duction Rules				
1.2.2.2: Fra 1.2.2.Dula Das	and Systems				
1.2.2.1: Set	nantic Networks				
1.2.2: Knowled	ge Representation				
1.2.1.2: Pre	dicate Logic				
1.2.1.1: Bo	olean Algebra				
1.2.1: Propositi	1.2.1: Propositional and First-Order Logic				
1.2: Logical Approach to AI					
1.1.3.2: John McCarthy					
1.1.3.1: Ala	n Turing				

3.1: Evolutionar	y Algorithms				
3.1.1: Genetic Algorithms					
3.1.1.1: Selection Operators					
3.1.1.2: Cro	3.1.1.2: Crossover and Mutation				
3.1.2: Evolution	ary Strategies				
3.1.2.1: Self	Adaptation				
3.1.2.2: Evo	lution Strategies (ES)				
3.2: Application	s of Evolutionary Intelligence				
3.2.1: Optimizat	ion Problems				
3.2.1.1: Trav	veling Salesman Problem (TSP)				
3.2.1.2: Gen	etic Programming for Symbolic Regression				
3.2.2: Genetic P	rogramming				
3.2.2.1: Tree	e-Based Representations				
3.2.2.2: Evo	lution of Computer Programs				
UNIT-IV	Introduction to Machine Learning (ML)	07 Hours			
4.1: Basics of M	lachine Learning				
4.1.1: Types of I	Learning (Supervised, Unsupervised, Reinforcement)				
4.1.1.1: Lab	eling Data				
4.1.1.2: Rev	vards and Policies				
4.1.2: Model Ev	aluation Metrics				
4.1.2.1: Acc	uracy, Precision, Recall				
4.1.2.2: F1-	Score, ROC-AUC				
4.2: Supervised	Learning				
4.2.1: Linear Re	gression				
4.2.1.1: Ord	inary Least Squares (OLS)				
4.2.1.2: Gra	dient Descent				
4.2.2: Logistic F	Regression				
4.2.2.1: Bin	ary Classification				
4.2.2.2: Mul	Itinomial Logistic Regression				
4.2.3: Decision	Irees and Random Forests				
4.2.3.1: Iree	e Splitting Criteria				
4.2.3.2: Ens	4.2.3.2: Ensemble Learning				
4.3: Unsupervised Learning					
4.5.1: Clustering Algorithms (K-Means, Hierarchical)					
4.5.1.1: Clu	4.3.1.2. Agglomerative Clustering				
4.3.2: Principal Component Analysis (PCA)					
4.5.2: Principal Component Analysis (PCA)					
4.5.2.1: Dimensionality Keduction					
4.3.2.2: Eige	4.3.2.2: Eigenvalue Decomposition				
UNIT-V	Neural Networks and Deep Learning	08 Hours			

5.1: Neural Net	works Fundamentals							
5.1.1: Perceptro	ons and Activation Functions							
5.1.1.1: Mc	5.1.1.1: McCulloch-Pitts Neuron							
5.1.1.2: Sig	5.1.1.2: Sigmoid and ReLU Activation							
5.1.2: Feedforw	vard Neural Networks							
5.1.2.1: Fee	edforward Propagation							
5.1.2.2: Ba	ckpropagation							
5.2: Deep Leari	ning							
5.2.1: Convolut	tional Neural Networks (CNNs)							
5.2.1.1: Co	nvolution and Pooling Layers							
5.2.1.2: Ob	ject Detection							
5.2.2: Recurren	t Neural Networks (RNNs)							
5.2.2.1: Lor	ng Short-Term Memory (LSTM)							
5.2.2.2: Sec	quence Generation							
5.2.3: Transfer	Learning							
5.2.3.1: Fin	e-Tuning Pretrained Models							
5.2.3.2: Do	main Adaptation							
UNIT-VI	Natural Language Processing (NLP) and Generative	08 Hours						
	Intelligence	00 110015						
6 1 · NI P Basic	s s							
6.1.1. Tokeniza	tion and Text Preprocessing							
6.1.1.1: Tol	ken Segmentation							
6 1 1 2· Sto	nword Removal							
6.1.2: Word Fm	beddings (Word?Vec. GloVe)							
6.1.2.1: Wo	ord Vectors							
6.1.2.2: Vec	etor Similarity							
6.2: NLP Appli	cations							
6.2.1: Sentimer	nt Analysis							
6.2.1.1: Tex	xt Classification							
6.2.1.2: Ser	ntiment Lexicons							
6.2.2: Named E	Entity Recognition							
6.2.2.1: Na	med Entity Types							
6.2.2.2: Sec	quence Labeling							
6.2.3: Text Gen	6.2.3: Text Generation							
6.2.3.1: Re	6.2.3.1: Recurrent Text Generation							
6.2.3.2: Tra	6.2.3.2: Transformer-Based Models							
7.1: Introductio	n to Generative Models							
7.1.1: Generativ	ve Adversarial Networks (GANs)							
7.1.1.1: Ge	nerator and Discriminator							
7.1.1.2: GA	N Training Process							
7.1.2: Variation	al Autoencoders (VAEs)							

7.1.2.2: Latent Variable Sampling
7.2: Real-World Uses and Ethical Considerations
7.2.1: Applications of Generative Models
7.2.1.1: Image Generation
7.2.1.2: Data Augmentation
7.2.2: Ethical Implications of Generative AI
7.2.2.1: Bias and Fairness
7.2.2.2: Deepfakes and Misuse

TEXT BOOK:

1. Artificial Intelligence: A Modern Approach, Third Edition, Stuart Russell and Peter Norvig, Pearson Education.

REFERENCE BOOKS:

- 1. "Artificial Intelligence: A Modern Approach" by Stuart Russell and Peter Norvig
- 2. "Pattern Recognition and Machine Learning" by Christopher M. Bishop
- 3. "Deep Learning" by Ian Goodfellow, Yoshua Bengio, and Aaron Courville
- 4. "Probabilistic Graphical Models: Principles and Techniques" by Daphne Koller and Nir Friedman
- 5. "Reinforcement Learning: An Introduction" by Richard S. Sutton and Andrew G. Barto
- 6. "Natural Language Processing in Action" by Lane, Howard, and Hapke
- "Generative Deep Learning: Teaching Machines to Paint, Write, Compose, and Play" by David Foster

Two internal assessments and an end semester examination to test students' reading and writing skills along with their grammatical and lexical competence. Assessment will include following things:

- Internal Assessment: 25 Marks 1. Attendance
 - 2. Assignments
 - 3. Case Study/Mini Project/Presentation
- Mid Semester Exam: 25 Marks
- End Semester Exam: 50 Marks

CO's-PO's & PSO's MAPPING

Cos	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	3	3	3	2	2	3	3	2
2	24	3	3	The state	-1	3	3	3
3	1-	2	2	2	2	3	2	1
4	(<u>-</u>	2	2	2	2	3	2	2
5	34 r	2	2	3	3	3	3	2
Avg	3	2.4	2.4	2	2	3	2.6	2

1 - low, 2 - medium, 3 - high, '-' - no correlation

न्यः क्रियांचान

BTDS 403: DATABASE MANAGEMENT SYSTEMS

B.Tech. II Year II Sem.

Teaching Scheme: TH: - 4 Hours/Week		Credit TH: 04	Examination S In Sem. Evaluation Mid Sem. Exam: End Sem. Exam:	cheme: : 25 Marks 25 Marks 50 Marks					
			Total	: 100 Marks					
Course Prerequisites: A cou	Course Prerequisites: A course on "Data Structures".								
Course Objective:									
• To understand the bas	ic concep	ots and the applications of d	atabase systems.						
• To master the basics o	f SQL ar	nd construct queries using S	SQL.						
Topics include data m	odels, da	tabase design, relational m	odel, relational algebra	a,					
transaction control, co	oncurrenc	cy control, storage structure	es and access technique	es.					
Learning Course Outcome:	_								
After successful completion of	the cour	se, students will able to:	1 10						
Gain knowledge of fur	ndamenta	als of DBMS, database desi	gn and normal forms						
• Master the basics of S	QL for re	etrieval and management of	data.						
• Be acquainted with the	• Be acquainted with the basics of transaction processing and concurrency control.								
Familiarity with datab	ase stora	ge structures and access tec	enniques						
		Course Contents		07 11					
		Database System Applica	ations	07 Hours					
A Historical Perspective, File S	Systems v	versus a DBMS, the Data N	Iodel, Levels of Abstra	action					
in a DBMS, Data Independenc	e, Struct	ure of a DBMS	T ('.' A (/ 'I						
Introduction to Database De	sign: Da	itabase Design and ER Dia	igrams, Entities, Attrib	outes,					
and Entity Sets, Relationships	and Rel	ationship Sets, Additional	Features of the ER M	lodel,					
Conceptual Design With the E	R Model								
UNIT-II		Introduction to the Re	lational Model	08 Hours					
Integrity constraint over relat	ions, enf	forcing integrity constraint	s, querying relational	data,					
logical database design, introdu	uction to	views, destroying/altering	tables and views.						
Relational Algebra, Tuple relational Calculus, Domain relational calculus.									
UNIT-III		SQL		08 Hours					
QUERIES, CONSTRAINTS,	TRIGGE	RS: form of basic SQL qu	ery, UNION, INTERS	SECT, and					
EXCEPT, Nested Queries, aggregation operators, NULL values, complex integrity									
constraints in SQL, triggers a	constraints in SQL, triggers and active databases.								
Schema Refinement: Problem	ns caused	d by redundancy, decompo	sitions, problems relat	ted to					

decomposition, reasoning about functional dependencies, First, Second, Third normal forms, BCNF, lossless join decomposition, multivalued dependencies, Fourth normal form, Fifth normal form.

Transaction Property	07 Hours					
ansaction State, Implementation of Atomicity and Durabil	ity,					
erializability, Recoverability, Implementation of Isolation, Test	ing					
Based Protocols, Timestamp Based Protocols, Validation- Ba	sed					
larity, Recovery and Atomicity, Log-Based Recovery, Recov	ery					
ons.						
File Organization	08 Hours					
, File Organization and Indexing, Cluster Indexes, Primary	and					
data Structures, Hash Based Indexing, Tree based Indexi	ng,					
izations, Indexes- Intuitions for tree Indexes, Indexed Sequen	tial					
B+ Trees: A Dynamic Index Structure.						
TEXT BOOKS:						
 Database System Concepts, Silberschatz, Korth, McGraw hill, V edition.3rd Edition Database Management Systems, Raghurama Krishnan, Johannes Gebrke, Tata Mc Graw Hill 						
	Transaction Property ansaction State, Implementation of Atomicity and Durabil erializability, Recoverability, Implementation of Isolation, Test Based Protocols, Timestamp Based Protocols, Validation- Ba Based Protocols, Validation- Ba larity, Recovery and Atomicity, Log–Based Recovery, State Structures, Hash Based Indexing, Cluster Indexes, Primary at data Structures, Hash Based Indexing, Tree based Indexinitizations, Indexes- Intuitions for tree Indexes, Indexed Sequentex Structure. Concepts, Silberschatz, Korth, McGraw hill, V edition.3rd Editionment Systems, Raghurama Krishnan, Johannes Gehrke, Tata Mc					

REFERENCE BOOKS:

- 1. Database Systems design, Implementation, and Management, Peter Rob & Carlos Coronel 7th Edition.
- 2. Fundamentals of Database Systems, Elmasri Navrate, Pearson Education
- 3. Introduction to Database Systems, C. J. Date, Pearson Education
- 4. Oracle for Professionals, The X Team, S.Shah and V. Shah, SPD.
- 5. Database Systems Using Oracle: A Simplified guide to SQL and PL/SQL, Shah, PHI.
- 6. Fundamentals of Database Management Systems, M. L. Gillenson, Wiley Student Edition.

INTERNAL ASSESSMENT (IA)

Two internal assessments and an end semester examination to test students' reading and writing skills along with their grammatical and lexical competence. Assessment will include following things:

- Internal Assessment: 25 Marks 1. Attendance
 - 2. Assignments

3. Case Study/Mini Project/Presentation

- Mid Semester Exam: 25 Marks
- End Semester Exam: 50 Marks

CO's-PO's & PSO's MAPPING

Cos	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	3	3	3	2	2	3	3	2
2	4	3	3	1.00		3	3	6
3	1	2	2	2	2	3	2	No.
4	52	2	2	2	2	3	2	2
5	1	2	2	3	3	3	3	
Avg	3	2.4	2.4	2	2	3	2.6	:

स्वार्थाय संचिद्धाः

BTDS 404: OPERATING SYSTEMS

B.Tech. II Year II Sem.								
Teaching Scheme:	Credit	Examination Scheme:						
TH: - 4 Hours/Week	TH: 04	In Sem. Evaluation: 25 Marks						
		Mid Sem. Exam: 25 Marks						
		End Sem. Exam: 50 Marks						
		Total : 100 Marks						
1. Course Prerequisites: A cours	e on "Computer Programn	ning and Data Structures".						
2. A course on "Computer Organ	ization and Architecture".							
Course Objective:								
• Introduce operating system co	ncepts (i.e., processes, thre	eads, scheduling,						
synchronization, deadlocks, mo	emory management, file ar	nd I/O subsystems and						
protection)		-						
• Introduce the issues to be considered in the design and development of operating system								
• Introduce basic Unix commands, system call interface for process management,								
interprocess communication ar	interprocess communication and I/O in Unix							
Learning Course Outcome:								

After successful completion of the course, students will able to:

- Will be able to control access to a computer and the files that may be shared •
- Demonstrate the knowledge of the components of computers and their respective roles in computing.
- Ability to recognize and resolve user problems with standard operating environments.
- Gain practical knowledge of how programming languages, operating systems, and architectures interact and how to use each effectively.

Course Contents							
UNIT-I	UNIT-IOperating System - Introduction07 Hours						
Structures - Simple Ba	atch, Multiprogrammed, Time-shared, Personal Computer, Par	allel,					
Distributed Systems, R	eal-Time Systems, System components, Operating System serv	vices,					
System Calls. Proces	s - Process concepts and scheduling, Operations on proce	esses,					
Cooperating Processes,	Threads						
UNIT-II	CPU Scheduling	08 Hours					
Scheduling Criteria, So	cheduling Algorithms, Multiple -Processor Scheduling. System	call					
interface for process management-fork, exit, wait, waitpid, exec							
Deadlocks - System Model, Deadlocks Characterization, Methods for Handling Deadlocks,							
Deadlock Prevention,	Deadlock Avoidance, Deadlock Detection, and Recovery	from					
Deadlock							

UNIT-III	Process Management and Synchronization	08 Hours						
The Critical Section P	roblem, Synchronization Hardware, Semaphores, and Classical							
Problems of Synchroniz	zation, Critical Regions, Monitors Interprocess Communication							
Mechanisms: IPC betv	veen processes on a single computer system, IPC between processe	S						
on different systems, us	sing pipes, FIFOs, message queues, shared memory.							
UNIT-IV	Memory Management and Virtual Memory	07 Hours						
Logical versus Physi	cal Address Space, Swapping, Contiguous Allocation, Pagi	ng,						
Segmentation, Segmen	ntation with Paging, Demand Paging, Page Replacement, Page	age						
Replacement Algorithn	18.							
UNIT-V	File System Interface and Operations	08 Hours						
Access methods, Direct	tory Structure, Protection, File System Structure, Allocation metho	ods,						
Free-space Managemen	nt. Usage of open, create, read, write, close, lseek, stat, ioctl syst	tem						
calls.								
TEXT BOOKS:								
1. Operating Syst	em Principles- Abraham Silberchatz, Peter B. Galvin, Greg Gagne							
7th Edition, Jo	hn Wiley.							
2 Advanced meas	2 Advanced are growning in the UNIX environment W/D. Stavens, Deerson education							

2. Advanced programming in the UNIX environment, W.R. Stevens, Pearson education.

REFERENCE BOOKS:

- 1. Operating Systems- Internals and Design Principles, William Stallings, Fifth Edition–2005, Pearson Education/PHI
- 2. Operating System A Design Approach- Crowley, TMH.
- 3. Modern Operating Systems, Andrew S. Tanenbaum 2nd edition, Pearson/PHI
- 4. UNIX programming environment, Kernighan and Pike, PHI/ Pearson Education

11

5. UNIX Internals - The New Frontiers, U. Vahalia, Pearson Education.

INTERNAL ASSESSMENT (IA)

Two internal assessments and an end semester examination to test students' reading and writing skills along with their grammatical and lexical competence. Assessment will include following things:

- Internal Assessment: 25 Marks 1. Attendance
 - 2. Assignments

3. Case Study/Mini Project/Presentation

- Mid Semester Exam: 25 Marks
- End Semester Exam: 50 Marks

CO's-PO's & PSO's MAPPING

Cos	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	3	3	3	2	2	3	3	2
2	4	3	3	1	1	3	3	0.3
3	1	2	2	2	2	3	2	1
4	10	2	2	2	2	3	2	
5	V	2	2	3	3	3	3	2
Avg	3	2.4	2.4	2	2	3	2.6	2.5.2

स्वार्थान् संधनिद्धाः

BTDS 403L: DATABASE MANAGEMENT SYSTEMS LAB B.Tech. II Year II Sem.

Teaching Scheme:	Credit	Examination S	cheme				
TH· - 4 Hours/Week	TH· 04	In Sem Evaluation	· 25 Marks				
	111. 04	Mid Sem Exam•	25 Marks				
		End Sem. Exam:	50 Marks				
		Total	: 100 Marks				
Course Prerequisites: "Database Man	agement Systems".						
Course Objective:							
• Introduce ER data model, data	base design and normalization	on					
• Learn SQL basics for data defi	nition and data manipulatio	n					
Learning Course Outcome:							
After successful completion of the cour	se, students will able to:						
• Design database schema for a g	given application and apply	normalization					
• Acquire skills in using SQL co	mmands for data definition	and data manipulation	l .				
Develop solutions for database	applications using procedu	res, cursors and trigger	rs				
	Course Contents						
	List of Experiments		07 Hours				
1. Concept design with E-R Model							
2. Relational Model							
3. Normalization							
4. Practicing DDL commands							
5. Practicing DML commands							
6. A. Querying (using ANY, ALL, U	NION, INTERSECT, JOIN	, Constraints etc.)					
B. Nested, Correlated subqueries							
7. Queries using Aggregate functions,	7. Queries using Aggregate functions, GROUP BY, HAVING and Creation and dropping of Views.						
8. Triggers (Creation of insert trigger, delete trigger, update trigger)							
9. Procedures							
10. Usage of Cursors							
	T.						

TEXT BOOKS:

- Database Management Systems, Raghurama Krishnan, Johannes Gehrke, Tata Mc Graw Hill, 3rd Edition
- 2. Database System Concepts, Silberschatz, Korth, McGraw Hill, V edition.

REFERENCE BOOKS:

- Database Systems design, Implementation, and Management, Peter Rob & Carlos Coronel 7th Edition.
- 2. Fundamentals of Database Systems, Elmasri Navrate, Pearson Education
- 3. Introduction to Database Systems, C.J. Date, Pearson Education
- 4. Oracle for Professionals, The X Team, S. Shah and V. Shah, SPD.
- 5. Database Systems Using Oracle: A Simplified guide to SQL and PL/SQL, Shah, PHI.
- 6. Fundamentals of Database Management Systems, M. L. Gillenson, Wiley Student Edition.

INTERNAL ASSESSMENT (IA)

Two internal assessments and an end semester examination to test students' reading and writing skills along with their grammatical and lexical competence. Assessment will include following things:

- Internal Assessment: 25 Marks 1. Attendance
 - 2. Assignments
 - 3. Case Study/Mini Project/Presentation
- Mid Semester Exam: 25 Marks
- End Semester Exam: 50 Marks

CO's-PO's & PSO's MAPPING

		Second Second	the second s	CHECHIN	1141.41	1110 0000	and the second sec	
Cos	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	3	3	3	2	2	3	3	2
2	-	3	3	1	1	3	3	3
3	-	2	2	2	2	3	2	1
4	-	2	2	2	2	3	2	2
5	-	2	2	3	3	3	3	2
Avg	3	2.4	2.4	2	2	3	2.6	2

1 - low, 2 - medium, 3 - high, '-' - no correlation

B. Tech Data Science

20 | Page

BTDS 404L: OPERATING SYSTEMS LAB B Tech, II Vear II Sem

D.10							
Teaching Scheme:	Credit	Examination Scheme:					
TH: - 4 Hours/Week	TH: 04	In Sem. Evaluation: 25 Marks					
		Mid Sem. Exam: 25 Marks					
		End Sem. Exam: 50 Marks					
		Total : 100 Marks					
Course Prerequisites: A course on "Pro	ogramming for Problem Sol	lving", A course on					
"Computer Organization and Architect	ure".						
Co-requisite: A course on "Operating S	Systems".						
Course Objective:							
• To provide an understanding	of the design aspects of o	perating system concepts					
through simulation							
Introduce basic Unix command	ds, system call interface for	process management,					
interprocess communication ar	nd I/O in Unix						
Learning Course Outcome:							
After successful completion of the cour	se, students will able to:						
• Simulate and implement ope	erating system concepts s	such as scheduling,					
deadlock management, file ma	nagement and memory ma	nagement.					
Able to implement C programs	using Unix system calls						
	Course Contents						
	List of Experiments	07 Hours					
1. Write C programs to simulate the fo	ollowing CPU Scheduling	algorithms a) FCFS b) SJF					
c) Round Robin d) priority		-					
2. write programs using the I/O system	n calls of UNIX/LINUX op	erating system (open, read,					
write, close, fcntl, seek, stat, opendir,	readdir)						
3. Write a C program to simulate Bank	kers Algorithm for Deadloc	k Avoidance and Prevention.					
4. Write a C program to implement	the Producer — Consume	er problem using					
semaphores using UNIX/LINUX sy	stem calls	1 C					
	semaphores using Orazy Lirvozx system cans.						
5. Write C programs to illustrate the following IPC mechanisms a) Pipes b) FIFOs c) Message Oueues							
d) Shared Memory							
6 Write C programs to simulate the	following memory man	gement techniques a)					
b. write C programs to simulate the	e tonowing memory mana	igement techniques a)					
Paging b) Segmentation							
7. Write C programs to simulate Page	replacement policies a) FC	FS b) LRU c) Optimal					

TEXT BOOKS:

- Operating System Principles- Abraham Silberchatz, Peter B. Galvin, Greg Gagne 7th Edition, John Wiley
- 2. Advanced programming in the Unix environment, W.R.Stevens, Pearson education.

REFERENCE BOOKS:

- 1. Operating Systems Internals and Design Principles, William Stallings, Fifth Edition–2005, Pearson Education/PHI
- 2. Operating System A Design Approach-Crowley, TMH.
- 3. Modern Operating Systems, Andrew S Tanenbaum, 2nd edition, Pearson/PHI
- 4. UNIX Programming Environment, Kernighan and Pike, PHI/Pearson Education
- 5. UNIX Internals: The New Frontiers, U. Vahalia, Pearson Education

INTERNAL ASSESSMENT (IA)

Two internal assessments and an end semester examination to test students' reading and writing skills along with their grammatical and lexical competence. Assessment will include following things:

• Internal Assessment: 25 Marks - 1. Attendance

2. Assignments

3. Case Study/Mini Project/Presentation

- Mid Semester Exam: 25 Marks
- End Semester Exam: 50 Marks

CO's-PO's & PSO's MAPPING

Cos	PO1	PO2	PO3	PO4	PO5 PSO1		PSO2	PSO3
1	3	3	3	2	2	3	3	2
2	-	3	3	1	1	3	3	3
3	-	2	2	2	2	3	2	1
4	-	2	2	2	2	3	2	2
5	-	2	2	3	3	3	3	2
Avg	3	2.4	2.4	2	2	3	2.6	2

BTDS 405L: NODE JS/ REACT JS

B. Tech. II Year II Sem.									
Teaching Scheme:	Credit	Examination Scheme:							
TH: - 4 Hours/Week	TH: 04	In Sem. Evaluation	n: 25 Marks						
		Mid Sem. Exam:	25 Marks						
		End Sem. Exam:	50 Marks						
		Total	: 100 Marks						
Course Prerequisites: Object Oriented	l Programming through J	ava, HTML Basics							
Course Objective:									
• To implement the static web pa	iges using HTML and do cl	ient side validation u	sing						
JavaScript.									
• To design and work with datab	ases using Java								
• To develop an end to end appli	cation using java full stack								
• To introduce Node JS impleme	• To introduce Node JS implementation for server side programming.								

• To experiment with single page application development using React.

Learning Course Outcome:

After successful completion of the course, students will able to:

- Build a custom website with HTML, CSS, and Bootstrap and little JavaScript.
- Demonstrate Advanced features of JavaScript and learn about JDBC
- Develop Server side implementation using Java technologies like
- Develop the server side implementation using Node JS.
- Design a Single Page Application using React.

Course Contents	
Exercises	07 Hours
1. Build a responsive web application for shopping cart with registration, login, ca	atalog
and cart pages using CSS3 features, flex and grid.	
2. Make the above web application responsive web application using Bootstrap framework application application web application application framework application a	mework.
3. Use JavaScript for doing client – side validation of the pages implemented in exper	riment
1 and experiment 2.	
4. Explore the features of ES6 like arrow functions, callbacks, promises, async/a	await.
Implement an application for reading the weather information	from
openweathermap.org and display the information in the form of a graph on the	e web
page.	
5. Develop a java stand alone application that connects with the database (Or	acle /
mySal) and perform the CRUD operation on the database tables	
6. Create an xml for the bookstore. Validate the same using both DTD and XSD.	
7. Design a controller with servlet that provides the interaction with application	1

developed in experiment 1 and the database created in experiment 5.

- 8. Maintaining the transactional history of any user is very important. Explore the various session tracking mechanism (Cookies, HTTP Session)
- 9. Create a custom server using http module and explore the other modules of Node JS like OS, path, event.
- 10. Develop an express web application that can interact with REST API to perform CRUD operations on student data. (Use Postman)
- 11. For the above application create authorized end points using JWT (JSON Web Token).
- 12. Create a react application for the student management system having registration, login, contact, about pages and implement routing to navigate through these pages.
- 13. Create a service in react that fetches the weather information from openweathermap.org and the display the current and historical weather information using graphical representation using chart.js

14. Create a TODO application in react with necessary components and deploy it into github. **REFERENCE BOOKS:**

- 1. Jon Duckett, Beginning HTML, XHTML, CSS, and JavaScript, Wrox Publications, 2010
- 2. Bryan Basham, Kathy Sierra and Bert Bates, Head First Servlets and JSP, O'Reilly Media, 2nd Edition, 2008.
- 3. Vasan Subramanian, Pro MERN Stack, Full Stack Web App Development with Mongo, Express, React, and Node, 2nd Edition, A Press.

INTERNAL ASSESSMENT (IA)

Two internal assessments and an end semester examination to test students' reading and writing skills along with their grammatical and lexical competence. Assessment will include following things:

- Internal Assessment: 25 Marks 1. Attendance
 - 2. Assignments
 - 3. Case Study/Mini Project/Presentation
- Mid Semester Exam: 25 Marks
- End Semester Exam: 50 Marks

CO's-PO's & PSO's MAPPING

Cos	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	
1	3	3 3		2	2	3	3	2	
2	10	3 3		1	1	3	3	3	
3	14	2	2	2 2 2		3	2	1	
4	-	2	2	2	2 2 3		2	2	
5	1	2	2 2 3 3		3	3	3	2	
Avg	3	2.4	2.4	2	2	3	2.6	2	

BTDS 501 DESIGN AND ANALYSIS OF ALGORITHMS B Tech III Vear I Sem

D. Tech. III Teal T Sein.								
Teaching Scheme:	Credit	Examination Scheme:						
TH: - 4 Hours/Week	TH: 04	In Sem. Evaluation: 25 Marks						
		Mid Sem. Exam: 25 Marks						
		End Sem. Exam: 50 Marks						
		Total : 100 Marks						
Course Prerequisites:								
• A course on "Computer Progra	mming and Data Structures	5".						
• A course on "Advanced Data S	Structures".							
Course Objective:								
• Introduces the notations for an	nalysis of the performance	of algorithms and the data						
structure of disjoint sets.	, I	C						

- Describes major algorithmic techniques (divide-and-conquer, backtracking, dynamic programming, greedy, branch and bound methods) and mention problems for which each technique is appropriate
- Describes how to evaluate and compare different algorithms using worst-, average-, and best case analysis.
- Explains the difference between tractable and intractable problems, and introduces the problems that are P, NP and NP complete.

Learning Course Outcome:

After successful completion of the course, students will able to:

- Analyze the performance of algorithms
- Choose appropriate data structures and algorithm design methods for a specified application
- Understand the choice of data structures and the algorithm design methods

Course Contents							
Introduction							
Algorithm, Performanc	Algorithm, Performance Analysis-Space complexity, Time complexity, Asymptotic						
Notations- Big oh notat	Notations- Big oh notation, Omega notation, Theta notation and Little oh notation.						
Divide and conquer: C	General method, applications-Binary search, Quick sort, Merge so	rt,					
Strassen's matrix multi	plication.						
UNIT-II Disjoint Sets							
Disjoint set operations,	union and find algorithms, Priority Queue- Heaps, Heapsort						
Backtracking: Genera	l method, applications, n-queen's problem, sum of subsets						
problem, graph Coloring, hamitonian cycles.							
UNIT-III	UNIT-III Dynamic Programming						

General method, applications- Optimal binary search tree, 0/1 knapsack problem, All pairs shortest path problem, Traveling salesperson problem, Reliability design.

UNIT-IV	Greedy method	07
		Hours

General method, applications-Job sequencing with deadlines, knapsack problem, Minimum cost spanning trees, Single source shortest path problem.

Basic Traversal and Search Techniques: Techniques for Binary Trees, Techniques for Graphs, Connected components, Biconnected components.

		0.0						
UNIT-V	Branch and Bound	08						
		Hours						
General method, applications - Traveling salesperson problem, 0/1 knapsack problem - LC								
Branch and Bound solution, FIFO Branch and Bound solution.								
NP-Hard and NP-Complete problems: Basic concepts, non-deterministic algorithms, NP-								
Hard and NP-Complete cl	asses, Cook's theorem.							
TEXT BOOK:								
1. Fundamentals of	Computer Algorithms, Ellis Horowitz, Satraj Sahni and							
Rajasekharan, Un	niversity press, 1998.							
REFERENCE BOOKS	:							
1. Design and Analy	vsis of algorithms, Aho, Ullman and Hopcroft, Pearson education.							
2. Introduction to A	lgorithms, second edition, T. H. Cormen, C.E. Leiserson, R. L.							
Rivest, and C. Ste	ein, PHI Pvt. Ltd./ Pearson Education.							
3. Algorithm Design	n: Foundations, Analysis and Internet Examples, M.T. Goodrich	1						

and R. Tamassia, John Wiley and sons.

INTERNAL ASSESSMENT (IA)

Two internal assessments and an end semester examination to test students' reading and writing skills along with their grammatical and lexical competence. Assessment will include following things:

- Internal Assessment: 25 Marks 1. Attendance
 - 2. Assignments
 - 3. Case Study/Mini Project/Presentation
- Mid Semester Exam: 25 Marks
- End Semester Exam: 50 Marks

CO's-PO's & PSO's MAPPING

Cos	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	3	3	3	2	2	3	3	B 2
2	1	3	3	1		3	3	
3	1.50	2	2 2 2 2 2		3	3 2		
4	1	2	2	2	2	3	2	2
5	1	2 2 3 3		3	3	0		
Avg	3	2.4	2.4	2	2	3	2.6	2

BTDS 502: R PROGRAMMING B.Tech. III Year I Sem.

Iea	aching Sc	heme:	Cred Examination Sch					
TH:	- 4 Hour	s/Week	it TH: 04	In Sem. Ev M	valuation: 25 arks			
				Mid Sem.	Exam: 25			
				M End Sem	arks Evam• 50			
				M	arks			
				Total	: 100			
	•••	T . 1 .*		Μ	arks			
Course Pr	erequisit	es: Introducti	on To Data Science					
	introduce:	atudanta ta ti	D nuccuommine anvi	nonmont				
1. 10 2. To	taaah dat		n viewalization and an	romment.				
2. 10 2. To	To teach data manipulation, visualization, and analysis using R.							
5. 10 4 To	To cover statistical modeling and machine learning techniques in R.							
4. 10 5 To	familiariz	a students wi	th advanced topics such	n as parallel co	mouting and			
5. 10 pac	kage dev	elopment in R	in advanced topics such	i as parallel col	inputing and			
Learning	Course C	outcome:						
After succ	essful co	mpletion of tl	he course, students wi	ll able to:				
С	O1: Under	rstand the basic	concepts and environme	nt of R program	ming.			
С	O2: Perfor	rm data manipu	llation and cleaning using	g R packages.				
C	O3: Create	e and customize	e various types of data vis	sualizations.				
С	O4: Condu	uct statistical a	nalysis and interpret the r	esults.				
C	O5: Apply	machine learn	ing algorithms to real-wo	orld datasets.				
C	06: Utiliz	e advanced R p	programming techniques i	including paralle	el computing and			
C P	O7 : Condu	uct reproducibl	e research and document	analysis using R	Markdown			
		P	Course Contents					
UNI	T-I		Introduction to	R	07 Hours			
0	verview (of R and RStu	dio. Installing R and R		Svntax.			
	ariables a	nd Data Type	s, Vectors, Lists, Matri	ces, Arrays, an	d Data Frames,			
V		• 1		•				
V B	asic Oper	ations in R						

UNIT-III	Data Visualization in R	08 Hours							
Introduction to Data	Visualization, Basic Plotting with Base R, Advanced Plo	otting with	□ Introduction to						
ggplot2, Customizing	Plots, Creating Interactive Visualizations with plotly a	nd shiny	Data						
			Visualization						
			□ Basic Plotting						
			with Base R						
			□ Advanced						
			Plotting with						
			ggplot2						
			□ Customizing						
			Plots						
			□ Creating						
			Interactive						
			Visualizations						
			with plotly and						
			shiny						
UNIT-IV	Statistical Analysis in R	07 Hours	in the second se						
Descriptive Statistics	, Probability Distributions, Hypothesis Testing, ANOVA	A and	10						
Regression Analysis,	Time Series Analysis.								
UNIT-V	Machine Learning in R	08 Hours	6						
Introduction to Mach	ine Learning, Supervised Learning: Regression and Classical Classi	ssification,							
Unsupervised Learni	ng: Clustering and Association Rules, Model Evaluation	n and	3 1						
Tuning, Using caret a	and mlr Packages for Machine Learning.		r 1						
UNIT-V	Advanced Topics in R	08 Hours	Prove da						
			21						
Introduction to Paral	el Computing in R. Writing Functions and Scripts Pack	age	~/						
Development in R. V	ersion Control with Git and GitHub. Reproducible Rese	earch with	10						
RMarkdown			/						
REFERENCE B	OOKS:								
1. "R for Data S 978-1491910	 "R for Data Science" by Hadley Wickham and Garrett Grolemund ISBN-13: 978-1491910399 								
2. "Advanced R	" by Hadley Wickham ISBN-13: 978-1498759809								
3. "The Art of R	Programming" by Norman Matloff ISBN-13: 978-1593	3273842							
4. "R in Action"	by Robert I. Kabacoff ISBN-13: 978-1617291388								

INTERNAL ASSESSMENT (IA)

Two internal assessments and an end semester examination to test students' reading and writing

skills along with their grammatical and lexical competence. Assessment will include following things:

- Internal Assessment: 25 Marks 1. Attendance
 - 2. Assignments
 - 3. Case Study/Mini Project/Presentation
- Mid Semester Exam: 25 Marks
- End Semester Exam: 50 Marks

CO's-PO's & PSO's MAPPING

Course Outcomes (CO)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3
CO1: Understand the basic concepts and environment of R programming	3	2.6	. \		2	SIN		2	S.	h
CO2: Perform data manipulation and cleaning using R packages	3	3	2	2	3		1	3	3	3
CO3: Create and customize various types of data visualizations	3	3	2		3	P St	12 22	3	2	3
CO4: Conduct statistical analysis and interpret the results	3	3	2	2	3	-	-	3	3	3
CO5: Apply machine learning algorithms to real- world datasets	3	3	2	2	3	-	-	3	3	3
CO6: Utilize	3	3	2	2	3	-	-	3	3	3

B. Tech Data Science 32 | P a g e

advanced R programming techniques including parallel computing and package development										
CO7: Conduct reproducible research and document analysis using RMarkdown	3	3	2	2	3	-	-	3	3	3

BTDS 503: BUSINESS ECONOMICS AND FINANCIAL ANALYSIS B.Tech. III Year I Sem.

Teachin TH: - 2 H	ng Scheme: Hours/Week	Credit TH: 04	Examination S In Sem. Evaluation Mid Sem. Exam: End Sem. Exam:	cheme: : 25 Marks 25 Marks 50 Marks
			Total	: 100 Marks
Course Prerequisi	ites: None			
Course Objective:				11
To learn the basi	c Business types, imp	act of the Economy on Bus	iness and Firms specifi	cally.
To analyze the E	Business from the Fin	ancial Perspective.		
Learning Course	Outcome:			
After successful co	ompletion of the cour	se, students will able to:		
The students wi	Il understand the va	rious Forms of Business a	nd the impact of econ	iomic
variables on the	Business. The Demar	nd, Supply, Production, Cos	st, Market Structure, Pr	ricing
aspects are learn	nt. The Students can	study the firm's financia	l position by analysin	g the
Financial Statem	nents of a Company.			
		Course Contents		
UNIT-I	Introd	luction to Business and E	conomics	07 Hours
Business: Structur	re of Business Firm,	Theory of Firm, Types of	Business Entities, Lin	mited
Liability Companies, Sources of Capital for a Company, Non-Conventional Sources of				
Finance.				
Economics: Signi	ficance of Economics	s, Micro and Macro Econor	nic Concepts, Concept	is and
Importance of Na	ational Income, Infl	ation, Money Supply in	Inflation, Business C	Lycle,
Features and Phas	ses of Business Cycle	e. Nature and Scope of Bu	siness Economics, Ro	ole of
Business Economi	ist, Multidisciplinary	nature of Business Econon	nics.	
UNIT-II]	Demand and Supply Anal	ysis	08 Hours
Elasticity of Den	nand: Elasticity, Typ	bes of Elasticity, Law of I	Demand, Measuremen	t and
Significance of Elasticity of Demand, Factors affecting Elasticity of Demand, Elasticity of				
Demand in decision making, Demand Forecasting: Characteristics of Good Demand				
Forecasting, Steps in Demand Forecasting, Methods of Demand Forecasting.				
Supply Analysis: Determinants of Supply, Supply Function & Law of Supply.				
UNIT-III	Productio	on, Cost, Market Structur	es & Pricing	08 Hours

Production Analysis: Factors of Production, Production Function, Production Function with one variable input, two variable inputs, Returns to Scale, Different Types of Production Functions.

Cost analysis: Types of Costs, Short run and Long run Cost Functions.

Market Structures: Nature of Competition, Features of Perfect competition, Monopoly, Oligopoly, Monopolistic Competition.

Pricing: Types of Pricing, Product Life Cycle based Pricing, Break Even Analysis, Cost Volume Profit Analysis.

UNIT-IV	Financial Accounting	
Accounting concepts and Conventions, Accounting Equation, Double-Entry system of		
Accounting, Rul	es for maintaining Books of Accounts, Journal, Posting to Ledger, Preparat	tion of
Trial Balance, H	Elements of Financial Statements, Preparation of Final Accounts.	
UNIT-V	Financial Analysis through Ratios	08 Hours
Concept of Rat	io Analysis, Liquidity Ratios, Turnover Ratios, Profitability Ratios, Pro	oprietary
Ratios, Solvenc	y, Leverage Ratios (simple problems).	
Introduction to	Fund Flow and Cash Flow Analysis (simple problems).	
TEXT BOOH	KS:	
1. D.D. C	haturvedi, S.L. Gupta, Business Economics - Theory and Application	s,
Interna	tional Book House Pvt. Ltd. 2013.	
2. Dhanes	sh K Khatri, Financial Accounting, Tata McGraw Hill, 2011.	
3. Geethik	a Ghosh, Piyali Gosh, Purba Roy Choudhury, Managerial Economics, 2e, 7	Гata
McGra	w Hill Education Pvt. Ltd. 2012.	
REFERENCI	E BOOKS:	
1. Paresh	Shah, Financial Accounting for Management 2e, Oxford Press, 2015.	
2. S.N. M	aheshwari, Sunil K Maheshwari, Sharad K Maheshwari, Financial	
Accour	nting, 5e, Vikas Publications, 2013.	

INTERNAL ASSESSMENT (IA)

Two internal assessments and an end semester examination to test students' reading and writing skills along with their grammatical and lexical competence.

Assessment will include following things:

- Internal Assessment: 25 Marks 1. Attendance
 - 2. Assignments
 - 3. Case Study/Mini Project/Presentation
- Mid Semester Exam: 25 Marks
- End Semester Exam: 50 Marks

CO's-PO's & PSO's MAPPING

Cos	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	3	3	3	2	2	3	3	2
2	1	3	3	1	1	3	3	3
3	3	2	2	2	2	3	2	1
4) []]	2	2	2	2	3	2	2
5	4	2	2	3	3	3	3	2
Avg	3	2.4	2.4	2	2	3	2.6	2

11 नग किल्याचाच् रा धनिव्दन्त

BTDS 504: DESCRIPTIVE ANALYTICS B.Tech III Year I Sem.

Teaching Scheme:	Credit	Examination Scheme:
TH: - 4 Hours/Week	TH: 04	In Sem. Evaluation: 25 Marks
		Mid Sem. Exam: 25 Marks
		End Sem. Exam: 50 Marks
		Total : 100 Marks
Course Prerequisites: The introduction	n of the Advanced Englis	h Communication

Course Objective:

- To understand the role and importance of descriptive analytics and business intelligence in decision-making.
- To familiarize students with business intelligence architecture and decision support science.
- To learn methods for data collection, data cleaning, and preparation for analysis.
- To develop skills in exploratory data analysis and data visualization.
- To teach students how to design and develop reports, dashboards, and scorecards for data visualization.
- To apply statistical techniques and advanced data mining approaches for summarizing and interpreting data.
- To enable students to build and manage BI projects effectively.
- To enhance problem-solving skills by analyzing real-world datasets.
- To communicate findings effectively through data storytelling and visualization.
- To equip students with the skills necessary to measure BI success and value.
- To prepare students for careers in business intelligence, analytics, and decision support systems.

Learning Course Outcome:

After successful completion of the course, students will able to:

- Explain the principles and significance of descriptive analytics and business intelligence.
- Understand the architecture and functional areas of business intelligence tools.
- Collect, clean, and prepare data for analysis.
- Perform exploratory data analysis to identify patterns and trends.
- Use statistical methods and advanced data mining techniques to describe and summarize data.
- Create effective data visualizations, reports, dashboards, and scorecards to communicate insights.
- Utilize analytics tools such as Excel, Python, R, Power BI, and Tableau.
- Design and implement BI projects using industry-standard methodologies and tools.
- Analyze real-world datasets and derive actionable insights.
- Evaluate the effectiveness and value of business intelligence initiatives.
- Present data findings clearly and persuasively to stakeholders.
- Apply decision support techniques to analyze and explore data for decision-making.

	Course Contents	
UNIT-I	Introduction to Descriptive Analytics and Business Intelligence, Business	07 Hours
	Intelligence Architecture and Decision Support Science	

1.1 Overview of Descriptive Analytics	
1.1.1 Definition and Scope of Descriptive Analytics	
Understanding Descriptive Analytics	
Differentiating Descriptive Analytics from Predictive and Prescriptive Analytics	
The role of Descriptive Analytics in the Analytics Spectrum	
1.1.2 Key Concepts and Terminology	
Data, Information, and Knowledge	
Metrics and Measures	
Key Performance Indicators (KPIs)	
1.1.3 Historical Development of Descriptive Analytics	
Evolution from Traditional Reporting to Modern Analytics	
Major Milestones in the Development of Descriptive Analytics	
1.1.4 Tools and Technologies	
Overview of Popular Descriptive Analytics Tools (Excel, Tableau, Power BI)	
Introduction to Programming Languages Used in Descriptive Analytics (Python, R)	
1.2 Importance of Business Intelligence	
1.2.1 Definition and Scope of Business Intelligence (BI)	
Understanding Business Intelligence	
Components of BI Systems	
1.2.2 Benefits of Business Intelligence	
Enhancing Decision-Making	
Improving Operational Efficiency	
Identifying Business Opportunities	
Supporting Strategic Initiatives	
1.2.3 BI in Various Industries	
Case Studies: Use of BI in Healthcare, Retail, Finance, and Manufacturing	
Industry-Specific Applications of BI	
1.2.4 Integration of Descriptive Analytics in BI	
How Descriptive Analytics Fits within the BI Framework	
The Role of Descriptive Analytics in BI Workflows	
1.3 Role in Decision-Making Processes	
1.3.1 Types of Decisions Supported by BI	
Strategic Decisions	
Tactical Decisions	
Operational Decisions	
1.3.2 Decision-Making Models and Theories	
Rational Decision-Making Model	
Data-Driven Decision-Making	
The Role of Intuition in Decision-Making	
1.3.3 Data-Driven Decision-Making Process	
Steps in the Data-Driven Decision-Making Process	
Collecting and Preparing Data	
Analyzing Data and Generating Insights	
Making Decisions Based on Data Insights	
1.3.4 Case Studies and Examples	
Real-World Examples of BI Supporting Decision-Making	
Success Stories from Various Organizations	
B. Tech Data Science	

Common Challenges in Implementing BI and Descriptive Analytics Addressing Data Quality Issues Overcoming Resistance to Data-Driven Decision-Making 2.1 Components of BI Architecture Definition and Purpose of BI Architecture Overview of BI Systems and Their Importance 2.1.2 Data Sources and Data Integration Types of Data Sources (Structured, Unstructured, Semi-Structured) ETL (Extract, Transform, Load) Processes Data Warehousing Characteristics of Data Warehouses and Databases 2.1.3 Data Storage and Management Data Marts Data Lakes Data Morts Data Lakes Data Models (Star Schema, Snowflake Schema) 2.1.4 Analytical Processing (OLAP) OLAP Operations (Slice, Dic, Drill Down, Roll Up) OLAP Types (MOLAP, ROLAP, HOLAP) Real-Time Analytics and Streaming Data 2.1.5 BI Tools (AI-Powered BI, Predictive Analytics Integration) 2.1.6 Security and Governance in BI Data Security Best Practices Data Governance Frameworks Compliance and Regulatory Considerations 2.2 Decision Support Systems 2.2.1 Overview of DEcision Support Systems (DSS) Definition and Importance of DSS 1.3.2 Overview of DEcision Support Systems Data-Driven DSS Model-Based Management System (MBMS) Model-Based Management System (MBMS) User Interface 2.2.3 Types of Decision Support Systems Data-Driven DSS Knowledge-Driven DSS Model-Driven DSS Communication-Driven DSS 2.2.4 Decision Support Techniques Simulation and Modeling What-If Analysis	1.3.5 Challenges and Limitations
Addressing Data Quality Issues Overcoming Resistance to Data-Driven Decision-Making 2.1 Components of BI Architecture Definition and Purpose of BI Architecture Overview of BI Systems and Their Importance 2.1.2 Data Sources and Data Integration Types of Data Sources (Structured, Unstructured, Semi-Structured) ETL (Extract, Transform, Load) Processes Data Warehousing Characteristics of Data Warehouses and Databases Differences Between Data Warehouses and Databases 2.1.3 Data Storage and Management Data Marts Data Marts Data Lakes Data Models (Star Schema, Snowflake Schema) 2.1.4 Analytical Processing (OLAP) OLAP Operations (Sice, Dice, Drill Down, Roll Up) OLAP Operations (Sice, Dice, Drill Down, Roll Up) OLAP Operations (Sice, Dice, Drill Down, Roll Up) OLAP Types (MOLAP, ROLAP, HOLAP) Real-Time Analytics and Streaming Data 2.1.5 BI Tools and Technologies Overview of BI Tools (AP-Powerde BI, Predictive Analytics Integration) 2.1.6 Security and Governance in BI Data Governance Frameworks Compliance and Regulatory Considerations 2.2 Decision Support Systems 2.2.1 Overview of Decision Support Systems (DSS) Definition and Importance of DSS Historical Development of DSS 2.2.2 Components of DSS Database Management System (MBMS) Model-Based Management System (MBMS) Model-Driven DSS Model-Driven DSS Model-Driven DSS Communication-Driven DSS 2.2.4 Decision Support Techniques Simulation and Modeling What-If Analysis	Common Challenges in Implementing BI and Descriptive Analytics
Overcoming Resistance to Data-Driven Decision-Making 2.1 Components of BI Architecture Definition and Purpose of BI Architecture Overview of BI Systems and Their Importance 2.1.2 Data Sources and Data Integration Types of Data Sources (Structured, Unstructured, Semi-Structured) ETL (Extract, Transform, Load) Processes Data Warehousing Characteristics of Data Warehouses Differences Between Data Warehouses and Databases 2.1.3 Data Storage and Management Data Marts Data Marts Data Lakes Data Models (Star Schema, Snowflake Schema) 2.1.4 Analytical Processing (OLAP) OLAP Operations (Slice, Dice, Drill Down, Roll Up) OLAP Types (MOLAP, ROLAP, HOLAP) Real-Time Analytics and Streaming Data 2.1.5 BI Tools and Technologies Overview of BI Tools (Reporting Tools, Dashboards, Scorecards) Advanced BI Tools (AI-Powered BI, Predictive Analytics Integration) 2.1.6 Security and Governance in BI Data Governance Frameworks Compliance and Regulatory Considerations 2.2.1 Overview of Decision Support Systems (DSS) Definition and Importance of DSS Historical Development of DSS 2.2.2 Components of DSS Model-Based Management System (MBMS) Model-Based Management System (MBMS) Model-Based Management Systems (DBMS) Model-Driven DSS Knowledge-Driven DSS Locision Support Techniques Simulation and Modeling What-If Analysis	Addressing Data Quality Issues
 2.1 Components of Bl Architecture 2.1.1 Introduction to BI Architecture Definition and Purpose of BI Architecture Overview of BI Systems and Their Importance 2.1.2 Data Sources and Data Integration Types of Data Sources (Structured, Unstructured, Semi-Structured) ETL (Extract, Transform, Load) Processes Data Warehousing Characteristics of Data Warehouses Differences Between Data Warehouses and Databases 2.1.3 Data Storage and Management Data Marts Data Marts Data Models (Star Schema, Snowflake Schema) 2.1.4 Analytical Processing (OLAP) OLAP Operations (Slice, Dice, Drill Down, Roll Up) OLAP Operations (Slice, Dice, Drill Down, Roll Up) OLAP Types (MOLAP, ROLAP, HOLAP) Real-Time Analytics and Streaming Data 2.1.5 BI Tools and Technologies Overview of BI Tools (Al-Powered BI, Predictive Analytics Integration) 2.1.6 Security and Governance in BI Data Governance Frameworks Compliance and Regulatory Considerations 2.2 Decision Support Systems 2.2.1 Overview of DSS Database Management System (MBMS) Model-Based Management System (MBMS) User Interface 2.3.3 Types of Decision Support Systems Data-Driven DSS Model-Driven DSS Model-Driven DSS Communication-Driven DSS Communication-Driven DSS 2.2.4 Decision Support Techniques Simulation and Modeling What-If Analysis 	Overcoming Resistance to Data-Driven Decision-Making
 2.1.1 Introduction to BI Architecture Definition and Purpose of BI Architecture Overview of BI Systems and Their Importance 2.1.2 Data Sources and Data Integration Types of Data Sources (Structured, Unstructured, Semi-Structured) ETL (Extract, Transform, Load) Processes Data Warehousing Characteristics of Data Warehouses and Databases 2.1.3 Data Storage and Management Data Marts Data Marts Data Marts Data Models (Star Schema, Snowflake Schema) 2.1.4 Analytical Processing Online Analytical Processing (OLAP) OLAP Operations (Slice, Dice, Drill Down, Roll Up) OLAP Types (MOLAP, ROLAP, HOLAP) Real-Time Analytics and Streaming Data 2.1.5 BI Tools and Technologies Overview of BI Tools (Reporting Tools, Dashboards, Scorecards) Advanced BI Tools (Al-Powered BI, Predictive Analytics Integration) 2.1.6 Security and Governance in BI Data Sceurity Best Practices Data Governance Frameworks Compliance and Regulatory Considerations 2.2 Decision Support Systems 2.2.1 Overview of DESS Historical Development of DSS Database Management System (DBMS) Model-Based Management System (DBMS) Model-Based Management Systems Data-Driven DSS Model-Driven DSS Model-Driven DSS Communication-Driven DSS 2.2.4 Decision Support Techniques Simulation and Modeling What-If Analysis 	2.1 Components of BI Architecture
Definition and Purpose of BI Architecture Overview of BI Systems and Their Importance 2.1.2 Data Sources and Data Integration Types of Data Sources (Structured, Unstructured, Semi-Structured) ETL (Extract, Transform, Load) Processes Data Warehousing Characteristics of Data Warehouses Differences Between Data Warehouses and Databases 2.1.3 Data Storage and Management Data Marts Data Lakes Data Models (Star Schema, Snowflake Schema) 2.1.4 Analytical Processing Online Analytical Processing (OLAP) OLAP Operations (Slice, Dice, Drill Down, Roll Up) OLAP Types (MOLAP, ROLAP, HOLAP) Real-Time Analytics and Streaming Data 2.1.5 BI Tools and Technologies Overview of BI Tools (Reporting Tools, Dashboards, Scorecards) Advanced BI Tools (Reporting Tools, Dashboards, Scorecards) Advanced BI Tools (Al-Powered BI, Predictive Analytics Integration) 2.1.6 Security and Governance in BI Data Security Best Practices Data Governance Frameworks Compliance and Regulatory Considerations 2.2 Decision Support Systems 2.1.1 Overview of DSS 2.2.2 Components of DSS Historical Development of DSS 2.2.1 Overview of DSS Database Management System (MBMS) Model-Based Management System (MBMS) User Interface 2.2.3 Types of Decision Support Systems Data-Driven DSS Model-Driven DSS Knowledge-Driven DSS Locument-Driven DSS Communication-Driven DSS 2.2.4 Decision Support Techniques Simulation and Modeling What-If Analysis	2.1.1 Introduction to BI Architecture
Overview of BI Systems and Their Importance 2.1.2 Data Sources and Data Integration Types of Data Sources (Structured, Unstructured, Semi-Structured) ETL (Extract, Transform, Load) Processes Data Warehousing Characteristics of Data Warehouses Differences Between Data Warehouses and Databases 2.1.3 Data Storage and Management Data Marts Data Marts Data Models (Star Schema, Snowflake Schema) 2.1.4 Analytical Processing Online Analytical Processing (OLAP) OLAP Operations (Slice, Dice, Drill Down, Roll Up) OLAP Types (MOLAP, ROLAP, HOLAP) Real-Time Analytics and Streaming Data 2.1.5 BI Tools and Technologies Overview of BI Tools (Reporting Tools, Dashboards, Scorecards) Advanced BI Tools (AI-Powered BI, Predictive Analytics Integration) 2.1.6 Security and Governance in BI Data Security Best Practices Data Governance Frameworks Compliance and Regulatory Considerations 2.2.1 Overview of Decision Support Systems (DSS) Definition and Importance of DSS Historical Development of DSS 2.2.2 Components of DSS Model-Based Management System (MBMS) User Interface 2.2.3 Types of Decision Support Systems Data-Driven DSS Knowledge-Driven DSS Communication-Driven DSS 2.2.4 Decision Support Techniques Simulation and Modeling What-If Analysis	Definition and Purpose of BI Architecture
 2.1.2 Data Sources and Data Integration Types of Data Sources (Structured, Unstructured, Semi-Structured) ETL (Extract, Transform, Load) Processes Data Warehousing Characteristics of Data Warehouses Differences Between Data Warehouses and Databases 2.1.3 Data Storage and Management Data Marts Data Marts Data Models (Star Schema, Snowflake Schema) 2.1.4 Analytical Processing Online Analytical Processing (OLAP) OLAP Operations (Slice, Dice, Drill Down, Roll Up) OLAP Operations (Slice, Dice, Drill Down, Roll Up) OLAP Types (MOLAP, ROLAP, HOLAP) Real-Time Analytics and Streaming Data 2.1.5 BI Tools and Technologies Overview of BI Tools (Reporting Tools, Dashboards, Scorecards) Advanced BI Tools (APowered BI, Predictive Analytics Integration) 2.1.6 Security Best Practices Data Governance in BI Data Security Best Practices Data Governance Frameworks Compliance and Regulatory Considerations 2.2 Decision Support Systems 2.2.1 Overview of Decision Support Systems (DSS) Definition and Importance of DSS Historical Development of DSS 2.2.2 Components of DSS Database Management System (MBMS) Model-Based Management System (MBMS) User Interface 2.3 Types of Decision Support Systems Data-Driven DSS Knowledge-Driven DSS Communication-Driven DSS Contaction and Modeling What-If Analysis 	Overview of BI Systems and Their Importance
Types of Data Sources (Structured, Unstructured, Semi-Structured) ETL (Extract, Transform, Load) Processes Data Warehousing Characteristics of Data Warehouses Differences Between Data Warehouses and Databases 2.1.3 Data Storage and Management Data Marts Data Lakes Data Models (Star Schema, Snowflake Schema) 2.1.4 Analytical Processing (OLAP) OLAP Operations (Slice, Dice, Drill Down, Roll Up) OLAP Operations (Slice, Dice, Drill Down, Roll Up) OLAP Types (MOLAP, ROLAP, HOLAP) Real-Time Analytics and Streaming Data 2.1.5 BI Tools and Technologies Overview of BI Tools (Reporting Tools, Dashboards, Scorecards) Advanced BI Tools (Al-Powered BI, Predictive Analytics Integration) 2.1.6 Security and Governance in BI Data Security Best Practices Data Governance Frameworks Compliance and Regulatory Considerations 2.2 Decision Support Systems 2.2.1 Overview of Decision Support Systems (DSS) Definition and Importance of DSS Batabase Management System (DBMS) Model-Based Management System (MBMS) User Interface 2.2.3 Types of Decision Support Systems Data-Driven DSS Knowledge-Driven DSS Communication-Driven DSS 2.2.4 Decision Support Techniques Simulation and Modeling What-If Analysis	2.1.2 Data Sources and Data Integration
ETL (Extract, Transform, Load) Processes Data Warehousing Characteristics of Data Warehouses Differences Between Data Warehouses and Databases 2.1.3 Data Storage and Management Data Marts Data Lakes Data Lakes Data Models (Star Schema, Snowflake Schema) 2.1.4 Analytical Processing Online Analytical Processing (OLAP) OLAP Operations (Slice, Dice, Drill Down, Roll Up) OLAP Types (MOLAP, ROLAP, HOLAP) Real-Time Analytics and Streaming Data 2.1.5 Bl Tools and Technologies Overview of Bl Tools (Reporting Tools, Dashboards, Scorecards) Advanced Bl Tools (Al-Powered Bl, Predictive Analytics Integration) 2.1.6 Security and Governance in Bl Data Security Best Practices Data Governance Frameworks Compliance and Regulatory Considerations 2.2 Decision Support Systems 2.2.1 Overview of Decision Support Systems (DSS) Definition and Importance of DSS Historical Development of DSS 2.2.2 Components of DSS Database Management System (MBMS) Model-Based Management System (MBMS) User Interface 2.2.3 Types of Decision Support Systems Data-Driven DSS Knowledge-Driven DSS Communication-Driven DSS 2.2.4 Decision Support Techniques Simulation and Modeling What-If Analysis	Types of Data Sources (Structured, Unstructured, Semi-Structured)
Data Warehousing Characteristics of Data Warehouses Differences Between Data Warehouses and Databases 2.1.3 Data Storage and Management Data Marts Data Marts Data Lakes Data Models (Star Schema, Snowflake Schema) 2.1.4 Analytical Processing Online Analytical Processing (OLAP) OLAP Operations (Slice, Dice, Drill Down, Roll Up) OLAP Operations (Slice, Dice, Drill Down, Roll Up) OLAP Types (MOLAP, ROLAP, HOLAP) Real-Time Analytics and Streaming Data 2.1.5 BI Tools and Technologies Overview of BI Tools (Reporting Tools, Dashboards, Scorecards) Advanced BI Tools (AI-Powered BI, Predictive Analytics Integration) 2.1.6 Security and Governance in BI Data Security Best Practices Data Governance Frameworks Compliance and Regulatory Considerations 2.2 Decision Support Systems 2.2.1 Overview of Decision Support Systems (DSS) Definition and Importance of DSS Historical Development of DSS 2.2.2 Components of DSS Database Management System (DBMS) Model-Based Management System (MBMS) User Interface 2.2.3 Types of Decision Support Systems Data-Driven DSS Knowledge-Driven DSS Communication-Driven DSS 2.2.4 Decision Support Techniques Simulation and Modeling What-If Analysis	ETL (Extract, Transform, Load) Processes
Characteristics of Data Warehouses Differences Between Data Warehouses and Databases 2.1.3 Data Storage and Management Data Marts Data Lakes Data Models (Star Schema, Snowflake Schema) 2.1.4 Analytical Processing Online Analytical Processing (OLAP) OLAP Operations (Slice, Dice, Drill Down, Roll Up) OLAP Operations (Slice, Dice, Drill Down, Roll Up) OLAP Types (MOLAP, ROLAP, HOLAP) Real-Time Analytics and Streaming Data 2.1.5 BI Tools and Technologies Overview of BI Tools (Reporting Tools, Dashboards, Scorecards) Advanced BI Tools (AI-Powered BI, Predictive Analytics Integration) 2.1.6 Security and Governance in BI Data Security Best Practices Data Governance Frameworks Compliance and Regulatory Considerations 2.2 Decision Support Systems 2.2.1 Overview of Decision Support Systems (DSS) Definition and Importance of DSS Historical Development of DSS Database Management System (MBMS) Model-Based Management System (MBMS) User Interface 2.2.3 Types of Decision Support Systems Data-Driven DSS Model-Driven DSS Knowledge-Driven DSS Document-Driven DSS Communication-Driven DSS 2.2.4 Decision Support Techniques Simulation and Modeling What-If Analysis	Data Warehousing
Differences Between Data Warehouses and Databases 2.1.3 Data Storage and Management Data Marts Data Lakes Data Models (Star Schema, Snowflake Schema) 2.1.4 Analytical Processing Online Analytical Processing (OLAP) OLAP Operations (Slice, Dice, Drill Down, Roll Up) OLAP Types (MOLAP, ROLAP, HOLAP) Real-Time Analytics and Streaming Data 2.1.5 BI Tools and Technologies Overview of BI Tools (Reporting Tools, Dashboards, Scorecards) Advanced BI Tools (AI-Powered BI, Predictive Analytics Integration) 2.1.6 Security and Governance in BI Data Security Best Practices Data Governance Frameworks Compliance and Regulatory Considerations 2.2 Decision Support Systems 2.2.1 Overview of Decision Support Systems (DSS) Definition and Importance of DSS Historical Development of DSS 2.2.2 Components of DSS Database Management System (MBMS) Model-Based Management System (MBMS) User Interface 2.2.3 Types of Decision Support Systems Data-Driven DSS Knowledge-Driven DSS Communication-Driven DSS 2.2.4 Decision Support Techniques Simulation and Modeling What-If Analysis	Characteristics of Data Warehouses
 2.1.3 Data Storage and Management Data Marts Data Marts Data Lakes Data Models (Star Schema, Snowflake Schema) 2.1.4 Analytical Processing Online Analytical Processing (OLAP) OLAP Operations (Slice, Dice, Drill Down, Roll Up) OLAP Types (MOLAP, ROLAP, HOLAP) Real-Time Analytics and Streaming Data 2.1.5 BI Tools and Technologies Overview of BI Tools (Reporting Tools, Dashboards, Scorecards) Advanced BI Tools (AI-Powered BI, Predictive Analytics Integration) 2.1.6 Security and Governance in BI Data Security Best Practices Data Governance Frameworks Compliance and Regulatory Considerations 2.2 Decision Support Systems 2.2.1 Overview of Decision Support Systems (DSS) Definition and Importance of DSS Historical Development of DSS 2.2.2 Components of DSS Database Management System (MBMS) User Interface 2.2.3 Types of Decision Support Systems Data-Driven DSS Knowledge-Driven DSS Communication-Driven DSS 2.2.4 Decision Support Techniques Simulation and Modeling What-If Analysis 	Differences Between Data Warehouses and Databases
Data Marts Data Lakes Data Models (Star Schema, Snowflake Schema) 2.1.4 Analytical Processing Online Analytical Processing (OLAP) OLAP Operations (Slice, Dice, Drill Down, Roll Up) OLAP Types (MOLAP, ROLAP, HOLAP) Real-Time Analytics and Streaming Data 2.1.5 BI Tools and Technologies Overview of BI Tools (Reporting Tools, Dashboards, Scorecards) Advanced BI Tools (Al-Powered BI, Predictive Analytics Integration) 2.1.6 Security and Governance in BI Data Security Best Practices Data Governance Frameworks Compliance and Regulatory Considerations 2.2 Decision Support Systems 2.2.1 Overview of Decision Support Systems (DSS) Definition and Importance of DSS Historical Development of DSS Database Management System (DBMS) Model-Based Management Systems Data-Driven DSS Model-Driven DSS Knowledge-Driven DSS Document-Driven DSS Communication-Driven DSS 2.2.4 Decision Support Techniques Simulation and Modeling What-If Analysis	2.1.3 Data Storage and Management
Data Lakes Data Models (Star Schema, Snowflake Schema) 2.1.4 Analytical Processing Online Analytical Processing (OLAP) OLAP Operations (Slice, Dice, Drill Down, Roll Up) OLAP Types (MOLAP, ROLAP, HOLAP) Real-Time Analytics and Streaming Data 2.1.5 BI Tools and Technologies Overview of BI Tools (Reporting Tools, Dashboards, Scorecards) Advanced BI Tools (AI-Powered BI, Predictive Analytics Integration) 2.1.6 Security and Governance in BI Data Security Best Practices Data Governance Frameworks Compliance and Regulatory Considerations 2.2 Decision Support Systems 2.2.1 Overview of Decision Support Systems (DSS) Definition and Importance of DSS Historical Development of DSS 2.2.2 Components of DSS Database Management System (MBMS) Model-Based Management System (MBMS) User Interface 2.2.3 Types of Decision Support Systems Data-Driven DSS Model-Driven DSS Knowledge-Driven DSS Communication-Driven DSS 2.2.4 Decision Support Techniques Simulation and Modeling What-If Analysis	Data Marts
Data Models (Star Schema, Snowflake Schema) 2.1.4 Analytical Processing Online Analytical Processing (OLAP) OLAP Operations (Slice, Dice, Drill Down, Roll Up) OLAP Types (MOLAP, ROLAP, HOLAP) Real-Time Analytics and Streaming Data 2.1.5 BI Tools and Technologies Overview of BI Tools (Reporting Tools, Dashboards, Scorecards) Advanced BI Tools (AI-Powered BI, Predictive Analytics Integration) 2.1.6 Security and Governance in BI Data Security Best Practices Data Governance Frameworks Compliance and Regulatory Considerations 2.2 Decision Support Systems 2.2.1 Overview of Decision Support Systems (DSS) Definition and Importance of DSS Historical Development of DSS 2.2.2 Components of DSS Database Management System (MBMS) Model-Based Management System (MBMS) User Interface 2.2.3 Types of Decision Support Systems Data-Driven DSS Knowledge-Driven DSS Communication-Driven DSS 2.2.4 Decision Support Techniques Simulation and Modeling What-If Analysis	Data Lakes
 2.1.4 Analytical Processing Online Analytical Processing (OLAP) OLAP Operations (Slice, Dice, Drill Down, Roll Up) OLAP Types (MOLAP, ROLAP, HOLAP) Real-Time Analytics and Streaming Data 2.1.5 BI Tools and Technologies Overview of BI Tools (Reporting Tools, Dashboards, Scorecards) Advanced BI Tools (AI-Powered BI, Predictive Analytics Integration) 2.1.6 Security and Governance in BI Data Security Best Practices Data Governance Frameworks Compliance and Regulatory Considerations 2.2 Decision Support Systems 2.2.1 Overview of Decision Support Systems (DSS) Definition and Importance of DSS Historical Development of DSS Database Management System (DBMS) Model-Based Management Systems Data-Driven DSS Model-Driven DSS Knowledge-Driven DSS Document-Driven DSS Communication-Driven DSS 2.2.4 Decision Support Techniques Simulation and Modeling What-If Analysis 	Data Models (Star Schema, Snowflake Schema)
 Online Analytical Processing (OLAP) OLAP Operations (Slice, Dice, Drill Down, Roll Up) OLAP Types (MOLAP, ROLAP, HOLAP) Real-Time Analytics and Streaming Data 2.1.5 BI Tools and Technologies Overview of BI Tools (Reporting Tools, Dashboards, Scorecards) Advanced BI Tools (Al-Powered BI, Predictive Analytics Integration) 2.1.6 Security and Governance in BI Data Security Best Practices Data Governance Frameworks Compliance and Regulatory Considerations 2.2 Decision Support Systems 2.2.1 Overview of Decision Support Systems (DSS) Definition and Importance of DSS Historical Development of DSS 2.2.2 Components of DSS Database Management System (MBMS) User Interface 2.2.3 Types of Decision Support Systems Data-Driven DSS Model-Driven DSS Model-Driven DSS Communication-Driven DSS 2.2.4 Decision Support Techniques Simulation and Modeling What-If Analysis 	2.1.4 Analytical Processing
 OLAP Operations (Slice, Dice, Drill Down, Roll Up) OLAP Types (MOLAP, ROLAP, HOLAP) Real-Time Analytics and Streaming Data 2.1.5 BI Tools and Technologies Overview of BI Tools (Reporting Tools, Dashboards, Scorecards) Advanced BI Tools (AI-Powered BI, Predictive Analytics Integration) 2.1.6 Security and Governance in BI Data Security Best Practices Data Governance Frameworks Compliance and Regulatory Considerations 2.2 Decision Support Systems 2.2.1 Overview of Decision Support Systems (DSS) Definition and Importance of DSS Historical Development of DSS 2.2.2 Components of DSS Database Management System (MBMS) User Interface 2.2.3 Types of Decision Support Systems Data-Driven DSS Model-Driven DSS Communication-Driven DSS 2.2.4 Decision Support Techniques Simulation and Modeling What-If Analysis 	Online Analytical Processing (OLAP)
OLAP Types (MOLAP, ROLAP, HOLAP) Real-Time Analytics and Streaming Data 2.1.5 BI Tools and Technologies Overview of BI Tools (Reporting Tools, Dashboards, Scorecards) Advanced BI Tools (AI-Powered BI, Predictive Analytics Integration) 2.1.6 Security and Governance in BI Data Security Best Practices Data Governance Frameworks Compliance and Regulatory Considerations 2.2 Decision Support Systems 2.2.1 Overview of Decision Support Systems (DSS) Definition and Importance of DSS Historical Development of DSS 2.2.2 Components of DSS Database Management System (DBMS) Model-Based Management System (MBMS) User Interface 2.2.3 Types of Decision Support Systems Data-Driven DSS Model-Driven DSS Communication-Driven DSS 2.2.4 Decision Support Techniques Simulation and Modeling What-If Analysis	OLAP Operations (Slice, Dice, Drill Down, Roll Up)
 Real-Time Analytics and Streaming Data 2.1.5 BI Tools and Technologies Overview of BI Tools (Reporting Tools, Dashboards, Scorecards) Advanced BI Tools (AI-Powered BI, Predictive Analytics Integration) 2.1.6 Security and Governance in BI Data Security Best Practices Data Governance Frameworks Compliance and Regulatory Considerations 2.2 Decision Support Systems 2.2.1 Overview of Decision Support Systems (DSS) Definition and Importance of DSS Historical Development of DSS Database Management System (DBMS) Model-Based Management System (MBMS) User Interface 2.2.3 Types of Decision Support Systems Data-Driven DSS Model-Driven DSS Communication-Driven DSS Communication-Driven DSS 2.2.4 Decision Support Techniques Simulation and Modeling What-If Analysis 	OLAP Types (MOLAP, ROLAP, HOLAP)
 2.1.5 BI Tools and Technologies Overview of BI Tools (Reporting Tools, Dashboards, Scorecards) Advanced BI Tools (AI-Powered BI, Predictive Analytics Integration) 2.1.6 Security and Governance in BI Data Security Best Practices Data Governance Frameworks Compliance and Regulatory Considerations 2.2 Decision Support Systems 2.2.1 Overview of Decision Support Systems (DSS) Definition and Importance of DSS Historical Development of DSS 2.2.2 Components of DSS Database Management System (DBMS) Model-Based Management System (MBMS) User Interface 2.2.3 Types of Decision Support Systems Data-Driven DSS Model-Driven DSS Communication-Driven DSS 2.2.4 Decision Support Techniques Simulation and Modeling What-If Analysis 	Real-Time Analytics and Streaming Data
 Overview of BT Tools (Reporting Tools, Dashboards, Scorecards) Advanced BI Tools (AI-Powered BI, Predictive Analytics Integration) 2.1.6 Security and Governance in BI Data Security Best Practices Data Governance Frameworks Compliance and Regulatory Considerations 2.2 Decision Support Systems 2.2.1 Overview of Decision Support Systems (DSS) Definition and Importance of DSS Historical Development of DSS 2.2.2 Components of DSS Database Management System (DBMS) Model-Based Management System (MBMS) User Interface 2.2.3 Types of Decision Support Systems Data-Driven DSS Knowledge-Driven DSS Document-Driven DSS 2.2.4 Decision Support Techniques Simulation and Modeling What-If Analysis 	2.1.5 BI Tools and Technologies
Advanced BI Tools (AI-Powered BI, Predictive Analytics Integration) 2.1.6 Security and Governance in BI Data Security Best Practices Data Governance Frameworks Compliance and Regulatory Considerations 2.2 Decision Support Systems 2.2.1 Overview of Decision Support Systems (DSS) Definition and Importance of DSS Historical Development of DSS 2.2.2 Components of DSS Database Management System (DBMS) Model-Based Management System (MBMS) User Interface 2.2.3 Types of Decision Support Systems Data-Driven DSS Model-Driven DSS Knowledge-Driven DSS Communication-Driven DSS 2.2.4 Decision Support Techniques Simulation and Modeling What-If Analysis	Overview of BI Tools (Reporting Tools, Dashboards, Scorecards)
 2.1.6 Security and Governance in BI Data Security Best Practices Data Governance Frameworks Compliance and Regulatory Considerations 2.2 Decision Support Systems 2.2.1 Overview of Decision Support Systems (DSS) Definition and Importance of DSS Historical Development of DSS 2.2.2 Components of DSS Database Management System (DBMS) Model-Based Management System (MBMS) User Interface 2.2.3 Types of Decision Support Systems Data-Driven DSS Model-Driven DSS Knowledge-Driven DSS 2.2.4 Decision Support Techniques Simulation and Modeling What-If Analysis 	Advanced BI Tools (AI-Powered BI, Predictive Analytics Integration)
Data Security Best Practices Data Governance Frameworks Compliance and Regulatory Considerations 2.2 Decision Support Systems 2.2.1 Overview of Decision Support Systems (DSS) Definition and Importance of DSS Historical Development of DSS 2.2.2 Components of DSS Database Management System (DBMS) Model-Based Management System (MBMS) User Interface 2.2.3 Types of Decision Support Systems Data-Driven DSS Model-Driven DSS Knowledge-Driven DSS Document-Driven DSS Communication-Driven DSS 2.2.4 Decision Support Techniques Simulation and Modeling What-If Analysis	2.1.6 Security and Governance in BI
Compliance and Regulatory Considerations 2.2 Decision Support Systems 2.2.1 Overview of Decision Support Systems (DSS) Definition and Importance of DSS Historical Development of DSS 2.2.2 Components of DSS Database Management System (DBMS) Model-Based Management System (MBMS) User Interface 2.2.3 Types of Decision Support Systems Data-Driven DSS Model-Driven DSS Knowledge-Driven DSS Document-Driven DSS Communication-Driven DSS 2.2.4 Decision Support Techniques Simulation and Modeling What-If Analysis	Data Security Best Practices
 2.2 Decision Support Systems 2.2.1 Overview of Decision Support Systems (DSS) Definition and Importance of DSS Historical Development of DSS 2.2.2 Components of DSS Database Management System (DBMS) Model-Based Management System (MBMS) User Interface 2.2.3 Types of Decision Support Systems Data-Driven DSS Model-Driven DSS Model-Driven DSS Communication-Driven DSS 2.2.4 Decision Support Techniques Simulation and Modeling What-If Analysis 	Compliance and Deculatory Considerations
 2.2 Decision Support Systems 2.2.1 Overview of Decision Support Systems (DSS) Definition and Importance of DSS Historical Development of DSS 2.2.2 Components of DSS Database Management System (DBMS) Model-Based Management System (MBMS) User Interface 2.2.3 Types of Decision Support Systems Data-Driven DSS Model-Driven DSS Model-Driven DSS Communication-Driven DSS 2.2.4 Decision Support Techniques Simulation and Modeling What-If Analysis 	2.2 Decision Support Systems
 Definition and Importance of DSS Definition and Importance of DSS Historical Development of DSS 2.2.2 Components of DSS Database Management System (DBMS) Model-Based Management System (MBMS) User Interface 2.2.3 Types of Decision Support Systems Data-Driven DSS Model-Driven DSS Knowledge-Driven DSS Document-Driven DSS Communication-Driven DSS 2.2.4 Decision Support Techniques Simulation and Modeling What-If Analysis 	2.2 Decision Support Systems 2.2.1 Overview of Decision Support Systems (DSS)
 Historical Development of DSS 2.2.2 Components of DSS Database Management System (DBMS) Model-Based Management System (MBMS) User Interface 2.2.3 Types of Decision Support Systems Data-Driven DSS Model-Driven DSS Knowledge-Driven DSS Document-Driven DSS Communication-Driven DSS 2.2.4 Decision Support Techniques Simulation and Modeling What-If Analysis 	Definition and Importance of DSS
 2.2.2 Components of DSS Database Management System (DBMS) Model-Based Management System (MBMS) User Interface 2.2.3 Types of Decision Support Systems Data-Driven DSS Model-Driven DSS Model-Driven DSS Document-Driven DSS Communication-Driven DSS 2.2.4 Decision Support Techniques Simulation and Modeling What-If Analysis 	Historical Development of DSS
Database Management System (DBMS) Model-Based Management System (MBMS) User Interface 2.2.3 Types of Decision Support Systems Data-Driven DSS Model-Driven DSS Knowledge-Driven DSS Document-Driven DSS Communication-Driven DSS 2.2.4 Decision Support Techniques Simulation and Modeling What-If Analysis	2 2 2 Components of DSS
Model-Based Management System (MBMS) User Interface 2.2.3 Types of Decision Support Systems Data-Driven DSS Model-Driven DSS Knowledge-Driven DSS Document-Driven DSS Communication-Driven DSS 2.2.4 Decision Support Techniques Simulation and Modeling What-If Analysis	Database Management System (DBMS)
User Interface 2.2.3 Types of Decision Support Systems Data-Driven DSS Model-Driven DSS Knowledge-Driven DSS Document-Driven DSS Communication-Driven DSS 2.2.4 Decision Support Techniques Simulation and Modeling What-If Analysis	Model-Based Management System (MBMS)
 2.2.3 Types of Decision Support Systems Data-Driven DSS Model-Driven DSS Knowledge-Driven DSS Document-Driven DSS Communication-Driven DSS 2.2.4 Decision Support Techniques Simulation and Modeling What-If Analysis 	User Interface
Data-Driven DSS Model-Driven DSS Knowledge-Driven DSS Document-Driven DSS Communication-Driven DSS 2.2.4 Decision Support Techniques Simulation and Modeling What-If Analysis	2.2.3 Types of Decision Support Systems
Model-Driven DSS Knowledge-Driven DSS Document-Driven DSS Communication-Driven DSS 2.2.4 Decision Support Techniques Simulation and Modeling What-If Analysis	Data-Driven DSS
Knowledge-Driven DSS Document-Driven DSS Communication-Driven DSS 2.2.4 Decision Support Techniques Simulation and Modeling What-If Analysis	Model-Driven DSS
Document-Driven DSS Communication-Driven DSS 2.2.4 Decision Support Techniques Simulation and Modeling What-If Analysis	Knowledge-Driven DSS
Communication-Driven DSS 2.2.4 Decision Support Techniques Simulation and Modeling What-If Analysis	Document-Driven DSS
2.2.4 Decision Support Techniques Simulation and Modeling What-If Analysis	Communication-Driven DSS
Simulation and Modeling What-If Analysis	2.2.4 Decision Support Techniques
What-If Analysis	Simulation and Modeling
	What-If Analysis

	Sensitivity Analysis	
	2.2.5 Integration of DSS with BI	
	How DSS Enhances BI Capabilities	
	Case Studies of DSS Applications in BI	
	2.2.6 Trends and Innovations in DSS	
	Emerging Technologies in DSS (AI, Machine Learning)	
	Future Directions and Innovations	
2.3 BI H	Project Lifecycle	
	2.3.1 Introduction to BI Project Lifecycle	
	Importance of Project Management in BI	
	Overview of BI Project Stages	
	2.3.2 Planning and Requirements Gathering	
	Defining Project Objectives and Scope	
	Stakeholder Analysis and Involvement	
	Requirements Elicitation Techniques	
	2 3 3 Designing BI Solutions	
	BI System Design Principles	
	Architecture Design	
	Data Modeling and Schema Design	
	2.3.4 Implementation and Development	
	Setting Up Data Integration and ETL Processes	
	Development of BL Reports and Dashboards	
	User Interface and Experience Design	
	2.2.5 Testing and Quality Assurance	
	Z.S.S Testing and Quanty Assurance Types of Testing (Unit Testing, Integration Testing, System Testing)	
	Types of Testing (Onit Testing, Integration Testing, System Testing)	
	Liser A searcharge Testing (LAT)	
	User Acceptance Testing (UAT)	
	2.3.6 Deployment and Maintenance	
	Deployment Strategies (Phased, Parallel, Big Bang)	
	Training and Support for Users	
	Ongoing Maintenance and Optimization	
	2.3.7 Evaluating BI Project Success	
	Key Performance Indicators (KPIs) for Project Evaluation	
	Measuring Return on Investment (ROI)	
	Continuous Improvement and Feedback Loops.	
UNIT-II	Data Collection and Preparation and Exploratory Data Analysis (EDA)	08 Hours
3.1 Data	a Sources and Types	
	3.1.1 Introduction to Data Sources	
	Definition and Importance of Data Sources	
	Overview of Data Sources in Business Intelligence	
	3.1.2 Structured Data	
	Characteristics and Examples of Structured Data	
	Sources of Structured Data (Databases, Spreadsheets)	
	Use Cases in Business Analytics	
	3.1.3 Unstructured Data	

Characteristics and Examples of Unstructured Data
Sources of Unstructured Data (Text, Images, Videos)
Challenges and Opportunities with Unstructured Data
3.1.4 Semi-Structured Data
Characteristics and Examples of Semi-Structured Data
Sources of Semi-Structured Data (XML, JSON)
Use Cases and Integration with Structured Data
3.1.5 Internal vs. External Data Sources
Internal Data Sources (Enterprise Systems, CRM, ERP)
External Data Sources (Social Media, Public Data, Market Data)
Combining Internal and External Data for Comprehensive Analysis
3.2 Data Collection Methods
3.2.1 Overview of Data Collection
Importance of Effective Data Collection
Ethical Considerations in Data Collection
3.2.2 Manual Data Collection
Techniques for Manual Data Collection (Surveys, Interviews)
Pros and Cons of Manual Data Collection
3.2.3 Automated Data Collection
Techniques for Automated Data Collection (Web Scraping, APIs)
Tools and Technologies for Automated Data Collection
Benefits and Challenges of Automation
3.2.4 Real-Time Data Collection
Introduction to Real-Time Data Collection
Methods for Collecting Real-Time Data (Sensors, IoT Devices)
Applications and Use Cases for Real-Time Data
3.2.5 Data Collection in Business Intelligence
Best Practices for Data Collection in BI Projects
Ensuring Data Quality and Integrity During Collection
Legal and Compliance Issues in Data Collection
3.3 Data Cleaning Techniques
3.3.1 Introduction to Data Cleaning
Importance of Data Cleaning in Data Preparation
Common Issues Encountered in Raw Data
3.3.2 Identifying and Correcting Data Errors
Types of Data Errors (Typos, Inconsistencies, Duplicates)
Methods for Identifying Errors (Automated Tools, Manual Review)
Techniques for Correcting Errors (Standardization, Validation)
3.3.3 Data Transformation
Normalization and Standardization of Data
Data Formatting and Conversion
Aggregation and Summarization of Data
3.3.4 Dealing with Inconsistent Data
Identifying Inconsistent Data (Date Formats, Units of Measure)
Methods for Resolving Inconsistencies (Standard Rules, Algorithms)
Tools for Data Cleaning and Transformation (Python, R, Excel)
3.4 Handling Missing Data and Outliers
B. Tech Data Science

3.4.1 Introduction to Missing Data
Causes and Types of Missing Data (MCAR, MAR, MNAR)
Impact of Missing Data on Analysis
3.4.2 Techniques for Handling Missing Data
Deletion Methods (Listwise, Pairwise)
Imputation Methods (Mean/Median Imputation, Regression Imputation, Multiple Imputation)
Advanced Techniques (KNN Imputation Machine Learning-Based Imputation)
3 4 3 Introduction to Outliers
Definition and Identification of Outliers
Causes and Impact of Outliers on Data Analysis
3 4 A Techniques for Handling Outliers
Detection Methods (7 Score IOP Visualization Techniques)
Treastment Methods (Conning, Transformation, Removal)
Canciderations for Keening or Demoving Outliers Deced or Context
2.4.5 Tasks and Saferran for Date Chaming outliers based on Context
3.4.5 Tools and Software for Data Cleaning and Preparation
Overview of Popular Data Cleaning Tools (OpenRefine, Trifacta, DataWrangler)
Using Python for Data Cleaning (Pandas, NumPy)
Using R for Data Cleaning (dplyr, tidyr)
4.1 Introduction to EDA
4.1.1 Definition and Importance of EDA
What is Exploratory Data Analysis?
The Role of EDA in the Data Analysis Process
Benefits of Conducting EDA
4.1.2 Objectives of EDA
Uncovering Patterns
Spotting Anomalies
Testing Hypotheses
Checking Assumptions
4 1 3 Steps in the EDA Process
Initial Data Inspection
Data Cleaning and Prenaration
Data Visualization and Summary Statistics
Identifying Patterns Trends and Relationships
A 1 A Tools for EDA
4.1.4 TOOIS for EDA Software and Toole Used for EDA (Buthen, B. Eyeel, Tobleau)
Software and Tools Used for EDA (Python, K, Excel, Tableau)
Introduction to Python Libraries (Pandas, Matpiolito, Seaborn)
Introduction to R Libraries (ggplot2, dplyr)
4.2 Descriptive Statistics
4.2.1 Overview of Descriptive Statistics
Definition and Importance
Types of Descriptive Statistics
4.2.2 Measures of Central Tendency
Mean
Definition and Calculation
Advantages and Disadvantages
Applications in Business Analytics
Median
B. Tech Data Science

Definition and Calculation Advantages and Disadvantages **Applications in Business Analytics** Mode Definition and Calculation Advantages and Disadvantages **Applications in Business Analytics** 4.2.3 Measures of Dispersion Range Definition and Calculation Interpretation Variance Definition and Calculation Interpretation Standard Deviation Definition and Calculation Interpretation Applications of Dispersion Measures in Business Analytics 4.2.4 Measures of Shape Skewness Definition and Calculation Interpretation and Applications **Kurtosis Definition and Calculation** Interpretation and Applications 4.2.5 Visualizing Descriptive Statistics Histograms Construction and Interpretation Use Cases **Boxplots** Construction and Interpretation Use Cases Bar Charts **Construction and Interpretation** Use Cases Best Practices for Visualizing Summary Statistics 4.3 Identifying Patterns and Trends 4.3.1 Time Series Analysis Introduction to Time Series Data Definition and Importance Examples of Time Series Data in Business **Identifying Trends** Techniques for Identifying Trends Visualization Techniques (Line Charts, Moving Averages) Seasonality and Cycles **Identifying Seasonal Patterns** Techniques for Seasonality Analysis

B. Tech Data Science

Visualization Techniques (Seasonal Decomposition) Applications of Time Series Analysis in Business 4.3.2 Pattern Recognition Techniques Clustering **K-Means** Clustering Algorithm and Steps Advantages and Disadvantages **Practical Applications** Hierarchical Clustering Algorithm and Steps Advantages and Disadvantages **Practical Applications** Classification **Decision Trees** Algorithm and Steps Advantages and Disadvantages **Practical Applications** Support Vector Machines (SVM) Algorithm and Steps Advantages and Disadvantages **Practical Applications** Identifying Patterns in Data Using Visualization Techniques (Heatmaps, Scatter Plots) Applications of Pattern Recognition in Business 4.3.3 Anomaly Detection Definition and Importance of Anomaly Detection Methods for Detecting Anomalies Z-Score Method Calculation and Interpretation **Practical Applications** Interquartile Range (IQR) Method Calculation and Interpretation **Practical Applications** Machine Learning Techniques for Anomaly Detection Overview of Algorithms (Isolation Forest, LOF) **Practical Applications** Applications of Anomaly Detection in Business (Fraud Detection, Quality Control) 4.4 Correlation Analysis 4.4.1 Introduction to Correlation Definition and Importance of Correlation Types of Correlation Positive Correlation Negative Correlation No Correlation 4.4.2 Calculating Correlation Coefficients Pearson Correlation Coefficient Definition and Calculation

B. Tech Data Science

B. Tech Data Science

Definition and Formula
Calculation Methods
Advantages and Disadvantages
Practical Examples and Applications
5.1.5 Comparing Measures of Central Tendency
When to Use Mean, Median, and Mode
Impact of Outliers on Central Tendency
Case Studies and Practical Applications
5.2 Measures of Dispersion and Variability
5.2.1 Overview of Dispersion and Variability
Definition and Importance in Data Analysis
Applications in Business Intelligence
5.2.2 Range
Definition and Formula
Calculation Methods
Advantages and Disadvantages
Practical Examples and Applications
5.2.3 Variance
Definition and Formula
Calculation Methods
Advantages and Disadvantages
Practical Examples and Applications
5.2.4 Standard Deviation
Definition and Formula
Calculation Methods
Advantages and Disadvantages
Practical Examples and Applications
5.2.5 Interquartile Range (IQR)
Definition and Formula
Calculation Methods
Advantages and Disadvantages
5.2.6 Comparing Massures of Dispersion
When to Use Pange, Variance, Standard Deviation, and IOP
Impact of Outliers on Dispersion Measures
Case Studies and Practical Applications
5.3 Probability Distributions
5.3.1 Introduction to Probability Distributions
Definition and Importance in Data Analysis
Types of Probability Distributions
5.3.2 Discrete Probability Distributions
Binomial Distribution
Definition, Formula, and Properties
Practical Examples and Applications
Poisson Distribution
Definition, Formula, and Properties
Practical Examples and Applications

5.3.3 Continuous Probability Distributions
Normal Distribution
Definition, Formula, and Properties
Practical Examples and Applications
Exponential Distribution
Definition, Formula, and Properties
Practical Examples and Applications
5.3.4 Understanding and Using Probability Distributions
Fitting Data to Distributions
Using Probability Distributions for Predictions
Case Studies and Practical Applications
5.4 Hypothesis Testing
5.4.1 Introduction to Hypothesis Testing
Definition and Importance in Data Analysis
Types of Hypotheses: Null and Alternative
5.4.2 Steps in Hypothesis Testing
Formulating Hypotheses
Choosing the Appropriate Test
Setting the Significance Level (Alpha)
Calculating Test Statistic and P-Value
Making a Decision: Reject or Fail to Reject the Null Hypothesis
5 4 3 Types of Hypothesis Tests
7.Test
Definition Formula and When to Use
Practical Examples and Applications
T Test
One Semula T Test
Definition Formula and When to Use
Deminion, Formula, and When to Use
True Semula T. Test (Independent and Daired)
Definition Formula and When to Use
Definition, Formula, and when to Use
Practical Examples and Applications
Chi-Square Test
Definition, Formula, and When to Use
Practical Examples and Applications
ANOVA (Analysis of Variance)
Definition, Formula, and When to Use
Practical Examples and Applications
5.4.4 Interpreting Hypothesis Test Results
Understanding P-Values and Confidence Intervals
Making Business Decisions Based on Hypothesis Test Results
Case Studies and Practical Applications
6.1 Introduction to Data Mining
6.1.1 Overview of Data Mining
Definition and Importance
History and Evolution of Data Mining
Applications in Various Industries
B. Tech Data Science

6.1.2 Data Mining Process Steps in the Data Mining Process: Data Selection, Data Preprocessing, Data Transformation, Data Mining, Interpretation/Evaluation Data Mining Methodologies: CRISP-DM, SEMMA, KDD 6.1.3 Key Concepts in Data Mining Data Warehousing and Data Marts Data Mining vs. Machine Learning Ethical Considerations in Data Mining 6.2 Clustering and Classification 6.2.1 Clustering Techniques Definition and Importance Types of Clustering: Hard vs. Soft Clustering **Common Clustering Algorithms K-Means** Clustering Algorithm Overview Choosing the Number of Clusters (K) Practical Examples and Applications Hierarchical Clustering Algorithm Overview Agglomerative vs. Divisive Methods **Dendrogram Analysis** DBSCAN (Density-Based Spatial Clustering of Applications with Noise) Algorithm Overview Identifying Core Points and Clusters Handling Noise in Data 6.2.2 Classification Techniques Definition and Importance Types of Classification: Binary, Multiclass, Multilabel **Common Classification Algorithms Decision Trees** Algorithm Overview Splitting Criteria (Gini, Entropy) Pruning Techniques Practical Examples and Applications Random Forest **Ensemble Method Overview** Building and Interpreting Random Forest Models Support Vector Machines (SVM) Algorithm Overview Kernel Functions Practical Examples and Applications Naive Bayes Algorithm Overview Assumptions and Practical Use Cases Neural Networks for Classification Overview of Perceptrons and Multilayer Networks Training Neural Networks for Classification Tasks

6.2.3 Model Evaluation and Validation Confusion Matrix and Performance Metrics (Accuracy, Precision, Recall, F1-Score) **Cross-Validation Techniques** Handling Imbalanced Data 6.3 Association Rule Mining 6.3.1 Introduction to Association Rule Mining Definition and Importance Applications in Market Basket Analysis, Recommender Systems 6.3.2 Key Concepts in Association Rule Mining Support, Confidence, and Lift Apriori Algorithm Algorithm Overview Finding Frequent Itemsets Generating Association Rules Practical Examples and Applications Eclat Algorithm Algorithm Overview Depth-First Search Approach Practical Examples and Applications FP-Growth (Frequent Pattern Growth) Algorithm Overview **Building and Using FP-Trees** Practical Examples and Applications 6.3.3 Advanced Topics in Association Rule Mining Mining Multidimensional Association Rules Handling Categorical and Continuous Data Pruning and Improving Rule Quality 6.4 Anomaly Detection 6.4.1 Introduction to Anomaly Detection Definition and Importance Applications in Fraud Detection, Network Security, Fault Detection 6.4.2 Techniques for Anomaly Detection **Statistical Methods Z-Score and Thresholding Box Plot Analysis** Practical Examples and Applications Machine Learning Methods Clustering-Based Methods (e.g., K-Means for Anomaly Detection) Classification-Based Methods (e.g., One-Class SVM, Isolation Forest) Neural Networks for Anomaly Detection Autoencoders LSTM for Sequence Anomalies 6.4.3 Evaluation of Anomaly Detection Methods Precision, Recall, and F1-Score for Anomaly Detection **ROC** and AUC Analysis Handling Imbalanced Data and Rare Events

UNIT-IV	Data Visualization and Business Intelligence Tools	07 Hours
7.1 Pr	inciples of Data Visualization	
	7.1.1 Introduction to Data Visualization	
	Definition and Importance	
	History and Evolution of Data Visualization	
	Applications in Various Industries	
	7.1.2 Key Principles of Effective Data Visualization	
	Clarity and Simplicity	
	Accuracy and Integrity	
	Efficiency and Speed	
	Aesthetics and Design	
	7.1.3 Understanding the Audience	
	Identifying Audience Needs	
	Tailoring Visualizations to Different Stakeholders	
	Ensuring Accessibility and Inclusivity	
	7.1.4 Data Visualization Techniques	
	Comparison of Different Visualization Techniques	
720	Choosing the Right Visualization for Different Data Types	
7.2 Ci	eating Effective Charts and Graphs	
	7.2.1 Types of Charts and Graphs	
	Dar Charles Vortical and Horizontal Bar Charles	
	Stacked and Grouped Bar Charts	
	Line Charts	
	Simple Line Charts	
	Multiple Line Charts	
	Pie Charts	
	When and How to Use Pie Charts	
	Alternatives to Pie Charts	
	Scatter Plots	
	Correlation and Trend Analysis	
	Bubble Charts	
	Histograms and Box Plots	
	Distribution and Variability Analysis	
	Heatmaps	
	Visualizing Data Density	
	Using Color Scales Effectively	
	7.2.2 Best Practices for Creating Charts and Graphs	
	Choosing Appropriate Scales and Axes	
	Labeling and Annotating Effectively	
	Using Color and Style Consistently	

1	Avoiding Common Pitfalls (e.g., Misleading Scales, Overcomplication)
7.2	.3 Advanced Charting Techniques
]	Dual-Axis Charts
(Combination Charts
	Small Multiples
]	Interactive and Dynamic Charts
7.3 Dashbo	ards and Scorecards
7.3	.1 Introduction to Dashboards
]	Definition and Purpose
r	Types of Dashboards (Strategic, Analytical, Operational)
7.3	2.2 Designing Effective Dashboards
]	Key Elements of a Dashboard
]	Principles of Good Dashboard Design
	Layout and Composition
	Visual Hierarchy
	Interactivity and User Experience
7.3	0.3 Tools for Creating Dashboards
(Overview of Popular Tools (Tableau, Power BI, Excel, Google Data Studio)
]	Features and Capabilities of Each Tool
	Choosing the Right Tool for the Job
7.3	.4 Building and Implementing Dashboards
	Step-by-Step Guide to Building a Dashboard
(Connecting to Data Sources
(Creating Interactive Elements (Filters, Drill-Downs)
	Testing and Validating Dashboards
7.2	Deploying and Sharing Dashboards
/.3	5.5 Scorecards for Performance Monitoring
1	Definition and Purpose
l I	Ney Metrics and NPIS
L L	Designing Effective Scolecalus
7 4 Data St	orvealling
7.4 Data St 7 A	1 The Art of Data Storytalling
+. /	Definition and Importance
ر ا	Elements of a Good Data Story
נ י	The Role of Narrative in Data Visualization
74	. 2 Structuring a Data Story
۲. י, [Identifying the Core Message
1	Building the Narrative Arc (Introduction Rising Action Climax Conclusion)
	Supporting the Story with Data
7.4	.3 Techniques for Effective Data Storytelling
1	Using Visuals to Enhance the Narrative
(Combining Text and Visuals
]	Engaging the Audience Emotionally and Intellectually
7.4	.4 Case Studies in Data Storytelling
	Analyzing Successful Data Stories
]	Lessons Learned from Real-World Examples
	<u>.</u>

	7.4.5 Tools and Technologies for Data Storytelling
	Overview of Tools (e.g., PowerPoint, Tableau Story Points, Flourish)
	Integrating Different Media (Text, Visuals, Audio, Video)
	Tips for Using Tools Effectively
	8.1 Excel for Data Analysis
	8.1.1 Introduction to Excel for BI
	Overview of Excel's Capabilities in Data Analysis
	Differences between Excel and other BI Tools
	8.1.2 Data Management in Excel
	Data Entry and Data Cleaning
	Using Functions and Formulas
	Data Validation and Conditional Formatting
	8 1 3 Descriptive Statistics and Analysis
	Applying Basic Statistical Functions (SUM_AVERAGE_COUNT_etc.)
	Using Advanced Statistical Functions (STDEV VAR etc.)
	8 1 A PiyotTables and PiyotCharts
	Creating and Customizing DivotTables
	Using Divot Charts for Date Visualization
	Eiltering and Sorting Date in DivotTables
	Pritering and Solding Data in Front ables
	8.1.5 Advanced Excer rechniques
	VLOOKUP, HLOOKUP, and INDEA-MATCH Functions
	Using Excel Tables and Data Models
	Introduction to Power Query and Power Pivot
	8.1.0 visualization and Reporting
	Creating Charts and Graphs
	Customizing Chart Elements
	Building Interactive Dashboards in Excel
	8.2 Python (pandas, matplotlib, seaborn)
	8.2.1 Introduction to Python for Data Analysis
	Overview of Python's Role in Data Analysis
	Setting Up the Python Environment (Anaconda, Jupyter Notebooks)
	8.2.2 Data Manipulation with pandas
	Introduction to pandas Data Structures (Series, DataFrame)
	Data Importing and Exporting
	Data Cleaning and Preparation (Handling Missing Values, Duplicates)
	Data Transformation (Filtering, Sorting, Grouping, Merging)
	8.2.3 Data Visualization with matplotlib
	Basics of matplotlib
	Creating Basic Plots (Line, Bar, Scatter)
	Customizing Plots (Labels, Titles, Legends)
	8.2.4 Advanced Visualization with seaborn
	Introduction to seaborn and Its Features
	Creating Statistical Graphics (Histograms, KDE Plots, Pair Plots)
	Customizing Seaborn Plots
	8.2.5 Integrating pandas with matplotlib and seaborn
	Combining Data Manipulation and Visualization
	Creating Complex Visualizations for EDA
-	

8.2.6 Real-World Data Analysis Projects	
Hands-On Projects Using Real Datasets	
Best Practices for Code and Data Management	
8.3 R for Statistical Computing	
8.3.1 Introduction to R and RStudio	
Overview of R's Capabilities for Statistical Analysis	
Setting Up R and RStudio	
8.3.2 Data Management in R	
Importing and Exporting Data	
Data Cleaning and Preparation	
Data Transformation with dplyr	
8.3.3 Statistical Analysis with R	
Descriptive Statistics (Summary, Mean, Median, Mode)	
Inferential Statistics (t-tests, ANOVA)	
Correlation and Regression Analysis	
8.3.4 Data Visualization with gpplot2	
Introduction to ggplot2	
Creating Basic Plots (Histograms, Scatter Plots, Box Plots)	
Customizing Plots with Themes and Labels	
8.3.5 Advanced Visualization Techniques	
Faceting and Grouping Data in Plots	
Creating Interactive Visualizations with Shinv	
8.3.6 Real-World Data Analysis Projects	
Hands-On Projects Using R	
Applying R to Business Intelligence Scenarios	
8.4 Power BI and Tableau	
8.4.1 Introduction to Power BI and Tableau	
Overview of Power BI and Tableau Capabilities	
Differences and Use Cases for Each Tool	
8.4.2 Data Import and Preparation	
Connecting to Data Sources (Excel, SOL, Web, etc.)	
Data Cleaning and Transformation	
Creating Data Models	
8.4.3 Building Visualizations in Power BI	
Creating Basic Visuals (Charts, Tables, Cards)	
Customizing Visuals with Power BI Features	
Using DAX for Advanced Calculations	
8.4.4 Building Visualizations in Tableau	
Creating Basic Visuals (Bar Line Pie Charts)	
Customizing Visuals with Tableau Features	
Using Calculated Fields and Table Calculations	
8 4 5 Dashboards and Reports	
Designing Interactive Dashboards	
Best Practices for Dashboard Lavout and Design	
Sharing and Publishing Dashboards	
8.4.6 Advanced Analytics and Insights	
Using Power BI and Tableau for Advanced Data Analysis	
	1
B. Tech Data Science	

53 | P a g e

	Applying Machine Learning Models in BI Tools						
	Real-World Business Intelligence Projects						
UNIT-V	Building and Managing BI Projects and Real-World Applications and Case	08 Hours					
	Studies						
9.1 BI	Project Planning and Execution						
	9.1.1 Introduction to BI Projects						
	Understanding the Scope and Objectives of BI Projects						
	Key Elements of a Successful BI Project						
	9.1.2 Project Planning and Management						
	Developing a Project Timeline						
	Allocating Resources and Responsibilities						
	Risk Management and Mitigation Strategies						
	9.1.3 Data Requirements and Integration						
	Identifying Data Sources and Requirements						
	Data Integration Techniques and Best Practices						
	Ensuring Data Quality and Consistency						
	9.1.4 Agile Methodology in BI Projects						
	Overview of Agile Methodology						
	Applying Agile Practices to BI Projects						
Sprints, Backlogs, and Iterative Development							
9.1.5 Collaboration and Communication							
	Building Effective Project Teams						
	Stakeholder Engagement and Management						
	Communication Strategies and Tools						
9.2 De	eveloping Reports and Dashboards						
	9.2.1 Introduction to Reporting in BI						
	Purpose and Importance of BI Reports						
	Types of BI Reports (Operational, Analytical, Strategic)						
	9.2.2 Designing Effective Reports						
	Structuring Deports for Clarity and Impact						
	Using KDIs and Matrices in Poports						
	0.2.3 Dashboard Design and Development						
	Introduction to Dashboards						
	Best Practices for Dashboard Design						
	Interactive Dashboards and User Experience						
	9.2.4 Tools for Report and Dashboard Development						
	Overview of BI Reporting Tools (Power BI, Tableau, etc.)						
	Step-by-Step Guide to Creating Reports and Dashboards						
	Advanced Features and Customization						
	9.2.5 Real-World Reporting and Dashboard Projects						
	Case Studies and Examples of Effective BI Reports						
	Hands-On Projects: Creating Reports and Dashboards						
	Introduction to Dashboards Best Practices for Dashboard Design Interactive Dashboards and User Experience 9.2.4 Tools for Report and Dashboard Development Overview of BI Reporting Tools (Power BI, Tableau, etc.) Step-by-Step Guide to Creating Reports and Dashboards Advanced Features and Customization 9.2.5 Real-World Reporting and Dashboard Projects Case Studies and Examples of Effective BI Reports Hands-On Projects: Creating Reports and Dashboards						

Peer Reviews and Feedback 9.3 Case Studies of BI Projects 9.3.1 Overview of Case Studies Importance of Learning from Real-World Examples Selection Criteria for Case Studies 9.3.2 Successful BI Project Case Studies Case Study 1: Implementing a Sales Dashboard Project Background and Objectives Data Integration and Analysis Challenges and Solutions Outcomes and Impact Case Study 2: Enhancing Customer Insights with BI Project Background and Objectives Data Collection and Cleaning Analysis Techniques and Tools Outcomes and Impact 9.3.3 Lessons Learned from BI Projects **Common Challenges in BI Projects Best Practices and Key Takeaways** Applying Lessons to Future Projects 9.4 Measuring BI Success and Value 9.4.1 Importance of Measuring BI Success Why Measuring Success is Crucial Key Metrics for Evaluating BI Projects 9.4.2 Developing a BI Success Framework **Defining Success Criteria** Establishing KPIs and Metrics Creating a Measurement Plan 9.4.3 Quantitative Measures of BI Success Financial Metrics (ROI, Cost Savings) Performance Metrics (Efficiency, Accuracy) User Adoption and Satisfaction 9.4.4 Qualitative Measures of BI Success User Feedback and Surveys Case Study Reviews and Success Stories Impact on Decision-Making and Strategy 9.4.5 Continuous Improvement in BI Monitoring and Reporting on BI Performance Identifying Areas for Improvement Implementing Changes and Measuring Impact 10.1 Industry Applications of Descriptive Analytics 10.1.1 Introduction to Industry Applications Overview of Descriptive Analytics Across Industries Importance of Domain Knowledge in Analytics 10.1.2 Descriptive Analytics in Retail Sales Analysis and Customer Segmentation Inventory Management and Demand Forecasting

Case Study: Analyzing Sales Data for a Retail Chain
10.1.3 Descriptive Analytics in Healthcare
Patient Data Analysis and Healthcare Outcomes
Resource Allocation and Utilization
Case Study: Improving Patient Care Through Data Analysis
10.1.4 Descriptive Analytics in Finance
Fraud Detection and Risk Management
Portfolio Performance Analysis
Case Study: Risk Assessment and Mitigation in Banking
10.1.5 Descriptive Analytics in Marketing
Campaign Performance and Customer Insights
Market Basket Analysis and Customer Loyalty
Case Study: Enhancing Marketing Strategies with Analytics
10.1.6 Descriptive Analytics in Manufacturing
Quality Control and Process Improvement
Predictive Maintenance and Operational Efficiency
Case Study: Optimizing Production Processes Through Data
10.2 Hands-on Projects with Real-World Datasets
10.2.1 Project Planning and Setup
Defining Project Goals and Objectives
Selecting Appropriate Datasets
Setting Up Analytical Tools and Environment
10.2.2 Data Collection and Cleaning
Gathering Data from Multiple Sources
Data Preprocessing Techniques
Ensuring Data Quality and Integrity
10.2.3 Exploratory Data Analysis (EDA)
Applying Descriptive Statistics
Visualizing Data to Identify Trends and Patterns
Using EDA to Formulate Hypotneses
10.2.4 Advanced Data Analysis Techniques
Clustering and Classification for Segmentation
Association Pule Mining and Anomaly Detection
10.2.5 Data Visualization and Paparting
Creating Charts, Graphs, and Dashboards
Developing Reports to Communicate Findings
Best Practices for Effective Data Storytelling
10.2.6 Presenting Project Results
Prenaring a Presentation Outline
Communicating Insights to Stakeholders
Receiving and Incorporating Feedback
10.3 Analyzing and Interpreting Data-Driven Insights
10.3.1 Principles of Data Interpretation
Understanding Data Context and Relevance
Differentiating Between Correlation and Causation
10.3.2 Data-Driven Decision-Making
•

	Translating Data Insights into Business Strategies					
	Case Study: Using Data to Drive Business Decisions					
	10.3.3 Communicating Insights to Non-Technical Audiences					
	Simplifying Complex Data for Stakeholder Understanding					
	Techniques for Effective Data Storytelling					
	10 3 4 Evaluating the Impact of Data Insights					
	Measuring the Effectiveness of Data-Driven Strategies					
	Case Study: Assessing the Impact of Data Insights on Business Performance					
	10.3.5 Continuous Improvement Through Data Analysis					
	Using Feedback Loops to Enhance Analytical Models					
Adapting Strategies Based on New Data Insights						
	Case Study: Iterative Improvement in Business Analytics					
	Case Study. Relative improvement in Busiless Analytics					
		07.11				
UNII-VI	Communication and Data Storytelling, Ethics and Best Practices in	07 Hours				
11.1.7	Business Intelligence					
11.11	echniques for Effective Data Storytelling					
	11.1.1 Introduction to Data Storytelling					
	Definition and Importance of Data Storytelling					
	Components of a Data Story: Data, Narrative, and Visuals					
	11.1.2 Crafting a Narrative with Data					
	Identifying the Main Message and Key Points					
	Structuring the Story: Beginning, Middle, and End					
Techniques for Engaging the Audience						
	11.1.3 Using Visuals to Enhance the Narrative					
	Choosing the Right Visualization for Your Data					
	Best Practices for Designing Clear and Informative Visuals					
	Integrating Visuals Seamlessly into the Story					
	11.1.4 Techniques for Simplifying Complex Data					
	Avoiding Information Overload					
	Highlighting Key Insights and Trends					
	Using Analogies and Metaphors to Explain Data					
	11.1.5 Case Studies in Data Storytelling					
	Examples of Effective Data Stories from Various Industries					
	Analysis of What Makes These Stories Compelling					
11.2 C	Creating Compelling Reports and Presentations					
	11.2.1 Principles of Report Writing					
	Structure and Organization of Reports					
	Clarity and Conciseness in Writing					
	Incorporating Data Visualizations into Reports					
	11.2.2 Designing Effective Presentations					
	Principles of Good Presentation Design					
	Balancing Text, Images, and Data Visualizations					
	Using Slide Transitions and Animations Effectively					
	11.2.3 Tools for Creating Reports and Presentations					
	Overview of Tools: Microsoft PowerPoint, Google Slides, Tableau, Power BI					

Tips and Tricks for Using Each Tool Efficiently
Integrating Interactive Elements in Presentations
11.2.4 Tailoring Reports and Presentations to the Audience
Understanding the Needs and Interests of Your Audience
Customizing Content for Different Stakeholder Groups
Using Language and Examples that Resonate with the Audience
11.2.5 Reviewing and Refining Reports and Presentations
Techniques for Self-Review and Peer Review
Iterative Improvement: Incorporating Feedback
Ensuring Consistency and Professionalism
11.3 Presenting Findings to Stakeholders
11.3.1 Preparation for Stakeholder Presentations
Understanding Stakeholder Objectives and Concerns
Planning and Structuring the Presentation
Rehearsing and Refining Your Delivery
11.3.2 Techniques for Effective Oral Communication
Public Speaking Tips and Strategies
Using Body Language and Voice Modulation
Managing Nervousness and Building Confidence
11.3.3 Engaging Stakeholders During the Presentation
Techniques for Capturing and Maintaining Attention
Encouraging Questions and Interactive Discussion
Handling Difficult Questions and Feedback Gracefully
11.3.4 Follow-Up After the Presentation
Summarizing Key Takeaways and Next Steps
Providing Supplementary Materials and Detailed Reports
Gathering Feedback for Continuous Improvement
11.3.5 Case Studies of Successful Stakeholder Presentations
Analysis of Real-World Examples
Identifying Best Practices and Lessons Learned
12.1 Ethical Considerations in Data Analysis
12.2 Ensuring Data Privacy and Security
12.3 Best Practices for Sustainable BI Practices.

Books Recommended:

- 1. "Data Science for Business: What You Need to Know about Data Mining and Data-Analytic Thinking"
 - Authors: Foster Provost and Tom Fawcett
 - Publisher: O'Reilly Media
 - Description: This book provides a solid foundation in data science principles, focusing on data mining techniques and their application in business contexts. It is a practical guide for understanding data-analytic thinking.

2. "Business Intelligence: A Managerial Approach"

- o Authors: Efraim Turban, Ramesh Sharda, Dursun Delen, and David King
- Publisher: Pearson
- Description: This book covers the comprehensive architecture of business intelligence, including methodologies, tools, and applications. It is an excellent resource for understanding BI from a managerial perspective.

3. "The Data Warehouse Toolkit: The Definitive Guide to Dimensional Modeling"

- Authors: Ralph Kimball and Margy Ross
- Publisher: Wiley
- Description: A classic book on data warehousing and dimensional modeling, this text is essential for students looking to understand the structure and design of data warehouses, which are crucial for BI.

4. "Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython"

- Author: Wes McKinney
- Publisher: O'Reilly Media
- Description: This book provides a thorough introduction to data analysis in Python, focusing on libraries like pandas and NumPy. It is ideal for hands-on learning and practical application of data analysis techniques.

5. "Storytelling with Data: A Data Visualization Guide for Business Professionals"

- Author: Cole Nussbaumer Knaflic
- Publisher: Wiley
- Description: This book emphasizes the importance of data visualization and effective communication. It provides practical tips and strategies for creating compelling data stories.

6. "Data Mining: Concepts and Techniques"

- o Authors: Jiawei Han, Micheline Kamber, and Jian Pei
- Publisher: Morgan Kaufmann
- Description: This comprehensive guide to data mining covers the theoretical foundations and practical applications of various data mining techniques. It is suitable for both beginners and advanced learners.

7. "Practical Business Intelligence"

- Authors: Ahmed Sherif, R. Kelly Rainer Jr., and Brad Prince
- Publisher: McGraw Hill Education
- Description: This book focuses on the practical aspects of implementing business intelligence solutions, including project management, data integration, and real-world case studies. It is designed for students and professionals looking to apply BI concepts in business settings.

INTERNAL ASSESSMENT (IA)

Two internal assessments and an end semester examination to test students' reading and writing skills along with their grammatical and lexical competence. Assessment will include following things:

• Internal Assessment: 25 Marks - 1. Attendance

2. Assignments

3. Case Study/Mini Project/Presentation

- Mid Semester Exam: 25 Marks
- End Semester Exam: 50 Marks

CO's-PO's & PSO's MAPPING

Cos	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	3	3	3	2	2	3	3	2
2	-	3	3	1	1	3	3	3
3	-	2	2	2	2	3	2	1
4	-	2	2	2	2	3	2	2

B. Tech Data Science 60 | P a g e

5	-	2	2	3	3	3	3	2
Avg	3	2.4	2.4	2	2	3	2.6	2

1 - low, 2 - medium, 3 - high, '-' - no correlation

BTDS 511PE: GRAPH THEORY (Professional Elective – I) B.Tech. III Year I Sem.

TH: - 4 Hours/Week TH: 04 In Sem. Evaluation: 25 Mar Mid Sem. Exam: 25 Mar End Sem. Exam: 50 Mar Total : 100 Mar Course Prerequisites: None In Sem. Exam: 50 Mar Course Objective: In Understanding graphs, trees, connected paths, applications of trees and graphs. Learning Course Outcome: After successful completion of the course, students will able to: Know some important classes of graph theoretic problems; Prove central theorems about trees, matching, connectivity, coloring and planar graphs; Describe and apply some basic algorithms for graphs; Use graph theory as a modeling tool.					
Mid Sem. Exam: 25 Mar End Sem. Exam: 50 Mar Total : 100 Mar Course Prerequisites: None Course Objective: • Understanding graphs, trees, connected paths, applications of trees and graphs. Learning Course Outcome: After successful completion of the course, students will able to: • Know some important classes of graph theoretic problems; • Prove central theorems about trees, matching, connectivity, coloring and planar graphs; • Describe and apply some basic algorithms for graphs; • Use graph theory as a modeling tool.					
End Sem. Exam: 50 Mar Total : 100 Mar Course Prerequisites: None Image: Course Objective: • Understanding graphs, trees, connected paths, applications of trees and graphs. Learning Course Outcome: After successful completion of the course, students will able to: • Know some important classes of graph theoretic problems; • Prove central theorems about trees, matching, connectivity, coloring and planar graphs; • Use graph theory as a modeling tool.					
Course Prerequisites: None 10tal : 100 Mail Course Objective: • • • • Understanding graphs, trees, connected paths, applications of trees and graphs. • Learning Course Outcome: • • • After successful completion of the course, students will able to: • • • Know some important classes of graph theoretic problems; • • Prove central theorems about trees, matching, connectivity, coloring and planar graphs; • • Describe and apply some basic algorithms for graphs; • • Use graph theory as a modeling tool. •					
Course Objective: Understanding graphs, trees, connected paths, applications of trees and graphs. Learning Course Outcome: After successful completion of the course, students will able to: Know some important classes of graph theoretic problems; Prove central theorems about trees, matching, connectivity, coloring and planar graphs; Describe and apply some basic algorithms for graphs; Use graph theory as a modeling tool. 					
 Understanding graphs, trees, connected paths, applications of trees and graphs. Learning Course Outcome: After successful completion of the course, students will able to: Know some important classes of graph theoretic problems; Prove central theorems about trees, matching, connectivity, coloring and planar graphs; Describe and apply some basic algorithms for graphs; Use graph theory as a modeling tool. 					
Learning Course Outcome: After successful completion of the course, students will able to: • Know some important classes of graph theoretic problems; • Prove central theorems about trees, matching, connectivity, coloring and planar graphs; • Describe and apply some basic algorithms for graphs; • Use graph theory as a modeling tool. Course Contents					
After successful completion of the course, students will able to: Know some important classes of graph theoretic problems; Prove central theorems about trees, matching, connectivity, coloring and planar graphs; Describe and apply some basic algorithms for graphs; Use graph theory as a modeling tool. 					
 Know some important classes of graph theoretic problems; Prove central theorems about trees, matching, connectivity, coloring and planar graphs; Describe and apply some basic algorithms for graphs; Use graph theory as a modeling tool. 					
 Prove central theorems about trees, matching, connectivity, coloring and planar graphs; Describe and apply some basic algorithms for graphs; Use graph theory as a modeling tool. 					
 Describe and apply some basic algorithms for graphs; Use graph theory as a modeling tool. Course Contents					
Use graph theory as a modeling tool. Course Contents					
Course Contents					
UNIT-I Introduction 07 Hou					
Discovery of graphs, Definitions, Subgraphs, Isomorphic graphs, Matrix representations of					
graphs, Degree of a vertex, Directed walks, paths and cycles, Connectivity in digraphs, Eulerian					
and Hamilton digraphs, Eulerian digraphs, Hamilton digraphs, Special graphs, Complements,					
Larger graphs from smaller graphs. Union, Sum, Cartesian Product, Composition, Graphic					
sequences. Graph theoretic model of the LAN problem. Havel-Hakimi criterion. Realization					
of a graphic sequence.					
UNIT II Connected graphs and shortest paths 08 Hour					
Walks, trails, paths, cycles, Connected graphs, Distance, Cut-vertices and cut-edges, Blocks,					
Connectivity, Weighted graphs and shortest paths, Weighted graphs, Dijkstra"s shortest path					
algorithm, Floyd-Warshall shortest path algorithm.					
UNIT-III Trees 08 Hour					

Definitions and characterizations, Number of trees, Cayley''s formula, Kircho⁴-matrix-tree theorem, Minimum spanning trees, Kruskal''s algorithm, Prim''s algorithm, Special classes of graphs, Bipartite Graphs, Line Graphs, Chordal Graphs, Eulerian Graphs, Fleury''s algorithm, Chinese Postman problem, Hamilton Graphs, Introduction, Necessary conditions and sufficient conditions.

UNIT-IV	Independent sets coverings and matchings	07
		Hours

Introduction, Independent sets and coverings: basic equations, Matchings in bipartite graphs, Hall"s Theorem, K"onig"s Theorem, Perfect matchings in graphs, Greedy and approximation algorithms.

UNIT-V	Vertex Colorings	08
		Hours

Basic definitions, Cliques and chromatic number, Mycielski"s theorem, Greedy coloring algorithm, Coloring of chordal graphs, Brooks theorem, Edge Colorings, Introduction and Basics, Gupta-Vizing theorem, Class-1 and Class-2 graphs, Edge-coloring of bipartite graphs, Class-2 graphs, Hajos union and Class-2 graphs, A scheduling problem and equitable edge-coloring.

TEXT BOOKS:

- 1. J. A. Bondy and U. S. R. Murty. Graph Theory, volume 244 of Graduate Texts in Mathematics. Springer, 1st edition, 2008.
- 2. J. A. Bondy and U. S. R. Murty. Graph Theory with Applications.

REFERENCE BOOKS:

- 1. Lecture Videos: http://nptel.ac.in/courses/111106050/13
- 2. Introduction to Graph Theory, Douglas B. West, Pearson.

INTERNAL ASSESSMENT (IA)

Two internal assessments and an end semester examination to test students' reading and writing skills along with their grammatical and lexical competence. Assessment will include following things:

- Internal Assessment: 25 Marks 1. Attendance
 - 2. Assignments
 - 3. Case Study/Mini Project/Presentation
- Mid Semester Exam: 25 Marks
- End Semester Exam: 50 Marks

CO's-PO's & PSO's MAPPING

Cos	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	3	3	3	2	2	3	3	2
2	4	3	3	1	1	3	3	3
3	4	2	2	2	2	3	2	~ 1
4	1	2	2	2	2	3	2	2
5	-/	2	2	3	3	3	3	2
Avg	3	2.4	2.4	2	2	3	2.6	2

11 वर्ग किल्लामान् स पचिड/\

1 - low, 2 - medium, 3 - high, '-' - no correlation

BTDS 512PE: ADVANCED COMPUTER ARCHITECTURE (Professional Elective – I) B. Tach, J. Vacar J. Sam

	В.	l ech. III Y ear I Sem.				
Teaching Scher	ne:	Credit	Examination S	cheme:		
TH: - 4 Hours/W	/eek	TH: 04	In Sem. Evaluation	: 25 Marks		
			Mid Sem. Exam:	25 Marks		
			End Sem. Exam:	50 Marks		
Course Prorequisites: Co	monton Onge	nization	lotal	: 100 Marks		
Course Objective:	inputer Orga					
. Impart the concer	te and princit	les of parallel and advance	d computer architectu	7 05		
Impart the concept Develop the design	ns and princip	of Scalable and multithread	dad Architacturas	105.		
• Develop the desig	in techniques	or Scalable and inditituted	ad computer architectu	ros		
Appry the concept to design modern		fues of parallel and advance	eu computer architecti	lles		
to design modern	computer sys	stems.				
Learning Course Outcom	e:	aa atuudanta millahla taa				
After successful completio	on of the cour	se, students will able to:				
Computational models and Computer Architectures.						
Concepts of parallel computer models.						
Scalable Architectures, Pipelining, Superscalar processors						
		Course Contents				
UNIT-I		SIMD/ PRAM/ VLSI m	odels	07 Hours		
Theory of Parallelism, F	arallel comp	ater models, The State of C	Computing, Multiproce	essors		
and Multicomputers, I	Multivector a	and SIMD Computers, F	PRAM and VLSI me	odels,		
Architectural developn	nent tracks,	Program and network	properties, Condition	ns of		
parallelism, Program p	artitioning a	nd Scheduling, Program	flow Mechanisms, Sy	ystem		
interconnect Architectur	es.					
UNIT-II		Principles of Scalable	performance	08 Hours		
Performance metrics and	measures, Pa	rallel Processing applicati	ons, Speed up perform	nance		
laws. Scalability Analysis	and Approa	ches. Hardware Technolog	ies. Processes and Me	emory		
Hierarchy Advanced Proc	cessor Techno	blogy. Superscalar and Vec	ctor Processors	J		
UNIT-III		Shared-Memory Organiz	zations	08 Hours		
Sequential and weak co	nsistency mo	dels, Pipelining and sup	erscalar techniques. I	Linear		
Pipeline Processors. Non-	Linear Pipeli	ne Processors. Instruction	Pipeline design. Arith	metic		
nipeline design superscal	ar pipeline de	sion	r			
pipenne design, superscalar pipenne design.						

UNIT-IV	Parallel and Scalable Architectures	07
		Hours
Multiprocessors and Multi	icomputers, Multiprocessor system interconnects, cache coherend	ce
and synchronization mecl	hanism, Three Generations of Multicomputers, Message-passin	ng
Mechanisms, Multivetor a	nd SIMD computers.	
UNIT-V	Vector Processing Principles	08
		Hours
Multivector Multiprocesso	ors, Compound Vector processing, SIMD computer Organization	IS,
The connection machine C	CM-5.	
TEXT BOOK:		
1. Advanced Compu	uter Architecture, Kai Hwang, 2 nd Edition, Tata McGraw Hill Pub	olishers.
Ĩ		
REFERENCE BOOKS		

REFERENCE BOOKS:

- 1. Computer Architecture, J.L. Hennessy and D.A. Patterson, 4th Edition, ELSEVIER.
- 2. Advanced Computer Architectures, S.G.Shiva, Special Indian edition, CRC, Taylor & Francis.
- 3. Introduction to High Performance Computing for Scientists and Engineers, G. Hager and G. Wellein, CRC Press, Taylor & Francis Group.
- 4. Advanced Computer Architecture, D. Sima, T. Fountain, P. Kacsuk, Pearson education.
- 5. Computer Architecture, B. Parhami, Oxford Univ. Press.

INTERNAL ASSESSMENT (IA)

Two internal assessments and an end semester examination to test students' reading and writing skills along with their grammatical and lexical competence. Assessment will include following things:

कित्याचान स भो

- Internal Assessment: 25 Marks 1. Attendance
 - 2. Assignments
 - 3. Case Study/Mini Project/Presentation
- Mid Semester Exam: 25 Marks
- End Semester Exam: 50 Marks

CO's-PO's & PSO's MAPPING

Cos	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	3	3	3	2	2	3	3	2
2	/ a .	3	3	1	1	3	3	3
3	de la	2	2	2	2	3	2	1
4	1	2	2	2	2	3	2	2
5		2	2	3	3	3	3	2
Avg	3	2.4	2.4	2	2	3	2.6	2

// या क्रियाचाम् रा धनिव्दत

1 - low, 2 - medium, 3 - high, '-' - no correlation

BTDS 513PE: WEB PROGRAMMING (Professional Elective – I) B Tech III Year I Sem

	D,			•	
Teaching Sch	neme:	Credit	Examination S	cheme:	
TH: - 4 Hours	/Week	TH: 04	In Sem. Evaluation	: 25 Marks	
			Mid Sem. Exam:	25 Marks	
			End Sem. Exam:	50 Marks	
		•	Total	: 100 Marks	
Course Prerequisites: I	Sasic Web Prog	ramming			
Course Objective:					
Understand the	e technologies u	sed in Web Programming.			
Know the imposed	ortance of objec	t-oriented aspects of Script	ing.		
Understand cre	eating database of	connectivity using JDBC.			
Learn the conc	epts of web-bas	ed application using socket	S.		
Learning Course Outco	ome:				
After successful comple	etion of the cour	se, students will able to:			
• Design web pages.					
Use technologies of Web Programming.					
Apply object-o	riented aspects	to Scripting.			
Create database	es with connecti	vity using JDBC.			
Build web-base	ed application us	sing sockets.			
		Course Contents			
UNIT-I	Client-side Pr	ogramming		07 Hours	
HTML- Basic Tags- Li	st, Tables, Imag	es, Forms, Frames, CSS			
JAVA Script -					
Web page Designing us	ing HTML, Scri	pting basics- Client side an	d server side scripting.	. Java	
ScriptObject, names, li	terals, operator	s and expressions- statem	ents and features- eve	ents -	
windows - documents	- frames - data	a types - built-in function	s- Browser object mo	odel -	
Verifying formsHTM	L5- CSS3- HTN	IL 5 canvas - Web site crea	ation using tools.		
	JAVA		C	08 Hours	
Introduction to obios	t anianta d mua a	manualing Easturnes of Isra	Data truz agi suguiah	les and	
Introduction to object	ci-oriented prog	ramming-Features of Java	a – Data types, variab	les and	
arrays – Operators –	Control statem	ents – Classes and Metho	ds – Inheritance. Pack	ages and	
Interfaces – Exceptio	on Handling – I	Multithreaded Programmi	ng – Input/Output – 1	Files –	
Utility Classes – Str	ing Handling.				
UNIT-III	JDB	С		08 Hours	

JDBC Overview – JDBC implementation – Connection class – Statements - Catching Database Results, handling database Queries. Networking– InetAddress class – URL class-TCP sockets – UDP sockets, Java Beans –RMI. UNIT-IV APPLETS 07

HoursJava applets- Life cycle of an applet — Adding images to an applet — Adding sound to an
applet. Passing parameters to an applet. Event Handling. Introducing AWT: Working with
Windows Graphics and Text. Using AWT Controls, Layout Managers and Menus. Servlet
— life cycle of a servlet. The Servlet API, Handling HTTP Request and Response, using
Cookies, Session Tracking. Introduction to JSP.

UNIT-V	XML AND WEB SERVICES	08
		Hours
Xml – Introduction-Form	Navigation-XML Documents- XSL - XSLT- Web services-UDDI	-

WSDL-Java web services — Web resources.

TEXT BOOKS:

- 1. Harvey Deitel, Abbey Deitel, Internet and World Wide Web: How To Program 5th Edition.
- 2. Herbert Schildt, Java The Complete Reference, 7th Edition. Tata McGraw-Hill Edition.
- 3. Michael Morrison XML Unleashed Tech media SAMS.

REFERENCE BOOKS:

- 1. John Pollock, Javascript A Beginners Guide, 3rd Edition -- Tata McGraw-Hill Edition.
- 2. Keyur Shah, Gateway to Java Programmer Sun Certification, Tata McGraw Hill, 2002.

INTERNAL ASSESSMENT (IA)

Two internal assessments and an end semester examination to test students' reading and writing

B. Tech Data Science 68 | P a g e

skills along with their grammatical and lexical competence. Assessment will include following things:

- Internal Assessment: 25 Marks 1. Attendance
 - 2. Assignments
 - 3. Case Study/Mini Project/Presentation
- Mid Semester Exam: 25 Marks
- End Semester Exam: 50 Marks

CO's-PO's & PSO's MAPPING

	100	1		a los de la companya				
Cos	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	3	3	3	2	2	3	3	2
2	34	3	3	1	1	3	3	3
3	4	2	2	2	2	3	2	1
4	1.15	2	2	2	2	3	2	2
5	6-7	2	2	3	3	3	3	2
Avg	3	2.4	2.4	2	2	3	2.6	2

(1) या क्रियापान स पचिछ/\)

1 - low, 2 - medium, 3 - high, '-' - no correlation

BTDS 514PE: IMAGE PROCESSING (Professional Elective – I) B.Tech. III Year I Sem.

Teaching Sch	eme:	Credit	Examination S	cheme:		
TH: - 4 Hours/	Week	TH: 04	In Sem. Evaluation	: 25 Marks		
			Mid Sem. Exam:	25 Marks		
			End Sem. Exam:	50 Marks		
			Total	: 100 Marks		
Course Prerequ	isites: Students	s are expected to have know	wledge in linear signal	s and		
systems, Fourie	r Transform, b	asic linear algebra, basic p	probability theory and	basic		
programming te	chniques; knov	vledge of digital signal pro-	cessing is desirable.			
A course on "Co	omputational M	lathematics"				
A course on "Co	omputer Orient	ed Statistical Methods"				
Course Objective:						
• Provide a theoretical and mathematical foundation of fundamental Digital Image						
Processing concepts.						
• The topics include image acquisition; sampling and quantization; preprocessing;						
enhancement; restoration; segmentation; and compression.						
Learning Course Outcome:						
After successful complet	tion of the cour	se, students will able to:				
Demonstrate th	e knowledge o	of the basic concepts of tw	wo-dimensional signal	l		
acquisition, sam	pling, and qua	ntization.				
Demonstrate the	e knowledge of	filtering techniques.				
Demonstrate the	e knowledge of	2D transformation techniqu	ues.			
Demonstrate th	e knowledge	of image enhancement,	segmentation, restora	tion		
and compression	n techniques.					
		Course Contents				
UNIT-I		Digital Image Fundame	ntals	07 Hours		
Digital Image through So	canner, Digital	Camera. Concept of Gray I	Levels.Gray Level to B	inary		
Image Conversion. Sa	mpling and (Quantization. Relationship	b between Pixels.Im	aging		
Geometry. 2D Transformations-DFT, DCT, KLT and SVD.						
UNIT-II		Image Processing		08 Hours		
Image Enhancement i	n Spatial Dom	ain Point Processing, His	togram Processing, S	patial		
Filtering, Enhancemen	t in Frequency	Domain, Image Smoothing	g, Image Sharpening.			
UNIT-III	Ima	ge Restoration Degradati	ion Model	08 Hours		

Algebraic Approach to Restoration, Inverse Filtering, Least Mean Square Filters, Constrained Least Squares Restoration, Interactive Restoration.

UNIT-IV	Image Segmentation Detection of Discontinuities	07
		Hours

Edge Linking and Boundary Detection, Thresholding, Region Oriented Segmentation.

UNIT-V	Image Compression	08
		Hours

Image Compression Redundancies and their Removal Methods, Fidelity Criteria, Image Compression Models, Source Encoder and Decoder, Error Free Compression, Lossy Compression.

TEXT BOOK:

1. Digital Image Processing: R.C. Gonzalez & R. E. Woods, Addison Wesley/ Pearson Education,2nd Ed, 2004.

REFERENCE BOOKS:

- 1. Fundamentals of Digital Image Processing: A. K. Jain, PHI.
- 2. Digital Image Processing using MAT LAB: Rafael C. Gonzalez, Richard E. Woods, Steven L.Eddins: Pearson Education India, 2004.
- 3. Digital Image Processing: William K. Pratt, John Wilely, 3rd Edition, 2004.

INTERNAL ASSESSMENT (IA)

Two internal assessments and an end semester examination to test students' reading and writing skills along with their grammatical and lexical competence. Assessment will include following things:

- Internal Assessment: 25 Marks 1. Attendance
 - 2. Assignments
 - 3. Case Study/Mini Project/Presentation
- Mid Semester Exam: 25 Marks
- End Semester Exam: 50 Marks

CO's-PO's & PSO's MAPPING

Cos	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	3	3	3	2	2	3	3	2
2	-	3	3	1	1	3	3	3
3	-	2	2	2	2	3	2	1
4	-	2	2	2	2	3	2	2
5	-	2	2	3	3	3	3	2
Avg	3	2.4	2.4	2	2	3	2.6	2

1 - low, 2 - medium, 3 - high, '-' - no correlation

BTDS 515PE: COMPUTER GRAPHICS (Professional Elective – I) B Tech, III Vear I Sem

	D,	Tech. III Teal TSein.					
Teaching Scl	neme:	Credit	Examination S	cheme:			
TH: - 4 Hours	/Week	TH: 04	In Sem. Evaluation	: 25 Marks			
			Mid Sem. Exam:	25 Marks			
			End Sem. Exam:	50 Marks			
Correct Drawn		·····	Total				
Course Prereq	uisites: Prograi	mming for problem solvin	ig and Data Structure	es			
Drovide the bas	vice of graphice	evetame including Points or	d lines line drawing				
• 110vide die bas	3D objective t	ransformations	iu mies, mie urawing				
	, 5D objective ti	Talisionnations					
Learning Course Outco	ome:						
After successful comple	etion of the cour	se, students will able to:					
Explore application	ations of compu	ter graphics					
Understand 2D	, 3D geometric	transformations and clippir	ng algorithms				
• Understand 3L	object represe	ntations, curves, surfaces,	polygon rendering				
methods, color	models						
Analyze anima	tion sequence a	nd visible surface detection	methods				
Course Contents							
UNIT-I		Introduction		07 Hours			
Application areas of Co	mputer Graphic	s, overview of graphics syst	tems, video-display de	vices,			
raster-scan systems, ra	ndom-scan syst	ems, graphics monitors an	nd work stations and	input			
devices							
Output primitives: P	oints and lines	, line drawing algorithm	s (DDA and Bresent	nam's			
Algorithm) circle- gene	rating algorithm	ns and ellipse - generating a	algorithms				
Polygon Filling: Scan-	ine algorithm, b	oundary-fill and flood-fill	algorithms				
UNIT-II		transformations		08 Hours			
2-D geometric trans	formations: T	ranslation, scaling, rotat	ion, reflection and	shear			
transformations, matrix	representations	and homogeneous coordin	nates, composite transf	orms,			
transformations between coordinate systems							
2-D viewing: The viewing pipeline, viewing coordinate reference frame, window to view-port							
coordinate transformation viewing functions clipping operations point clipping Lipe							
clipping-Cohen Sutherland algorithms Polygon clipping-Sutherland Hodgeman polygon							
clipping algorithm							
chpping argonunm.							
UNIT-III		object representatio	n	08 Hours			

3-D object representation: Polygon surfaces, quadric surfaces, spline representation, Hermite curve, Bezier curve and B-Spline curves, Bezier and B-Spline surfaces, Polygon rendering methods, color models and color applications.

UNIT-IV	Geometric transformations	07
		Hours

3-D Geometric transformations: Translation, rotation, scaling, reflection and shear transformations, composite transformations.

3-D viewing: Viewing pipeline, viewing coordinates, projections, view volume and general projection transforms and clipping.

UNIT-V	Computer animation	08
		Hours

Design of animation sequence, general computer animation functions, raster animations, computer animation languages, key frame systems, motion specifications.

Visible surface detection methods: Classification, back-face detection, depth-buffer method, BSP- tree method, area sub-division method and octree method.

TEXT BOOKS:

1. "Computer Graphics C version", Donald Hearn and M. Pauline Baker, Pearson Education

REFERENCE BOOKS:

- 1. Procedural elements for Computer Graphics, David F Rogers, Tata Mc Graw hill, 2nd edition.
- 2. Principles of Interactive Computer Graphics", Neuman and Sproul, TMH.
- 3. Principles of Computer Graphics, Shalini Govil, Pai, 2005, Springer.
- 4. "Computer Graphics Principles & practice", second edition in C, Foley, Van Dam, Feiner and Hughes, Pearson Education.
- 5. Computer Graphics, Steven Harrington, TMH.

INTERNAL ASSESSMENT (IA)

Two internal assessments and an end semester examination to test students' reading and writing

B. Tech Data Science

74 | P a g e

skills along with their grammatical and lexical competence. Assessment will include following things:

- Internal Assessment: 25 Marks 1. Attendance
 - 2. Assignments
 - 3. Case Study/Mini Project/Presentation
- Mid Semester Exam: 25 Marks
- End Semester Exam: 50 Marks

CO's-PO's & PSO's MAPPING

	100	1		a state of the second sec	the set of a local			
Cos	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	3	3	3	2	2	3	3	2
2	94	3	3	1	1	3	3	3
3	2	2	2	2	2	3	2	1
4	1.15	2	2	2	2	3	2	2
5	67	2	2	3	3	3	3	2
Avg	3	2.4	2.4	2	2	3	2.6	2

(1) न्यू कित्यायांच् रा धनिवार)

1 - low, 2 - medium, 3 - high, '-' - no correlation

BTDS 502L: R PROGRAMMING LAB B.Tech. III Year I Sem.

Teaching Scheme:	Credit	Examination S	cheme:				
TH: - 4 Hours/Week	Hours/Week TH: 04 In Sem. Evaluati						
		Mid Sem. Exam:	25 Marks				
		End Sem. Exam:	50 Marks				
~	_	Total	: 100 Marks				
Course Prerequisites: Any programmi	ng language.						
Course Objective:							
• Familiarize with R basic progra	amming concepts, various of	lata structures for hand	lling				
datasets, various graph represe	ntations and Exploratory D	Pata Analysis concepts					
Learning Course Outcome:							
After successful completion of the cour	se, students will able to:						
Setup R programming environ	nent.						
• Understand and use R – Data ty	ypes and R – Data Structure	es.					
Develop programming logic us	ing R – Packages.						
Analyze data sets using R – pro	ogramming capabilities						
Course Contents							
LIST OF EXPERIMENTS			07 Hours				
1. Download and install R-Programmi	ng environment and install	basic					
packages using install.packages() con	nmand in R.						
2 Learn all the basics of P. Programm	ing (Data types, Variables,	Operators etc.)					
2. Learn an the basics of K-Flogramm	ing (Data types, Variables,	Operators etc.,.)					
3. Write R command to							
i) Illustrate summation, subtraction, m	ultiplication, and division of	operations on vectors u	sing vectors.				
ii) Enumerate multiplication and divisi	on operations between mat	rices and vectors in R	console				
4. Write R command to							
i) Illustrates the usage of Vector subse	tting and Matrix subsetting	1.2 1					
ii) write a program to create an array of	of 3×3 matrices with 3 rows	s and 3 columns.					
5 Write an R program to draw i) Pie chart ii) 3D Pie Chart iii) Bar Chart along with chart							
legend by considering suitable CSV	file						
6. Create a CSV file having Speed and	Distance attributes with 10	000 records. Write R p	rogram to				
draw		I	J				
i) Box plots							
	D Tech Dete Seieres						

- ii) Histogram
- iii) Line Graph
- iv) Multiple line graphs
- v) Scatter plot

to demonstrate the relation between the cars speed and the distance.

7. Implement different data structures in R (Vectors, Lists, Data Frames)

8. Write an R program to read a csv file and analyze the data in the file using EDA (Explorative Data Analysis) techniques.

9. Write an R program to illustrate Linear Regression and Multi linear Regression considering suitable CSV file.

TEXT BOOKS:

- 1. R Programming for Data Science by Roger D. Peng
- 2. The Art of R Programming by Norman Matloff Cengage Learning India.

REFERENCE BOOKS:

- 1. Hadley Wickham, Garrett Grolemund, R for Data Science: Import, Tidy, Transform, Visualize, and Model Data 1st Edition, O'Reilly
- 2. Tilman M. Davies, The book of R a first course in programming and statistics, no starch press

INTERNAL ASSESSMENT (IA)

Two internal assessments and an end semester examination to test students' reading and writing skills along with their grammatical and lexical competence. Assessment will include following things:

- Internal Assessment: 25 Marks 1. Attendance
 - 2. Assignments
 - 3. Case Study/Mini Project/Presentation
- Mid Semester Exam: 25 Marks
- End Semester Exam: 50 Marks

CO's-PO's & PSO's MAPPING

Cos	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	3	3	3	2	2	3	3	
2	-/	3	3	1	1	3	3	
3	1-	2	2	2	2	3	2	6.1
4	-	2	2	2	2	3	2	652
5	1	2	2	3	3	3	3	2
Avg	3	2.4	2.4	2	2	3	2.6	

1 - low, 2 - medium, 3 - high, '-' - no correlation

BTDS 503L: DESCRIPTIVE ANALYTICS LAB

B.	Tech. III Year I Sem.						
Teaching Scheme:	Credit	Examination Sector	cheme:				
TH: - 4 Hours/Week	TH: 04	In Sem. Evaluation	: 25 Marks				
		Mid Sem. Exam:	25 Marks				
		End Sem. Exam:	50 Marks				
		Total	: 100 Marks				
Course Prerequisites: Computer Netw	orks Lab Practice						
Course Objective:							
• To understand the working prin	ciple of various communic	ation protocols.					
• To understand the network si	mulator environment and	visualize a network					
topology and observe its perfo	rmance						
• To analyze the traffic flow and	the contents of protocol fra	ames					
Learning Course Outcome:							
After successful completion of the cour	se, students will able to:						
Implement data link layer farm	ing methods						
Analyze error detection and err	or correction codes.						
• Implement and analyze routing	and congestion issues in n	etwork design.					
• Implement Encoding and Deco	ding techniques used in pre	esentation layer					
• To be able to work with differe	ent network tools						
	Course Contents						
List of Experiments			07 Hours				
Lab 1: Introduction to R and Python							
Objective: Familiarize students with basic op	perations and functions in R ar	d Python.					
Tools: R, Python							
1. Install and set up R and Python.							
2. Write simple scripts to perform basic	e arithmetic operations.						
3. Load and explore datasets using R and Lab 2: Data Collection and Importing Data	a Python.						
Objective: Learn methods to collect and imp	a ort data from various sources						
Tools: R, Python, Excel	on data nom various sources.						
1. Import data from CSV, Excel, and w	eb sources.						
2. Clean and preprocess the imported d	ata.						
3. Handle missing values and remove d	3. Handle missing values and remove duplicates.						
Lab 3: Data Cleaning and Preparation							
Objective: Perform data cleaning and prepar	ation tasks.						
Tools: R, Python							
1. Identify and handle missing values.							
2. Detect and remove outliers.							
5. Standardize and normalize data.							
Lau 4. Exploratory Data Allalysis (EDA)							

Objective: Conduct exploratory data analysis to understand data patterns.

Tools: R, Python

- 1. Compute summary statistics (mean, median, mode).
- 2. Create histograms, box plots, and scatter plots.
- 3. Identify patterns and correlations in the data.

Lab 5: Descriptive Statistics

Objective: Apply descriptive statistical methods to summarize data.

Tools: R, Python

- 1. Calculate measures of central tendency (mean, median, mode).
- 2. Calculate measures of dispersion (range, variance, standard deviation).
- 3. Visualize the results using appropriate charts.

Lab 6: Probability Distributions

Objective: Understand and apply different probability distributions.

Tools: R, Python

- 1. Generate and plot normal, binomial, and Poisson distributions.
- 2. Fit data to these distributions.
- 3. Analyze real-world data using these distributions.

Lab 7: Hypothesis Testing

Objective: Conduct hypothesis testing on datasets.

Tools: R, Python

- 1. Perform t-tests and chi-square tests.
- 2. Interpret p-values and confidence intervals.
- 3. Apply these tests to real-world data.

Lab 8: Data Visualization with Excel

Objective: Create basic data visualizations using Excel.

Tools: Excel

- 1. Create bar charts, line charts, and pie charts.
- 2. Use pivot tables to summarize data.
- 3. Customize charts for better readability.

Lab 9: Advanced Data Visualization with Python

Objective: Use Python libraries for advanced data visualization.

Tools: Python (matplotlib, seaborn)

- 1. Create complex plots like pair plots and heatmaps.
- 2. Customize visualizations with colors and themes.
- 3. Use subplots to compare multiple plots.

Lab 10: Data Visualization with Tableau

Objective: Create interactive data visualizations using Tableau.

Tools: Tableau

- 1. Import data into Tableau.
- 2. Create dashboards and stories.
- 3. Add interactivity to visualizations with filters and actions.

Lab 11: Data Visualization with Power BI

Objective: Develop interactive reports and dashboards using Power BI.

Tools: Power BI

1. Import and transform data in Power BI.

2. Create reports using different visualizations.

3. Develop interactive dashboards with slicers and filters.

Lab 12: Clustering Analysis

Objective: Perform clustering analysis to group similar data points.

Tools: R, Python (scikit-learn)

- 1. Implement K-means clustering.
- 2. Visualize the clusters.
- 3. Evaluate clustering results using silhouette score.

Lab 13: Classification Analysis

Objective: Apply classification techniques to labeled data.

Tools: R, Python (scikit-learn)

- 1. Implement decision trees and logistic regression.
- 2. Evaluate models using confusion matrix and accuracy.
- 3. Visualize decision boundaries.

Lab 14: Association Rule Mining

Objective: Discover associations and relationships in large datasets.

- Tools: R, Python
 - 1. Apply the Apriori algorithm.
 - 2. Extract frequent itemsets and association rules.
 - 3. Visualize association rules.

Lab 15: Anomaly Detection

Objective: Identify outliers and anomalies in data.

Tools: R, Python

- 1. Implement isolation forest and DBSCAN algorithms.
- 2. Visualize anomalies in the dataset.
- 3. Analyze and interpret the results.

Lab 16: Creating Reports and Dashboards in Tableau

Objective: Design professional reports and dashboards.

Tools: Tableau

- 1. Create comprehensive reports with multiple visualizations.
- 2. Develop interactive dashboards.
- 3. Share reports and dashboards with stakeholders.

Lab 17: Creating Reports and Dashboards in Power BI

Objective: Design and implement interactive reports and dashboards.

Tools: Power BI

- 1. Develop detailed reports with various visualizations.
- 2. Implement interactive elements like slicers.
- 3. Publish and share dashboards with stakeholders.

Lab 18: Data Storytelling with Visualizations

Objective: Learn techniques for effective data storytelling.

Tools: Tableau, Power BI

- 1. Create a narrative using visualizations.
- 2. Develop a cohesive story through a series of visualizations.
- 3. Present the story to a simulated audience.

Lab 19: Real-World Data Analysis Project 1

Objective: Apply learned skills to analyze a real-world dataset.

Tools: R, Python, Tableau, Power BI

- 1. Collect and clean a real-world dataset.
- 2. Perform exploratory data analysis.
- 3. Present findings through visualizations and reports.

Lab 20: Real-World Data Analysis Project 2

Objective: Conduct a comprehensive analysis on a different dataset.

Tools: R, Python, Tableau, Power BI

- 1. Prepare and preprocess the dataset.
- 2. Apply statistical and data mining techniques.
- 3. Develop a dashboard to present insights.

Lab 21: Advanced Data Mining Techniques

Objective: Use advanced data mining methods to uncover insights.

Tools: R, Python

- 1. Implement clustering, classification, and regression.
- 2. Analyze complex datasets.
- 3. Interpret the results and derive insights.

Lab 22: BI Project Management

Objective: Manage and execute a BI project from start to finish.

- Tools: Excel, Power BI
 - 1. Plan a BI project.
 - 2. Develop and implement the project.
 - 3. Measure the project's success and value.

Lab 23: Evaluating BI Success and Value

Objective: Measure the effectiveness of BI initiatives.

Tools: Excel, Power BI

- 1. Define metrics for success.
- 2. Collect and analyze data related to BI initiatives.
- 3. Present evaluation results.

TEXT BOOK:

1. Computer Networks, Andrew S Tanenbaum, David. j. Wetherall, 5th Edition. Pearson Education/PHI.

REFERENCE BOOKS:

- 1. An Engineering Approach to Computer Networks, S. Keshav, 2nd Edition, Pearson Education.
- 2. Data Communications and Networking Behrouz A. Forouzan. 3rd Edition, TMH.

INTERNAL ASSESSMENT (IA)

Two internal assessments and an end semester examination to test students' reading and writing skills along with their grammatical and lexical competence. Assessment will include following things:

Internal Assessment: 25 Marks - 1. Attendance

2. Assignments

किंग्राचान स धनिडला

3. Case Study/Mini Project/Presentation

• Mid Semester Exam: 25 Marks

• End Semester Exam: 50 Marks

CO's-PO's & PSO's MAPPING

Cos	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	3	3	3	2	2	3	3	2
2	-	3	3	1	1	3	3	3
3	-	2	2	2	2	3	2	1
4	-	2	2	2	2	3	2	2
5	-	2	2	3	3	3	3	2

B. Tech Data Science 8 | P a g e

Avg 3 2.4 2.4 2 2 3 2.6 2	-								
	Avg	3	2.4	2.4	2	2	3	2.6	2

BTDS 505L: ETL- KAFKA/TALEND B.Tech. III Year I Sem.

	Teaching Scheme:	Credit	Examination Security Examination	cheme:			
	TH: - 4 Hours/Week	TH: 04	In Sem. Evaluation Mid Sem. Exam:	25 Marks 25 Marks			
			End Sem. Exam:	50 Marks			
			Total	: 100 Marks			
Course	Prerequisites: None						
Course	Objective:						
•	Develop a comprehensive unde	erstanding of Extract, Trans	sform, Load (ETL)				
	processes using Apache Kafka	and Talend.					
•	Understand how to scale Kafka	a clusters seamlessly to han	dle growing data				
	volumes, ensuring optimal per	formance for ETL operatio	ns.				
Learnin After si	ng Course Outcome: accessful completion of the cour	se, students will able to					
1	Learn to design and deploy fau	lt-tolerant Kafka clusters, e	ensuring data				
	integrity and availability in real-world scenarios						
2	2 Gain practical experience in cluster management topic creation and basic						
	operations such as producing and consuming messages.						
Course Contents							
LIST OF EXPERIMENTS 07 Hours							
1.	1. Install Apache Kafka on a single node.						
2.	Demonstrate setting up a single	e-node, single-broker Kafka	a cluster and show basi	ic			
	operations such as creating topics and producing/consuming messages.						
3.	3. Extend the cluster to multiple brokers on a single node.						
4.	4. Write a simple Java program to create a Kafka producer and Produce messages to a topic.						
5.	5. Implement sending messages both synchronously and asynchronously in the producer.						
6.	6. Develop a Java program to create a Kafka consumer and subscribe to a topic and						
consume messages.							
7.	7. Write a script to create a topic with specific partition and replication factor settings.						
8. Simulate fault tolerance by shutting down one broker and observing the cluster behavior.							
9.	9. Implement operations such as listing topics, modifying configurations, and deleting topics.						
10.	. Introduce Kafka Connect and c	lemonstrate how to use con	nectors to integrate wi	th			
	external systems.						
11.	Implement a simple word coun	t stream processing applica	tion using Kafka Strea	m			
12	. Implement Kafka integration w	vith the Hadoop ecosystem.					
		B. Tech Data Science					

TEXT BOOK:

1. Neha Narkhede, Gwen Shapira, Todd Palino, Kafka – The Definitive Guide: Realtime data and stream processing at scale, O'Reilly

INTERNAL ASSESSMENT (IA)

Two internal assessments and an end semester examination to test students' reading and writing skills along with their grammatical and lexical competence. Assessment will include following things:

• Internal Assessment: 25 Marks - 1. Attendance

2. Assignments

3. Case Study/Mini Project/Presentation

- Mid Semester Exam: 25 Marks
- End Semester Exam: 50 Marks

CO's-PO's & PSO's MAPPING

Cos	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	3	3	3	2	2	3	3	2
2	1	3	3	an ort	111 11	3	3	3
3	-	2	2	2	2	3	2	1
4	-	2	2	2	2	3	2	2
5	-	2	2	3	3	3	3	2
Avg	3	2.4	2.4	2	2	3	2.6	2

1 - low, 2 - medium, 3 - high, '-' - no correlation

BTDS 601: AUTOMATA THEORY AND COMPILER DESIGN B Tech, III Vear II Sem

		cent in rear in genit						
Teaching Sch	eme:	Credit	Examination S	cheme:				
TH: - 4 Hours	/Week	TH: 04	In Sem. Evaluation	: 25 Marks				
			Mid Sem. Exam:	25 Marks				
			End Sem. Exam:	50 Marks				
			Total	: 100 Marks				
Course Prerequisites: N	lone							
Course Objective:								
• To introduce th	e fundamental c	concepts of formal language	es, grammars and autor	mata theory.				
• To understand	deterministic a	nd non-deterministic mach	nines and the differen	ces				
between decida	bility and unde	cidability.						
• Introduce the m	najor concepts	of language translation and	l compiler design and					
impart the know	impart the knowledge of practical skills necessary for constructing a compiler.							
• Topics include	• Topics include phases of compiler, parsing, syntax directed translation, type							
checking use of	checking use of symbol tables, intermediate code generation							
Learning Course Outco	me:							
After successful comple	tion of the cour	se, students will able to:						
• Able to employ finite state machines for modeling and solving computing problems.								
Able to design context free grammars for formal languages.								
Able to distingu	Able to distinguish between decidability and undecidability.							
• Demonstrate the knowledge of patterns, tokens & regular expressions for lexical analysis.								
Acquire skills in using lex tool and design LR parsers								
Course Contents								
UNIT-I		Finite Automata		07 Hours				
Introduction to Finite Automata: Structural Representations, Automata and Complexity, the								
Central Concepts of Automata Theory – Alphabets, Strings, Languages, Problems.								
Nondeterministic Finite Automata: Formal Definition, an application, Text Search, Finite								
Automata with Epsilon-Transitions.								
Deterministic Finite Automata: Definition of DFA. How A DFA Process Strings. The								
language of DFA, Conversion of NFA with €-transitions to NFA without €-transitions.								
Conversion of NFA to I	DFA							
UNIT-II		Regular Expressions		08 Hours				

Finite Automata and Regular Expressions, Applications of Regular Expressions, Algebraic Laws						
for Regular Expressions,	Conversion of Finite Automata to Regular Expressions.					
Pumping Lemma for Re	gular Languages:					
Statement of the pumping	lemma, Applications of the Pumping Lemma.					
Context-Free Gramman	rs: Definition of Context-Free Grammars, Derivations Using a	Grammar,				
Leftmost and Rightmost D	perivations, the Language of a Grammar, Parse Trees, Ambiguity in	Grammars				
and Languages.	Antomoto	00 11.000				
UN11-111	Automata	o nours				
Push Down Automata:	Definition of the Pushdown Automaton, the Languages of a PL	DA,				
Equivalence of PDA's and	d CFG's, Acceptance by final state					
Turing Machines:						
Introduction to Turing Ma	achine, Formal Description, Instantaneous description, The langua	age				
of a Turing machine	of a Turing machine					
Undecidability:						
Undecidability, A Langua	age that is Not Recursively Enumerable, An Undecidable					
Problem That is RE, Undecidable Problems about Turing Machines						
UNIT-IV	Introduction: The structure of a compiler	07				
		Hours				
Lexical Analysis: The Re	ole of the Lexical Analyzer, Input Buffering, Recognition of					
Tokens, The Lexical- An	alyzer Generator Lex					
Syntax Analysis: Introdu	action, Context-Free Grammars, Writing a Grammar, Top-Down					
Parsing, Bottom- Up Parsing, Introduction to LR Parsing: Simple LR, More Powerful LR						
Parsers						
UNIT-V	Syntax-Directed Translation	08				
		Hours				
Syntax-Directed Definitions, Evaluation Orders for SDD's, Syntax- Directed Translation						
Schemes, Implementing L-Attributed SDD's.						
Intermediate-Code Generation: Variants of Syntax Trees, Three-Address Code						
Run-Time Environment	s: Stack Allocation of Space, Access to Nonlocal Data on the Sta	ick, Heap				
Management.						

TEXT BOOKS:

- Introduction to Automata Theory, Languages, and Computation, 3^{rd.} Edition, John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman, Pearson Education.
- 2. Theory of Computer Science- Automata languages and computation, Mishra and Chandrashekaran, 2nd Edition, PHI.

REFERENCE BOOKS:

1. Compilers: Principles, Techniques and Tools, Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffry

D. Ullman, 2nd Edition, Pearson.

- 2. Introduction to Formal languages Automata Theory and Computation, Kamala Krithivasan, Rama R, Pearson.
- 3. Introduction to Languages and The Theory of Computation, John C Martin, TMH.
- 4. lex & yacc John R. Levine, Tony Mason, Doug Brown, O'reilly
- 5. Compiler Construction, Kenneth C. Louden, Thomson. Course Technology.

INTERNAL ASSESSMENT (IA)

Two internal assessments and an end semester examination to test students' reading and writing skills along with their grammatical and lexical competence. Assessment will include following things:

Internal Assessment: 25 Marks - 1. Attendance

2. Assignments

3. Case Study/Mini Project/Presentation

- Mid Semester Exam: 25 Marks
- End Semester Exam: 50 Marks

CO's-PO's & PSO's MAPPING

Cos	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	3	3	3	2	2	3	3	2
2	-	3	3	1	1	3	3	3
3	-	2	2	2	2	3	2	1
4	-	2	2	2	2	3	2	2
5	-	2	2	3	3	3	3	2
Avg	3	2.4	2.4	2	2	3	2.6	2

1 - low, 2 - medium, 3 - high, '-' - no correlation

BTDS 602: MACHINE LEARNING B Tech III Vear II Sem

D, 1		
Teaching Scheme:	Credit	Examination Scheme:
TH: - 4 Hours/Week	TH: 04	In Sem. Evaluation: 25 Marks
		Mid Sem. Exam: 25 Marks
		End Sem. Exam: 50 Marks
		Total : 100 Marks

Course Prerequisites: 10 + 2 Statistics

Course Objective:

- Understand the core principles and theories behind machine learning algorithms.
- Gain practical experience in implementing and applying supervised and unsupervised learning techniques.
- Explore advanced topics such as deep learning and reinforcement learning.
- Learn how to evaluate and optimize machine learning models for performance and accuracy.
- Develop critical thinking and problem-solving skills in the context of data-driven decision making.
- Explore ethical considerations and societal implications of machine learning technologies.
- Build a foundation for further study or career advancement in the field of machine learning and artificial intelligence.

Learning Course Outcome:

After successful completion of the course, students will able to:

- Implement various machine learning algorithms for regression, classification, and clustering tasks.
- Evaluate and compare the performance of different machine learning models using appropriate metrics.
- Apply deep learning techniques to solve complex problems in image recognition, natural language processing, and other domains.
- Understand the principles of reinforcement learning and its applications in areas such as gaming and robotics.
- Interpret and communicate the results of machine learning experiments effectively.
- Demonstrate awareness of ethical considerations and biases inherent in machine learning systems.
- Apply machine learning techniques to real-world datasets to extract meaningful insights and make datadriven decisions.

	Course Contents						
UNIT-I	Introduction to Machine Learning	07 Hours					
Introduction an	d Motivation						
 Definition 	on of Machine Learning						
 Motivati 	on for Machine Learning						
 Historica 	 Historical Context of Machine Learning Techniques 						
Applications of	Machine Learning						
 Broad A 	pplication Areas						
 Specific 	Use Cases						
• Ethical C	Considerations and Social Implications						
• The Origin and	Evolution of Machine Learning						
○ Early Fo	undations						
 Develop 	ments in Statistical Learning Theory						

B. Tech Data Science

	UNIT-III	Unsupervised Learning	08 Hou
	 Neural Ne 	tworks for Classification	
	 Ensemble 	Learning Methods	
•	Advanced Techni	ques in Classification	
	 Degistic K Performan 	ce Evaluation	
	\circ Logistic R	egression	
	• Decision I	actor Machines (SVMs)	
	o Overview	or Classification	
•	Classification		
	• Nonlinear	Regression	
	• Multiple R	egression	
	 Simple Lin 	near Regression	
	o Overview	of Regression Analysis	
•	Regression		
	 Importance 	e and Applications	
	 Componer 	its of Supervised Learning	
	o Overview	of Supervised Learning	
•	Introduction to S	unervised Learning	
	UNIT-II	Supervised Learning	08 Hou
	• Reinforcer	nent Learning	
	• Supervised	1 Learning	
•	Overview of Mac	hine Learning Methods	
	• Deployme	nt and Monitoring	
	 Model Tra 	ining and Evaluation Pipeline	
	 Data Prepr 	ocessing and Cleaning	
•	Steps to Apply M	achine Learning	
	 Interpretat 	oility and Explainability	
	 Model Sel 	ection and Hyperparameter Tuning	
	• Cross-Val	dation Techniques	
	• Evaluation	Metrics and Performance Measures	
•	Assessing Learnin	ng Success	
	\circ Model Co	mplexity and Interpretability	
	• Generalize	tion in Machine Learning	
	• Abstractio	n in Machine Learning	
•	Foundational Con	ncepts	
	• Contempo	rary Trends and Future Directions	
	\circ Rise of Ne	ural Networks	

• Introdu	ection to Unsupervised Learning	
• Introduc	Overview of Unsupervised Learning	
0	Importance and Applications	
• Clustor	ing Toobniquos	
• Cluster	Overview of Clustering	
0	Major Clustering Approaches	
0	Fugluating Chuster Quality	
D .		
• Dimens	ionality Reduction	
0	Overview of Dimensionality Reduction	
0	Linear Techniques	
0	Nonlinear Techniques	
• Advance	ed Clustering Methods	
0	Soft Clustering vs. Hard Clustering	
0	Fuzzy C-Means Clustering	
0	Gaussian Mixture Models (GMM)	
0	Spectral Clustering	
UNIT-IV	Advanced Topics in Machine Learning	07 Hou
<u> </u>		
• Ensem	ble Learning Methods	
0	Introduction to Ensemble Learning	
°	Bagging and Boosting	
• Deep L	earning	
0	Introduction to Deep Learning	
0	Neural Networks, CNNs, RNNs	
Reinfor	cement Learning	
0	Introduction to Reinforcement Learning	
0	Q-Learning, DQNs, Policy Gradient Methods	
Advance	ed Techniques in Model Interpretability	
0	Model-Agnostic Interpretability Techniques	
0	Model-Specific Interpretability Techniques	
UNIT-V	Model Evaluation and Selection	08 Hou
• Madal	Evolution Matrice	
• Intodel	Introduction to Evaluation Matrice	
0	Classification Evaluation Matrice	
	Pagrassion Evaluation Matrice	
0		
0 0	X-2-1-4	
• Cluster	Validation Measures	
• Cluster	Validation Measures Introduction to Cluster Validation External on d Internal Cluster Validation	
• Cluster	Validation Measures Introduction to Cluster Validation External and Internal Cluster Validation Measures	
• Cluster	Validation Measures Introduction to Cluster Validation External and Internal Cluster Validation Measures Relative Validity Measures	
Cluster O O Cluster O O O C Regress	Validation Measures Introduction to Cluster Validation External and Internal Cluster Validation Measures Relative Validity Measures ion Model Assessment Techniques	
• Cluster • Cluster • Cluster	Validation Measures Introduction to Cluster Validation External and Internal Cluster Validation Measures Relative Validity Measures ion Model Assessment Techniques Overview of Regression Model Assessment	

0	Model Selection Techniques	
0	Cross-Validation Techniques	
• Hyper	parameter Tuning and Optimization	
0	Introduction to Hyperparameter Tuning	
0	Grid Search and Random Search	
0	Bayesian Optimization	
0	Automated Hyperparameter Tuning Frameworks	
UNIT-VI	Advanced Concepts and Applications	08 Hours
Transf	er Learning and Domain Adaptation	
0	Introduction to Transfer Learning	
0	Techniques in Transfer Learning	
0	Applications of Transfer Learning	
• Meta-l	Learning and Learning to Learn	
0	Overview of Meta-Learning	
0	Techniques in Meta-Learning	
0	Applications of Meta-Learning	
Advers	sarial Machine Learning and Robustness	
0	Understanding Adversarial Machine Learning	
0	Defenses Against Adversarial Attacks	
0	Applications and Implications	
• Fairne	ss, Accountability, and Transparency	
0	A accountability in Machine Learning	
0	Ethical Considerations and Social Implications	
0	Ethical Considerations and Social Implications	
EXT BO	OKS:	
1. Step	hen Marsland, -Machine Learning - An Algorithmic Perspectiv	ve,
Seco	ond Edition, Chapman and Hall/CRC Machine Learning and Pattern	
Reco	gnition Series, 2014.	
EFEREN	CE BOOKS:	
2 "Han	ds-On Machine Learning with Scikit-Learn Keras and TensorFlow" by Aurélien	Géron
3 "Patte	ern Recognition and Machine Learning" by Christopher M Bishon	Geron
4 "Deer	b Learning" by Ian Goodfellow Yoshua Bengio and Aaron Courville	
5. "Pvth	on Machine Learning" by Sebastian Raschka and Vahid Mirialili	
6. "Mac	hine Learning: A Probabilistic Perspective" by Kevin P. Murphy	
	oduction to Machine Learning with Python: A Guide for Data Scientists" by And	reas C. Müller and
7. "Intro	Guide	
7. "Intro Sarah	Guido	
7. "Intro Sarah 8. "Rein	forcement Learning: An Introduction" by Richard S. Sutton and Andrew G. Barto)

INTERNAL ASSESSMENT (IA)

Two internal assessments and an end semester examination to test students' reading and writing skills along with their grammatical and lexical competence. Assessment will include following things:

• Internal Assessment: 25 Marks - 1. Attendance

2. Assignments

3. Case Study/Mini Project/Presentation

- Mid Semester Exam: 25 Marks
- End Semester Exam: 50 Marks

CO's-PO's & PSO's MAPPING

Cos	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	3	3	3	2	2	3	3	2
2	1	3	3	ab ant	nu un	3	3	3
3	-	2	2	2	2	3	2	1
4	-	2	2	2	2	3	2	2
5	-	2	2	3	3	3	3	2
Avg	3	2.4	2.4	2	2	3	2.6	2

1 - low, 2 - medium, 3 - high, '-' - no correlation

BTDS 603: PREDICTIVE ANALYTICS

Teaching Scheme:	Credit	Examination Scheme:
TH: - 4 Hours/Week	TH: 04	In Sem. Evaluation: 25 Marks
		Mid Sem. Exam: 25 Marks
		End Sem. Exam: 50 Marks
		Total : 100 Marks
	·	

Course Prerequisites: None

Course Objective:

- Understand the fundamental concepts and importance of predictive analytics in various industries.
- Learn methods for data collection, cleaning, and preprocessing, including handling missing values and normalization.
- Gain proficiency in exploratory data analysis and feature engineering.
- Master the application of probability theory and statistical methods in predictive modeling.
- Develop skills in building and interpreting regression models, including simple and multiple linear regression.
- Explore machine learning algorithms for supervised and unsupervised learning, as well as ensemble methods.
- Understand and apply time series analysis techniques for forecasting.
- Learn model evaluation and validation techniques to ensure robust predictive performance.
- Gain practical experience in deploying, monitoring, and updating predictive models.
- Apply predictive analytics techniques to solve real-world problems in various industries, such as business
 analytics, financial forecasting, marketing, healthcare, and e-commerce.

Learning Course Outcome:

After successful completion of the course, students will able to:

- Explain the significance and applications of predictive analytics in decision-making processes.
- Prepare and preprocess datasets for predictive modeling tasks.
- Apply various data mining and machine learning techniques to extract patterns and build predictive models.
- Evaluate and compare predictive models using appropriate metrics and validation techniques.
- Develop and interpret predictive models using regression analysis and advanced machine learning algorithms.
- Implement time series forecasting models and understand their applications.
- Deploy predictive models and monitor their performance in a real-world setting.
- Apply predictive analytics techniques to specific industry problems and present findings effectively.

Course Contents

UNIT-I Introduction to Predictive Analytics, Data Understanding and Preparation 07 Hours 1.1 Overview of Predictive Analytics Definition of Predictive Analytics: Understanding what predictive analytics is and its role in data analysis. History and Evolution: A brief history of predictive analytics and its evolution over time. Key Components: Introduction to the major components of predictive analytics, including data collection, data processing, model building, and model deployment.

B. Tech Data Science

1.2 Importance and Applications in Various Industries **Business**: Customer Retention: Using predictive analytics to predict customer churn and implement retention strategies. Sales Forecasting: Forecasting future sales based on historical data. Finance: Risk Management: Predicting financial risks and defaults. Fraud Detection: Identifying potential fraudulent activities. Marketing: Targeted Marketing: Personalizing marketing campaigns based on customer behavior predictions. Market Basket Analysis: Understanding product purchase patterns. Healthcare: Predictive Diagnosis: Predicting disease outbreaks and patient health outcomes. Resource Allocation: Optimizing the allocation of healthcare resources. Others: Manufacturing: Predicting equipment failures and maintenance needs. Retail: Inventory management and demand forecasting. Government: Predictive policing and public policy formulation. 1.3 Key Concepts and Terminology Data Mining: Techniques for extracting patterns from large datasets. Machine Learning: Algorithms that allow computers to learn from and make predictions based on data. Big Data: Large and complex data sets that traditional data-processing software can't handle efficiently. Predictive Model: A model that predicts future outcomes based on historical data. Training Data: The data used to train predictive models. Test Data: Data used to test the accuracy of predictive models. Overfitting: A model that fits the training data too well but performs poorly on unseen data. Underfitting: A model that is too simple to capture the underlying patterns in the data. Feature Engineering: The process of selecting, modifying, or creating features (variables) for use in model building. Cross-Validation: A technique for assessing how the results of a predictive model will generalize to an independent data set. 1.4 Steps in the Predictive Analytics Process Problem Definition: Understanding the Business Problem: Clearly defining the problem you aim to solve with predictive analytics. Setting Objectives: Establishing what you want to achieve through predictive modeling. Data Collection: Sources of Data: Identifying and gathering relevant data from various sources. Data Quality: Ensuring the accuracy, completeness, and reliability of the data collected. Data Preparation: Data Cleaning: Removing noise and correcting inconsistencies in the data. Data Transformation: Normalizing and transforming data to a suitable format for analysis. Feature Engineering: Creating new features from existing data to improve model performance. Model Building: Selecting Algorithms: Choosing appropriate algorithms based on the problem and data. Training the Model: Using training data to create the predictive model. Tuning Hyperparameters: Adjusting the model parameters to optimize performance. **B. Tech Data Science** 23 | Page

Validation Techniques: Using cross-validation and other techniques to evaluate model performance.
Performance Metrics: Assessing model accuracy, precision, recall, F1-score, ROC-AUC, etc.
Model Deployment:
Integration: Integrating the model into business processes or systems.
Monitoring: Continuously monitoring model performance and updating as needed.
Interpretation and Communication:
Result Interpretation: Understanding and interpreting the results generated by the model.
Reporting: Communicating findings and insights to stakeholders through reports and visualizations.
2.1 Data Collection Methods
Primary Data Collection:
Surveys and Questionnaires: Designing and conducting surveys for data collection.
Experiments: Collecting data through controlled experiments.
Observations: Gathering data through direct observation.
Secondary Data Collection:
Public Databases: Using data from public repositories and government databases.
Corporate Databases: Accessing internal corporate databases for historical data.
Web Scraping: Extracting data from websites and online sources.
Automated Data Collection:
Sensors and IoT Devices: Collecting data from interconnected devices.
APIs: Using Application Programming Interfaces for data retrieval from different platforms.
2.2 Data Cleaning and Preprocessing
Data Cleaning:
Handling Inconsistent Data: Correcting errors and inconsistencies in the data.
Removing Duplicates: Identifying and removing duplicate records.
Outlier Detection and Treatment: Detecting outliers and deciding whether to remove or transform them
Data Transformation and Normalization:
Standardization: Transforming data to have a mean of zero and a standard deviation of one.
Min-Max Normalization: Scaling data to fit within a specified range, usually 0 to 1.
Log Transformation: Applying logarithmic transformation to stabilize variance and make the data mor
normal distribution-like.
Categorical Data Encoding: Converting categorical variables into numerical format using technique
like one-not encoding and label encoding.
Handling Missing Values:
Identifying Missing Data: Detecting missing values in the dataset.
Imputation Techniques: Mean Median Media Imputation, Deplesing missing values with the mean median or media of th
column
K Nearest Naighbors (KNN) Imputation: Using KNN algorithm to astimate and raplace missing
values
Regression Imputation: Using regression models to predict and fill in missing values
Multiple Imputation: Generating multiple imputations to account for the uncertainty of missing date
2.3 Exploratory Data Analysis (EDA)
Descriptive Statistics:
Measures of Central Tendency: Calculating mean median and mode
Measures of Dispersion: Understanding range variance and standard deviation
B Tach Data Science

Distribution Analysis: Analyzing the distribution of data using histograms, probability plots, and skewness/kurtosis measures.

Data Visualization Techniques:

Univariate Analysis: Visualizing single variable distributions using histograms, box plots, and density plots.

Bivariate Analysis: Exploring relationships between two variables using scatter plots, correlation matrices, and bar charts.

Multivariate Analysis: Visualizing relationships among multiple variables using pair plots, heatmaps, and parallel coordinates plots.

Time Series Visualization: Plotting time series data to identify trends and patterns over time.

2.4 Feature Engineering

Feature Selection:

Filter Methods: Using statistical tests and metrics (e.g., Chi-square test, ANOVA, correlation coefficient) to select relevant features.

Wrapper Methods: Employing algorithms like Recursive Feature Elimination (RFE) to identify the best subset of features.

Embedded Methods: Using algorithms that perform feature selection during the model training process (e.g., Lasso regression, decision trees).

Feature Extraction:

Principal Component Analysis (PCA): Reducing dimensionality by transforming features into a new set of orthogonal components.

Linear Discriminant Analysis (LDA): Reducing dimensionality while preserving class separability.

t-Distributed Stochastic Neighbor Embedding (t-SNE): Visualizing high-dimensional data in a lowerdimensional space.

Text Feature Extraction: Converting text data into numerical features using techniques like TF-IDF, word embeddings, and n-grams.

Image Feature Extraction: Using convolutional neural networks (CNNs) and other techniques to extract features from image data.

UNIT-II	Probability Theory and Statistics for Predictive Modeling, Regression 08 Hours		
	Analysis, Probability Theory and Statistics for Predictive Modeling		
3.1 Basics of Probability Theory			
Foundat	ional Concepts:		
Proba	bility Definitions: Understanding probability as a measure of uncertainty.		
Sample Space: Defining the set of all possible outcomes.			
Event	s: Identifying and describing events within a sample space.		
Probabil	ity Rules:		
Addit	ion Rule: Calculating the probability of the union of two events.		
Multiplication Rule: Calculating the probability of the intersection of two events.			
Comp	Complementary Rule: Understanding the probability of the complement of an event.		
Conditional Probability and Independence:			
Condi	Conditional Probability: Calculating the probability of an event given another event has occurred.		
Indep	endence: Identifying independent events and understanding their implications.		
3.2 Probab	ility Distributions		
Discrete	and Continuous Distributions:		
Discre	ete Distributions:		
	B. Tech Data Science		

Binomial Distribution: Characteristics, mean, and variance.
Poisson Distribution: Characteristics, mean, and variance.
Continuous Distributions:
Uniform Distribution: Understanding the properties and applications.
Exponential Distribution: Characteristics and applications in time-between-events modeling.
Normal Distribution:
Properties of Normal Distribution: Mean, variance, skewness, and kurtosis.
Standard Normal Distribution: Z-scores and the standard normal table.
Central Limit Theorem: Understanding its significance in the context of predictive modeling.
Applications of Normal Distribution: Usage in confidence intervals, hypothesis testing, and error
analysis.
3.3 Statistical Inference
Point Estimation and Confidence Intervals:
Point Estimation:
Estimators and Estimates: Understanding the concepts and properties of estimators.
Methods of Estimation: Maximum likelihood estimation (MLE) and method of moments.
Confidence Intervals:
Constructing Confidence Intervals: For population mean and proportion.
Interpretation: Understanding the confidence level and interval bounds.
Margin of Error: Calculating and interpreting the margin of error.
Hypothesis Testing:
Formulating Hypotheses:
Null Hypothesis (H0): Definition and formulation.
Alternative Hypothesis (H1): Definition and formulation.
Types of Errors:
Type I Error (α): Probability and implications.
Type II Error (β): Probability and implications.
Test Statistics and P-values:
Calculating Test Statistics: Using Z-tests, T-tests, Chi-square tests, and F-tests.
P-values: Interpretation and decision-making.
Decision Rules:
Significance Level: Understanding α and its role in hypothesis testing.
Critical Values: Using critical values to make decisions.
Power of the Test: Understanding and calculating the power of a test.
4.1 Simple Linear Regression
4.1.1 Model Assumptions
Linearity: Relationship between independent and dependent variables is linear.
Independence: Observations are independent of each other.
Homoscedasticity: Constant variance of errors.
Normality: Errors are normally distributed.
No Multicollinearity: For single predictor, this is not applicable.
4.1.2 Estimation of Parameters
Least Squares Method: Derivation and computation.
Interpretation of Coefficients: Slope and intercept.
Standard Error of Estimate: Calculation and interpretation.
Confidence Intervals for Parameters: Construction and interpretation.
B Tech Data Science

4.1.3 Go	odness of Fit: R-squared			
Definition and Calculation: Proportion of variance explained by the model.				
Adjusted R-squared: Adjusting for the number of predictors.				
Interpretation: Assessing model fit.				
4.2 Multiple Linear Regression				
4.2.1 Model Building				
Select	Selecting Predictors: Criteria for inclusion.			
Mode	Specification: Including interaction terms and polynomial terms.			
Assun	notions: Linearity, independence, homoscedasticity, normality, and no multicollin	earity.		
4 2 2 Int	erpretation of Coefficients			
Partia	Slopes: Meaning and interpretation in the context of other variables			
Stand	ardized Coefficients: Comparison across variables			
Signif	icance Testing. T-tests for individual coefficients			
4 2 3 Di	agnostics and Residual Analysis			
Pasida Resida	al Plots: Checking assumptions			
Influe	ntial Points: Leverage and Cook's distance			
Varia	ace Inflation Factor (VIF): Detecting multicollinearity			
Norm	al Probability Plots: Checking normality of residuals			
A 3 Advanc	al Probability Plots. Checking normality of residuals.			
4.3 Auvano	gistic Degression			
4.3.1 L0	gistic Regression			
	Functions: Modeling probability of binary outcomes.			
Logit	Function: Definition and interpretation.			
Udds .	Ratios: Calculation and interpretation.			
Mode	I Fitting: Maximum likelihood estimation.			
Goodi	ness of Fit: Likelihood-ratio tests, Hosmer-Lemeshow test.			
4.3.2 Po	4.3.2 Polynomial Regression			
Highe	r Order Terms: Including polynomial terms in regression.			
Mode	Building: Selecting the degree of the polynomial.			
Interp	retation: Understanding coefficients in polynomial terms.			
Overf	itting: Balancing model complexity and predictive accuracy.			
UNIT-III	Machine Learning Algorithms for Predictive Modeling, Time Series	08 Hours		
	Analysis			
5 1 Overvie	ew of Machine Learning			
Definitic	w of Machine Learning	arning		
Applicat	ions and Use Cases: Various domains like finance healthcare marketing atc	amig.		
Key Concepts and Terminology: Features labels training and testing data model training overfitting				
underfitting				
Evoluati	g. on Matrices Accuracy muscician massli El score DOC AUC			
5.2 Supervised Learning Algorithms				
5.2 Supervi	5.2 Supervised Learning Algorithms			
Structure and Components: Nodes, branches, leaves				
Structure and Components: Nodes, branches, leaves.				
Splitting Criteria: Gini impurity, information gain, entropy.				
Pruning: Avoiding overlitting, post-pruning and pre-pruning techniques.				
Advantages and Limitations: Interpretability, complexity, overfitting issues.				
	B. Tech Data Science			

5.2.2 Random Forests
Ensemble of Trees: Concept of bagging, how random forests combine multiple decision trees.
Bootstrap Aggregating: Sampling with replacement.
Feature Selection: Random selection of features for splitting.
Out-of-Bag Error: Estimating the error of the model.
Advantages and Limitations: Robustness, handling missing values, interpretability.
5.2.3 Support Vector Machines (SVM)
Hyperplane and Margin: Definition, support vectors, and maximum margin.
Kernels: Linear, polynomial, radial basis function (RBF).
Regularization Parameter (C): Controlling the trade-off between margin maximization and error
minimization.
Advantages and Limitations: Effectiveness in high-dimensional spaces, computational efficiency
choice of kernel.
5.2.4 k-Nearest Neighbors (k-NN)
Algorithm Mechanics: Distance metrics (Euclidean, Manhattan).
Choosing k: Impact on model performance.
Advantages and Limitations: Simplicity, non-parametric nature, computational cost, curse of
dimensionality.
5.3 Unsupervised Learning Algorithms
5.3.1 Clustering
K-means Clustering
Algorithm Steps: Initialization, assignment, update steps.
Choosing k: Elbow method, silhouette analysis.
Advantages and Limitations: Simplicity, scalability, sensitivity to initialization.
Hierarchical Clustering
Agglomerative vs Divisive: Bottom-up and top-down approaches.
Linkage Criteria: Single, complete, average.
Dendrogram: Interpretation and cutting.
Advantages and Limitations: Dendrogram interpretability, computational cost.
5.3.2 Association Rule Mining
Apriori Algorithm: Frequent itemsets, support, confidence, lift.
Applications: Market basket analysis, cross-selling strategies.
Advantages and Limitations: Rule discovery, computational complexity.
5.4 Ensemble Methods
5.4.1 Bagging and Boosting
Bagging (Bootstrap Aggregating)
Concept and Benefits: Reducing variance, improving stability.
Implementation: Bagged decision trees.
Boosting
Concept and Benefits: Reducing bias, combining weak learners.
Algorithms: AdaBoost, basic principles.
Advantages and Limitations: Improved accuracy, risk of overfitting.
5.4.2 Gradient Boosting Machines (GBM)
Concept and Mechanics: Building models sequentially, residual errors.
Algorithm Steps: Initialization, learning rate, number of trees.
Regularization Techniques: Shrinkage, subsampling.
Advantages and Limitations: High accuracy, interpretability, computational cost.
D Tash Data Sajanga

6.1 Introduction to Time Series Data			
Definition and Importance: Understanding time series data and its significance in predictive analytics.			
Components of Time Series: Trend, seasonality, cyclic patterns, and irregular components.			
Time Series Plots: Visualization techniques for time series data.			
Applications: F	Applications: Forecasting in finance, economics, supply chain management, meteorology, and more.		
6.2 Time Series Decomposition			
Additive and M	Additive and Multiplicative Models: Understanding the difference between additive and multiplicative		
decomposition.			
Trend Extraction	on: Identifying and extracting the underlying trend component.		
Seasonal Adjus	stment: Techniques for identifying and adjusting seasonal effects.		
Residual Analy	sis: Examining the irregular component after trend and seasonality removal.		
Practical Appli	cations: Using decomposition to better understand and model time series dat	a.	
6.3 Smoothing Te	chniques		
Purpose of Smo	pothing: Reducing noise to reveal important patterns.		
6.3.1 Moving A	Verage		
Simple Mov	ing Average (SMA): Calculation and interpretation.		
Weighted M	oving Average (WMA): Giving different weights to data points.		
Applications	: Smoothing time series data to identify trends.		
6.3.2 Exponent	ial Smoothing		
Simple Expo	nential Smoothing: Applying smoothing parameters and exponential weight	s.	
Holt's Linea	r Trend Model: Handling linear trends in time series data.		
Holt-Winters	s Seasonal Model: Extending Holt's model to account for seasonality.		
Comparison	and Applications: Choosing appropriate smoothing techniques for different	types of time	
series data.			
6.4 Time Series F	orecasting Models		
Overview of Fo	precasting: Importance of accurate forecasting in various domains.		
6.4.1 ARIMA (AutoRegressive Integrated Moving Average)		
ARIMA Mo	del Structure: Understanding autoregressive (AR), differencing (I), and mo	oving average	
(MA) component	S.		
Model Iden	tification: Using ACF (autocorrelation function) and PACF (partial a	utocorrelation	
function) plots to	identify appropriate parameters.		
Parameter E	stimation: Estimating ARIMA model parameters using statistical software.		
Model Diagr	nostics: Checking residuals to ensure a good fit.		
Applications and Examples: Real-world scenarios where ARIMA is applied.			
6.4.2 Seasonal	Decomposition of Time Series (STL)		
STL Decom	position: Breaking down time series data into seasonal, trend, and residual co	omponents.	
Seasonal Adjustment Techniques: Handling complex seasonal patterns with STL.			
Model Implementation: Using STL for robust forecasting in seasonal data.			
Case Studies	and Examples: Practical applications of STL in various industries.		
UNIT-IV	Model Evaluation and Validation, Model Deployment	07 Hours	
7.1 Model Evaluation Metrics			
Importance of Evaluation: Understanding why model evaluation is crucial in predictive analytics.			
7.1.1 Accuracy	, Precision, Recall, F1-Score		
Accuracy: D	efinition, calculation, and limitations.		
Precision: D	efinition, calculation, and interpretation.		

Recall: Definition, calculation, and significance.
F1-Score: Combining precision and recall for a balanced evaluation metric.
Application and Examples: Practical scenarios for each metric, particularly in classification problems.
7.1.2 ROC-AUC
ROC Curve (Receiver Operating Characteristic Curve): Plotting true positive rate against false positive
rate.
AUC (Area Under the Curve): Interpreting the AUC value for model performance.
Use Cases: Situations where ROC-AUC is particularly useful.
7.2 Cross-Validation Techniques
Purpose of Cross-Validation: Ensuring model generalizability and robustness.
7.2.1 k-Fold Cross-Validation
Methodology: Splitting data into k subsets, training on k-1 and validating on the remaining one.
Choosing k: Guidelines for selecting the appropriate number of folds.
Advantages and Disadvantages: Balancing bias-variance trade-off and computational efficiency.
Practical Implementation: Step-by-step guide on applying k-fold cross-validation.
7.2.2 Leave-One-Out Cross-Validation (LOOCV)
Methodology: Using each data point as a single validation case.
Comparison with k-Fold. Pros and cons of LOOCV vs. k-Fold
When to Use LOOCV: Specific scenarios where LOOCV is beneficial
7 3 Overfitting and Underfitting
Understanding Overfitting: Recognizing when a model is too complex and tailored to training data
Symptoms and Consequences: How overfitting affects model performance on unseen data
Prevention Techniques: Regularization, pruning, and other methods to mitigate overfitting
Understanding Underfitting: Recognizing when a model is too simple to capture underlying patterns
Symptoms and Consequences: How underfitting affects model accuracy and generalizability
Improvement Techniques: Increasing model complexity feature engineering and other strategies to
reduce underfitting
7.4 Model Selection Criteria
Importance of Model Selection: Choosing the right model for the best predictive performance
7.4.1 AIC (Akaike Information Criterion)
Definition and Calculation: Understanding AIC and its role in model selection
Interpreting AIC Values: How to use AIC for comparing models
Applications: Situations where AIC is most affective
7.4.2 BIC (Bayasian Information Criterion)
Definition and Calculation: Understanding BIC and its role in model selection
Interpreting RIC Values: Differences between AIC and RIC, and when to use RIC
Applications, Second where DIC provides more reliable model selection
Applications: Scenarios where BIC provides more renable model selection.
8.1 Preparing Models for Deployment
Model Export and Serialization
Formats: Overview of common formats (e.g. PMML_ONNY_pickle)
Serialization Techniques: How to serialize models for deployment
Best Practices: Ensuring reproducibility and integrity of models during export
Environment Setun
Infrastructure Decuirements: Understanding hardware and software needs
Deployment Platforms: Overview of cloud services (a.g. AWS SageMaker, Coogle AI Platform) and
Deproyment Flattorins. Overview of cloud services (e.g., Aws Sagerviaker, Google AI Platform) and
B. Tech Data Science

on-premise optior	18.			
Dependencies Management: Handling libraries, packages, and version control.				
8.2 Model Implen	8.2 Model Implementation			
Integrating Mo	Integrating Models with Applications			
APIs and Mi	APIs and Microservices: Creating and deploying REST APIs for model inference.			
Frameworks	: Introduction to frameworks like Flask, FastAPI, and Django for serving me	odels.		
Use Cases an	Use Cases and Examples: Practical implementation scenarios in different industries.			
Batch vs. Real-	Time Processing			
Batch Proces	ssing: Techniques for handling large-scale batch predictions.			
Real-Time In	nference: Requirements and strategies for real-time prediction serving.			
Case Studies	: Examples of batch and real-time deployments.			
8.3 Monitoring M	lodel Performance			
Performance M	letrics			
Operational 1	Metrics: Latency, throughput, and resource utilization.			
Prediction O	uality: Ongoing assessment of accuracy, precision, recall, and other relevan	t metrics.		
Monitoring To	ols			
Logging and	Alerts: Implementing logging systems and alert mechanisms for model more	nitoring.		
Visualization	n Dashboards: Using tools like Grafana, Kibana, or custom dashboard	s to visualize		
performance metr	rics.			
Drift Detection				
Concept Drit	ft: Understanding and detecting shifts in data distributions over time.			
Methods for	Drift Detection: Techniques like statistical tests, monitoring metrics, and co	ontrol charts.		
Handling Dr	ift: Strategies to address drift in model performance.			
8.4 Updating and	Retraining Models			
Retraining Stra	tegies			
Scheduled R	Scheduled Retraining: Regular intervals for model retraining			
Triggered Re	etraining: Based on performance degradation or drift detection.			
Automated Ret	raining Pinelines			
Continuous	Integration/Continuous Deployment (CI/CD): Setting up CI/CD pipelines	for automated		
retraining and der	alovment	ior automatea		
Tools and Fr	ameworks. Utilizing tools like Jenkins, GitLab CL and ML flow for automat	tion		
Version Contro				
Model Versi	oning. Managing and tracking different versions of models			
Rollback Me	echanisms: Ensuring quick recovery to previous versions if new models und	ernerform		
Post-Deployme	ent Evaluation	erperiorni.		
A/B Testing	: Implementing A/B tests to compare new models with existing ones			
Canary Denl	ovment: Gradual rollout of new models to minimize risk			
Feedback Lo	ons: Incorporating user feedback and new data into model improvement pro-			
I COUDUCK LO	sops. meorporating user recuback and new data into moder improvement pre-			
UNIT-V	Applications of Predictive Analytics	08 Hours		
9.1 Business Ana	lytics			
Sales Forecasting				
Techniques and Models: Time series analysis, regression models.				
Case Studies: Real-world examples of sales forecasting.				
Supply Chain C	Detimization			
Predictive M	Predictive Models: Demand forecasting, inventory optimization.			
B. Tech Data Science				

Applications: Case studies from manufacturing and retail industries.
Risk Management
Fraud Detection: Techniques for identifying and predicting fraudulent activities.
Credit Scoring: Predictive models for assessing credit risk.
9.2 Financial Forecasting
Stock Market Prediction
Models: Time series analysis, machine learning techniques.
Data Sources: Financial statements, market data, news sentiment.
Portfolio Management
Risk Assessment: Predictive models for portfolio risk and return analysis.
Optimization Techniques: Techniques for optimizing investment portfolios.
Economic Forecasting
Macroeconomic indicators: Using predictive analytics to forecast economic trends.
0.2 Marketing Compaigne and Customer Segmentation
9.5 Marketing Campaigns and Customer Segmentation
Clustering Techniques: K means hierarchical clustering DBSCAN
Applications: Segmenting customers based on purchasing behavior and demographics
Marketing Campaign Optimization
Response Modeling: Predictive models to optimize marketing efforts and maximize ROI
Case Studies: Examples of successful marketing campaign optimizations
Customer Lifetime Value (CLV)
Predictive Models: Techniques for calculating and predicting CLV.
Applications: Using CLV to inform business strategies and marketing efforts.
9.4 Healthcare Analytics
Predictive Models in Healthcare
Disease Prediction: Using machine learning to predict disease onset and progression.
Patient Readmission Rates: Models to predict hospital readmissions and improve patient outcomes.
Personalized Medicine
Genomics and Predictive Analytics: Predicting patient responses to treatments based on genetic data.
Case Studies: Examples from personalized medicine and treatment plans.
Operational Efficiency
Resource Allocation: Predictive models for optimizing staffing and resource allocation in hospitals.
Case Studies: Real-world applications in healthcare management.
9.5 Web Usage Mining and E-commerce Data Analysis
Web Usage Mining
Techniques: Analyzing web logs, user behavior, and session patterns.
Applications: Improving website usability and user experience.
Recommendation Systems
Collaborative Filtering: Techniques and algorithms for recommending products.
Content-Based Filtering: Personalizing recommendations based on user preferences and item
characteristics.
Customer Behavior Analysis
E-commerce Data Analysis: Analyzing purchase patterns, cart abandonment, and conversion rates.
Case Studies: Examples from leading e-commerce platforms and online retailers.
A/B Testing and Multivariate Testing
Experiment Design: Setting up and running experiments to test changes on websites.
B. Tech Data Science

Analysis: Interpreting results to make data-driven decisions.

TEXT BOOK:

1. Applied Predictive Analytics, Principles and Techniques for the Professional Data Analyst by Dean Abbott, 2014.

Reference Books:

- 1. "Data Mining: Concepts and Techniques" by Jiawei Han, Micheline Kamber, and Jian Pei A comprehensive guide to data mining concepts, techniques, and applications.
- 2. "Applied Predictive Modeling" by Max Kuhn and Kjell Johnson
 - An in-depth exploration of predictive modeling techniques with practical examples.
- 3. "Machine Learning: A Probabilistic Perspective" by Kevin P. Murphy
 - A detailed book on machine learning algorithms and their probabilistic foundations.
- 4. "Introduction to Statistical Learning" by Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani A beginner-friendly introduction to statistical learning and predictive modeling.
- "Time Series Analysis and Its Applications: With R Examples" by Robert H. Shumway and David S. Stoffer A practical guide to time series analysis using R.
- 6. "Pattern Recognition and Machine Learning" by Christopher M. Bishop

A comprehensive textbook on pattern recognition and machine learning techniques.

- 7. "Practical Data Science with R" by Nina Zumel and John Mount
 - A hands-on guide to data science and predictive modeling using R.

INTERNAL ASSESSMENT (IA)

Two internal assessments and an end semester examination to test students' reading and writing skills along with their grammatical and lexical competence. Assessment will include following things:

• Internal Assessment: 25 Marks - 1. Attendance

2. Assignments

- 3. Case Study/Mini Project/Presentation
- Mid Semester Exam: 25 Marks
- End Semester Exam: 50 Marks

CO's-PO's & PSO's MAPPING

Cos	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	3	3	3	2	2	3	3	2
2	-	3	3	1	1	3	3	3
3	-	2	2	2	2	3	2	1
4	-	2	2	2	2	3	2	2
5	-	2	2	3	3	3	3	2
Avg	3	2.4	2.4	2	2	3	2.6	2

1 - low, 2 - medium, 3 - high, '-' - no correlation

BTDS 604: PROFESSIONAL PRACTICE, LAW & ETHICS B.Tech. IV Year I Sem.

	D,							
Teaching Sch	eme:	Credit	Examination Sci	heme:				
TH: - 4 Hours	/Week	TH: 04	In Sem. Evaluation:	25 Marks				
			Mid Sem. Exam:	25 Marks				
			End Sem. Exam:	50 Marks				
	_		Total :	100 Marks				
Course Prerequisites: N	one							
Course Objective:								
Understand the	types of roles t	hey are expected to play in	the society as practitio	ners				
of the engineer	ing profession.							
To develop son	ne ideas of the le	egal and practical aspects o	f their profession.					
Learning Course Outco	me:							
After successful comple	tion of the cour	se, students will able to:						
Practice ethics	and rule of the l	and in their profession						
• Follow the prin	ciples and elem	ents of legal contracts						
Able to resolve	disputes pertain	ning to arbitration, reconcili	ation					
Aware of intelle	ectual property	loss						
		Course Contents						
UNIT-I]	Professional Practice and	Ethics	07 Hours				
Definition of Ethics, Pro	ofessional Ethic	s - Engineering Ethics, Pers	sonal Ethics; Code of Et	thics				
- Profession, Professio	nalism, Profes	sional Responsibility, Co	nflict of Interest, Gift	Vs				
Bribery, Environmenta	al breaches. I	Negligence. Deficiencies	in state-of-the-art: V	Vigil				
Mechanism. Whistle blo	owing protecte	d disclosures. Introduction	to GST- Various Role	es of				
Various Stake holders	owing, protecte							
		Low of Contract		08 Hours				
UNIT-II				00 110015				
Nature of Contract an	nd Essential e	lements of valid contrac	t, Offer and Accepta	ince,				
Consideration, Capacity	to contract and	Free Consent, Legality of G	Object. Unlawful and ill	egal				
agreements, Contingent	t Contracts, Per	formance and discharge of	of Contracts, Remedies	s for				
breach of contract. Con	tracts-II: Indem	nity and guarantee, Contra	ct of Agency, Sale of ge	oods				
Act -1930: General Prin	ciples, Conditio	ons & Warranties, Performa	ance of Contract of Sale	e.				
INIT-III Arbitration Conciliation and ADR (Alternative Dispute) 08 Hour								
		Resolution) system						
Arbitration – meaning, sc	cope and types –	distinction between laws of	1940 and 1996; UNCITI	RAL				
model law – Arbitration	and expert deter	mination: Extent of judicia	al intervention: Internati	onal				
commercial arbitration	commercial arbitration							
UNIT-IV		Arbitration agree	ments	07				

		Hours
essential and kinds, valid	ity, reference and interim measures by court; Arbitration tribun	al
 appointment, challeng 	e, jurisdiction of arbitral tribunal, powers, grounds of challeng	ge,
procedure and court assist	tance; Distinction between conciliation, negotiation, mediation an	nd
arbitration, confidentiali	ty, resort to judicial proceedings, costs; Dispute Resolution	on
Boards; Lok Adalats.		
UNIT-V	Law relating to Intellectual property	08
		Hours
Introduction – meaning of	f intellectual property, main forms of IP, Copyright, Trademark	KS,
Patents and Designs, Secret	s; Law relating to Copyright in India including Historical evolution	of
Copy Rights Act, 1957, M	leaning of copyright - computer programs, Ownership of copyrigh	nts
and assignment, Criteria of	of infringement, Piracy in Internet - Remedies and procedures	in
India. I aw relating to Pat		

TEXT BOOKS:

- 1. Professional Ethics: R. Subramanian, Oxford University Press, 2015.
- 2. Ravinder Kaur, Legal Aspects of Business, 4e, Cengage Learning, 2016.

REFERENCE BOOKS:

- 1. Wadhera (2004), Intellectual Property Rights, Universal Law Publishing Co.
- 2. T. Ramappa (2010), Intellectual Property Rights Law in India, Asia Law House.
- 3. O.P. Malhotra, Law of Industrial Disputes, N.M. Tripathi Publishers.

INTERNAL ASSESSMENT (IA)

Two internal assessments and an end semester examination to test students' reading and writing skills along with their grammatical and lexical competence. Assessment will include following things:

- Internal Assessment: 25 Marks 1. Attendance
 - 2. Assignments
 - 3. Case Study/Mini Project/Presentation
- Mid Semester Exam: 25 Marks
- End Semester Exam: 50 Marks

CO's-PO's & PSO's MAPPING

Cos	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	3	3	3	2	2	3	3	2
2	-	3	3	1	1	3	3	3
3	-	2	2	2	2	3	2	1
4	-	2	2	2	2	3	2	2
5	-	2	2	3	3	3	3	2
Avg	3	2.4	2.4	2	2	3	2.6	2

1 - low, 2 - medium, 3 - high, '-' - no correlation

BTDS 621PE: SOFTWARE TESTING METHODOLOGIES (Professional Elective – II) B Tech, III Vear II Sem

	D.]	ech. III Tear II Sem.						
Teaching Sche	eme:	Credit	Examination S	cheme:				
TH: - 4 Hours/	Week	TH: 04	In Sem. Evaluation	: 25 Marks				
			Mid Sem. Exam:	25 Marks				
			End Sem. Exam:	50 Marks				
	a. 7	•	Total	: 100 Marks				
Course Prerequisites: So	oftware Engine	eering						
Course Objective:								
• To provide knowledge of the concepts in software testing such as testing process,								
criteria, strategi	es, and method	dologies.						
To develop skil	ls in software t	est automation and manage	ement using the latest to	ools.				
Learning Course Outcor	ne:							
After successful complet	ion of the cour	se, students will able to:						
Understand purp	ose of testing	and path testing						
Understand strat	egies in data fl	low testing and domain test	ing					
 Develop logic-ba 	used test strateg	gies						
Understand grap	h matrices and	l its applications						
Implement test c	ases using any	testing automation tool						
		Course Contents						
UNIT-I	UNIT-I testing 07 Hours							
Introduction: Purpose o	f testing, Dicl	hotomies, model for testi	ng, consequences of	bugs,				
taxonomy of bugs Flow	graphs and Pa	th testing: Basics concepts	s of path testing, predic	cates,				
path predicates and achie	vable paths, pa	th sensitizing, path instrum	entation, application of	fpath				
testing.		• •		-				
		Transaction Flow Test	ing	08 Hours				
	. ~ .		8					
transaction flows, transac	tion flow testing	ng techniques.						
Data Flow testing: Basic	s of data flow	testing, strategies in data fl	ow testing, application	of				
data flow testing.								
Domain Testing: domains and paths, Nice & ugly domains, domain testing, domains and								
interfaces testing, domain and interface testing, domains and testability.								
UNIT-IIIPaths, Path products and Regular expressions08 Hours								
path products & path exp	ression reduct	tion procedure application	s, regular expressions d	& flow				
anomaly detection	anomaly detection							
Logic Based Testing: overview, decision tables, path expressions, ky charts, specifications.								
	C.		• •	A=				
UNIT-IV	Sta	ite, State Graphs and Th	ransition testing	07				

B. Tech Data Science

ale graphs, good & bad	state graphs, state testing, restability ups.
UNIT-V	Graph Matrices and Application Ho
Iotivational overview, r	natrix of graph, relations, power of a matrix, node reduction
lgorithm, building tool	s. (Student should be given an exposure to a tool like
meter/selenium/soapUI/C	atalon).
TEXT BOOKS:	
1. Software Testing	techniques - Baris Beizer, Dreamtech, second edition.
2. Software Testing	Tools – Dr. K. V. K. K. Prasad, Dreamtech.
REFERENCE BOOKS :	
1. The craft of softw	are testing - Brian Marick, Pearson Education.
2. Software Testing	Techniques – SPD(Oreille)
3. Software Testing i	n the Real World – Edward Kit, Pearson.
4. Effective methods	s of Software Testing, Perry, John Wiley.
5 Art of Software T	esting – Mevers, John Wiley.

INTERNAL ASSESSMENT (IA)

Two internal assessments and an end semester examination to test students' reading and writing skills along with their grammatical and lexical competence. Assessment will include following things:

• Internal Assessment: 25 Marks - 1. Attendance

2. Assignments

- 3. Case Study/Mini Project/Presentation
- Mid Semester Exam: 25 Marks
- End Semester Exam: 50 Marks

CO's-PO's & PSO's MAPPING

Cos	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	3	3	3	2	2	3	3	2
2	-	3	3	1	1	3	3	3
3	-	2	2	2	2	3	2	1
4	-	2	2	2	2	3	2	2
5	-	2	2	3	3	3	3	2
Avg	3	2.4	2.4	2	2	3	2.6	2

1 - low, 2 - medium, 3 - high, '-' - no correlation

BTDS 622PE: INFORMATION RETRIEVAL SYSTEMS (Professional Elective – II) B Tech, III Vear I Sem

	В.	lech. III Year I Sem.					
Teaching Sche	eme:	Credit	Examination Sector	cheme:			
TH: - 4 Hours/V	Week	TH: 04	In Sem. Evaluation	25 Marks			
			Mid Sem. Exam:	25 Marks			
			End Sem. Exam:	50 Marks			
			Total	: 100 Marks			
Course Prerequi	isites: Data St	ructures					
Course Objective:							
• To learn the cond	cepts and algor	ithms in Information Retri	eval Systems				
To understand th	ne data/file stru	ctures that are necessary to	design, and implemen	t			
information retri	ieval (IR) syste	ems.					
Learning Course Outcon	ne:						
After successful complete	ion of the cour	se, students will able to:					
• Ability to apply	IR principles to	o locate relevant information	on large collections of c	lata			
Ability to design	different docu	ment clustering algorithms					
Implement retrie	eval systems fo	r web search tasks.					
Design an Inform	nation Retrieva	al System for web search ta	sks.				
		Course Contents					
UNIT-I	Introdu	ction to Information Ret	rieval Systems	07 Hours			
Definition of Information Retrieval System Objectives of Information Retrieval Systems							
Functional Overview Re	elationship to l	Database Management Sys	tems Digital Librarie	s and			
Data Warehouses Inform	nation Retriev	al System Canabilities: S	earch Canabilities Br	owse			
Canabilities Miscellaneo	us Canabilitie	a bystem capabilities. b	caren Capabilities, Di	0,000			
	Jus Cupublille	 Cataloging and Indexi	nα	08 Hours			
UNII-II			ng	00 110013			
History and Objectives	of Indexing,	Indexing Process, Autom	atic Indexing, Inform	ation			
Extraction Data Structure	e: Introduction	to Data Structure, Stemmir	ng Algorithms, Inverted	l File			
Structure, N-Gram Data	Structures, PA	T Data Structure, Signatur	re File Structure, Hype	ertext			
and XML Data Structure	s, Hidden Mar	kov Models.					
UNIT-III		Automatic Indexing	T	08 Hours			
	1						
Classes of Automatic In	idexing, Statis	tical Indexing, Natural La	nguage, Concept Inde	xıng,			
Hypertext Linkages							
Document and Term Clustering: Introduction to Clustering, Thesaurus Generation, Item							
Clustering, Hierarchy of	Clusters						
UNIT-IV		User Search Tech	niques	07			
				Hours			

B. Tech Data Science

Search Statements and Binding, Similarity Measures and Ranking, Relevance Feedback, Selective Dissemination of Information Search, Weighted Searches of Boolean Systems, Searching the INTERNET and Hypertext Information Visualization: Introduction to Information Visualization, Cognition and Perception, Information Visualization Technologies UNIT-V **Text Search Algorithms 08** Hours Introduction to Text Search Techniques, Software Text Search Algorithms, Hardware Text Search Systems Multimedia Information Retrieval: Spoken Language Audio Retrieval, Non-Speech Audio Retrieval, Graph Retrieval, Imagery Retrieval, Video Retrieval **TEXT BOOK:** 1. Information Storage and Retrieval Systems - Theory and Implementation, Second Edition, Gerald J. Kowalski, Mark T. Maybury, Springer **REFERENCE BOOKS:** 1. Frakes, W.B., Ricardo Baeza-Yates: Information Retrieval Data Structures and Algorithms, 2. Prentice Hall, 1992.

- 3. Information Storage & Retrieval By Robert Korfhage John Wiley & Sons.
- 4. Modern Information Retrieval By Yates and Neto Pearson Education.

INTERNAL ASSESSMENT (IA)

Two internal assessments and an end semester examination to test students' reading and writing skills along with their grammatical and lexical competence. Assessment will include following things:

- Internal Assessment: 25 Marks 1. Attendance
 - 2. Assignments
 - 3. Case Study/Mini Project/Presentation
- Mid Semester Exam: 25 Marks
- End Semester Exam: 50 Marks

CO's-PO's & PSO's MAPPING

Cos	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	3	3	3	2	2	3	3	2
2	1	3	3	1	1	3	3	3
3	14.	2	2	2	2	3	2	10.1
4	311-	2	2	2	2	3	2	2
5	4	2	2	3	3	3	3	2
Avg	3	2.4	2.4	2	2	3	2.6	2

1.17

1 - low, 2 - medium, 3 - high, '-' - no correlation

// द्या क्रियाबान् स

BTDS 623PE: PATTERN RECOGNITION (Professional Elective – II) B.Tech. III Year II Sem.

Teaching Scher TH: - 4 Hours/V	me: Veek	Credit TH: 04	Examination Sch In Sem. Evaluation: Mid Sem. Exam: 2 End Sem. Exam: 5 Total : 1	eme: 25 Marks 25 Marks 50 Marks 100 Marks
Course Prerequi	i sites: Program	ming for problem solving		
Computer Oriente	ed Statistical N	Aethods		
Course Objective:	. 1		C	
Introducing fund recognition and r	amental conce nachine learni	pts, theories, and algorithm ng.	ns for pattern	
Learning Course Outcom	ne:			
After successful completi	on of the cour	se, students will able to:		
• Understand the in	mportance of p	pattern recognition and its r	epresentation	
Analyza the varia	ants of NN alg	orithm		
• Understand the n	ecessity of Hi	dden markov models, decis	sion tree and SVM for cla	assification
Understand diffe	rent types of c	lustering algorithms		
		Course Contents		
UNIT-I	Ir	troduction: Pattern Reco	ognition	07 Hours
Data Sets for Pattern	Recognition	, Different Paradigms	for Pattern Recognition	on.
Representation: Data St	ructures for	Pattern Representation, R	Representation of Clust	ers,
Proximity Measures, Size	of Patterns, A	bstractions of the Data Set,	Feature Extraction, Feat	ure
Selection, Evaluation of C	Classifier, Eva	luation of Clustering.	1	
UNIT-II		Nearest Neighbor Base	ed Classifier	08 Hours
Nearest Neighbor Algori	ithm, Variants	of the NN Algorithm, us	se of the Nearest Neigh	bor
Algorithm for Transacti	ion Databases	, Efficient Algorithms, I	Data Reduction, Protot	ype
Selection. Bayes Classifi	er: Bayes The	orem, Minimum Error Ra	te Classifier, Estimation	n of
Probabilities, Comparisor	n with the NN	C, Naïve Bayes Classifier,	Bayesian Belief Networ	k.
UNIT-III		Hidden Markov Mod	els	08 Hours
Markov Models for Clas	ssification, Hi	idden Morkov Models, C	lassification using HM	Ms.
Decision Trees: Introdu	ction, Decisio	on Tree for Pattern Clas	sification, Construction	of
Decision Trees, Splitting	at the Nodes,	Overfitting and Pruning,	Examples of Decision T	ree
Induction.			-	
UNIT-IV		Support Vector Ma	chines	07
		R Tach Data Science		

10 | Page

		Hours						
ntroduction, Learning the Linear Discriminant Functions, Neural Networks, SVM for								
Classification. Combinatio	n of Classifiers: Introduction, Methods for Constructing Ensemble	es						
of Classifiers, Methods for Combining Classifiers.								
UNIT-V	UNIT-V Clustering							
Importance of clustering,	Hierarchical Algorithms, Partitional Clustering, Clustering Larg	ge						
Data Sets. An Application	n-Hand Written Digit Recognition: Description of the Digit Dat	a,						
Preprocessing of Data, C	Classification Algorithms, Selection of Representative Pattern	.S,						
Results.								
TEXT BOOK:								
1. Pattern Recognition	on: An Algorithmic Approach: Murty, M. Narasimha, Devi, V							
Susheela, Spinger	Pub, 1st Ed.							
REFERENCE BOOKS:								
1. Machine Learning	g - Mc Graw Hill, Tom M. Mitchell.							
2. Fundamentals Of	Speech Recognition: Lawrence Rabiner and Biing- Hwang							
Juang. PrenticeHall Pub.								
1.27		l.						

INTERNAL ASSESSMENT (IA)

Two internal assessments and an end semester examination to test students' reading and writing skills along with their grammatical and lexical competence. Assessment will include following things:

के वाचान में पणिई

- Internal Assessment: 25 Marks 1. Attendance
 - 2. Assignments
 - 3. Case Study/Mini Project/Presentation
- Mid Semester Exam: 25 Marks
- End Semester Exam: 50 Marks

CO's-PO's & PSO's MAPPING

			1000					
Cos	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	3	3	3	2	2	3	3	2
2	1	3	3	- 1	1	3	3	3
3	(<u>.</u>	2	2	2	2	3	2	10.1
4	4	2	2	2	2	3	2	2
5	3	2	2	3	3	3	3	2
Avg	3	2.4	2.4	2	2	3	2.6	2

1.11

1 - low, 2 - medium, 3 - high, '-' - no correlation

// द्या क्रियाबान् रा

BTDS 624PE: COMPUTER VISION AND ROBOTICS (Professional Elective – II) B Tech, III Year II Sem

D , .	tech. III Tear II Seill.					
Teaching Scheme:	Credit	Examination Sector	cheme:			
TH: - 4 Hours/Week	TH: 04	In Sem. Evaluation	: 25 Marks			
		Mid Sem. Exam:	25 Marks			
		End Sem. Exam:	50 Marks			
		Total	: 100 Marks			
Course Prerequisites: Linear Algebra	and Probability.					
Course Objective:						
• To understand the Fundamenta	ll Concepts Related To sour	ces, shadows and shad	ing			
• To understand the The Geomet	try of Multiple Views					
Learning Course Outcome:						
After successful completion of the cour	se, students will able to:					
• Implement fundamental image	processing techniques requi	red for computer visio	n			
Implement boundary tracking t	echniques					
Apply chain codes and other re	egion descriptors. Hough T	ransform for line, circ	le			
and ellipse detections	Sion accemptons, mough r		,			
• Apply 3D vision techniques an	d Implement motion related	dtechniques				
 Develop applications using cor 	nuter vision techniques	i teeninques.				
Develop applications using col	Course Contents					
			07 Hours			
CAME.	RAS: Pinhole Cameras		07 110015			
Radiometry – Measuring Light: Ligh	t in Space, Light Surfaces,	mportant Special Case	es			
Sources, Shadows, And Shading: Qua	litative Radiometry, Sourc	es and Their Effects, L	ocal			
Shading Models, Application: Photome	etric Stereo, Interreflections	: Global Shading Mod	lels			
Color: The Physics of Color, Human C	Color Perception, Represent	ing Color, A Model fo	or			
Image Color, Surface Color from Imag	e Color.					
UNIT-II	Linear Filters		08 Hours			
Linear Filters and Convolution, Shift Invariant Linear Systems, Spatial Frequency and						
Fourier Transforms, Sampling and Alia	using, Filters as Templates					
Edge Detection: Noise, Estimating Der	ivatives, Detecting Edges					
Texture: Representing Texture, Anal	ysis (and Synthesis) Using	g Oriented Pyramids,				
Application: Synthesis by Sampling Lo	ocal Models, Shape from Te	exture.				
UNIT-III The Geometry	of Multiple Views: Two V	liews	08 Hours			

Stereopsis: Reconstruction	n, Human Stereposis, Binocular Fusion, Using More Cameras	
Segmentation by Clusterin	g: Segmentation, Human Vision: Grouping and Getstalt,	
Applications: Shot Boundar	ry Detection and Background Subtraction, Image	
Segmentation by Clusteri	ng Pixels, Segmentation by Graph-Theoretic Clustering,	
UNIT-IV	Model and Camera Calibration	07 Hours
Segmentation by Fitting	a Model: The Hough Transform, Fitting Lines, Fitting Curve	s,
Fitting as a Probabilistic In	ference Problem, Robustness	
Geometric Camera Mode	ls: Elements of Analytical Euclidean Geometry, Camera Paramete	rs
and the Perspective Project	ion, Affine Cameras and Affine Projection Equations	
Geometric Camera Calib	ration: Least-Squares Parameter Estimation, A Linear Approach	to
Camera Calibration, Takin	g Radial Distortion into Account, Analytical Photogrammetry, A	n
Application: Mobile Robot	Localization	
UNIT-V	Introduction to Robotics	08
		Hours
Social Implications of Rob	otics, Brief history of Robotics, Attributes of hierarchical paradigr	n,
Closed world assumption	and frame problem, Representative Architectures, Attributes	of
Reactive Paradigm, Subsur	mption Architecture, Potential fields and Perception	
Common sensing techniq	ues for Reactive Robots: Logical sensors, Behavioural Sensor	
Fusion, Pro- prioceptive se	nsors, Proximity Sensors, Topological Planning and Metric Path	
Planning		
TEXT BOOKS:		
1. David A. Forsyth	and Jean Ponce: Computer Vision — A Modern Approach,	
PHI Learning (In-	dian Edition), 2009.	
2. Robin Murphy, Int	troduction to AI Robotics, MIT Press	
REFERENCE BOOKS:		
1. E. R. Davies: Cor	nputer and Machine Vision – Theory, Algorithms and	
Practicalities, Elsev	vier (Academic Press), 4th edition, 2013.	
2. The Robotics pren	nier, Maja J Matari, MIT Press	
3. Richard Szeliski '	"Computer Vision: Algorithms and Applications" Springer-	
Verlag London Li	imited 2011.	

INTERNAL ASSESSMENT (IA)

Two internal assessments and an end semester examination to test students' reading and writing skills along with their grammatical and lexical competence. Assessment will include following things:

• Internal Assessment: 25 Marks - 1. Attendance

2. Assignments

3. Case Study/Mini Project/Presentation

- Mid Semester Exam: 25 Marks
- End Semester Exam: 50 Marks

CO's-PO's & PSO's MAPPING

Cos	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	3	3	3	2	2	3	3	2
2	-	3	3	1	1	3	3	3
3	-	2	2	2	2	3	2	1
4	-	2	2	2	2	3	2	2
5	-	2	2	3	3	3	3	2
Avg	3	2.4	2.4	2	2	3	2.6	2

1 - low, 2 - medium, 3 - high, '-' - no correlation

B. Tech Data Science 15 | P a g e

BTDS 625PE: DATA WAREHOUSING AND BUSINESS INTELLIGENCE (Professional Elective – II) B Tech, III Vear II Sem

	D .1			-				
Teaching Schen	ne:	Credit	Examination S	cheme:				
TH: - 4 Hours/W	'eek	TH: 04	In Sem. Evaluation	: 25 Marks				
			Mid Sem. Exam:	25 Marks				
			End Sem. Exam:	50 Marks				
			Total	: 100 Marks				
Course Prerequisites: Nor	ne							
Course Objective:								
• This course is concerned with extracting data from the information systems that deal								
with the day-to-d	lay operation	s and transforming it into	o data that can be use	ed by				
businesses to driv	e high-level d	lecision making						
Students will lear	n how to desi	gn and create a data wareh	ouse, and how to utilize	ze the				
process of extract	ing, transform	ning, and loading (ETL) da	ata into data warehous	es.				
Learning Course Outcome	e:							
After successful completion	on of the cour	se, students will able to:						
Understand archit	ecture of data	warehouse and OLAP ope	erations.					
Understand Funda	mental conce	pts of BI						
Application of BI	Key Perform	ance indicators						
Understand Utiliz	ation of Adva	nced BI Tools and their In	nplementation.					
Implementation of	f BI Techniqu	es and BI Ethics.						
		Course Contents						
UNIT-I		Data Warehouse		07 Hours				
Data Warehouse Modellin	g, OLAP ope	rations, Data Qube Compu	tation methods					
UNIT-II		Business Intelligence I	ntroduction	08 Hours				
Definition, Leveraging I	Data and Kn	owledge for BI, BI Co	mponents, BI Dimen	sions,				
Information Hierarchy, Bus	iness Intellige	ence and Business Analytics	s. BI Life Cycle. Data f	for BI				
- Data Issues and Data Quality for BI.								
UNIT-III	UNIT-IIIBI Implementation08 Hours							
Key Drivers, Key	Performance	Indicators and Pe	rformance Metrics,	BI				
Architecture/Framework, Best Practices, Business Decision Making, Styles of BI-vent-Driven								
alerts-A cyclic process of	f Intelligence	Creation. The value of	Business Intelligence-	Value				
driven and Information use	e.		6					

	UNIT-IV	Advanced BI	07 Hours
ig Data	a and BI, Social N	Networks, Mobile BI, emerging trends, Description of different B	I-
'ools (I	Pentaho, KNIME)		
	UNIT-V	Business Intelligence and integration implementation	08 Hours
onnecti	ing in BI systems-	Issues of legality- Privacy and ethics- Social networking and BI.	
ТЕХТ	BOOKS:		
1.	Data Mining —	Concepts and Techniques - JIAWEI HAN &	
	MICHELINE KA	AMBER, Elsevier, 4 th Edition.	
2.	Rajiv Sabherwal "	Business Intelligence" Wiley Publications, 2012.	
REFE	RENCE BOOKS:	:	
1.	Efraim Turban, R	amesh Sharda, Jay Aronson, David King, Decision Support and	
	Business Intellige	nce Systems, 9th Edition, Pearson Education, 2009.	
2.	David Loshin, Bu	usiness Intelligence - The Savy Manager's Guide Getting	
	Onboard with Em	nerging IT, Morgan Kaufmann Publishers, 2009.	
3.	Philo Janus, Stac	ia Misner, Building Integrated Business Intelligence. Solutions	
	with SQL Server,	2008 R2 & Office 2010, TMH, 2011.	
4.	Business Intelligen	nce Data Mining and Optimization for decision making [Author:	
	Carlo-Verellis] [P	ublication: (Wiley)]	
5.	Data Warehousing	g, Data Mining & OLAP- Alex Berson and Stephen J. Smith- Tata	ı
	McGraw- Hill Ed	ition, Tenth reprint 2007	
6.	Building the Data	Warehouse- W. H. Inmon, Wiley Dreamtech India Pvt. Ltd.	
7.	Data Mining Intro	ductory and Advanced topics – Margaret H Dunham, PEA.	
	-		

INTERNAL ASSESSMENT (IA)

Two internal assessments and an end semester examination to test students' reading and writing skills along with their grammatical and lexical competence. Assessment will include following things:

- Internal Assessment: 25 Marks 1. Attendance
 - 2. Assignments
 - 3. Case Study/Mini Project/Presentation
- Mid Semester Exam: 25 Marks
- End Semester Exam: 50 Marks

CO's-PO's & PSO's MAPPING

			1.0	1.00	-	11.		
Cos	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	3	3	3	2	2	3	3	2
2	1	3	3	1	1	3	3	3
3	(<u>.</u>	2	2	2	2	3	2	10-1
4	S4 -	2	2	2	2	3	2	2
5	2	2	2	3	3	3	3	2
Avg	3	2.4	2.4	2	2	3	2.6	2

1.1

1 - low, 2 - medium, 3 - high, '-' - no correlation

// द्या क्रियाबान् रा

BTDS 6110E: FUNDAMENTALS of AI (Open Elective – I) B.Tech. III Year II Sem.

Teaching Scheme:	Credit	Examination S	cheme:				
TH: - 4 Hours/Week	TH: 04	In Sem. Evaluation	: 25 Marks				
		Mid Sem. Exam:	25 Marks				
		Total	50 Marks				
Course Prerequisites: None							
Course Objective:							
• To learn the difference betwee	n optimal reasoning Vs hun	nan like reasoning					
• To understand the notions of s	tate space representation, e	xhaustive search, heur	istic				
search along with the time and	l space complexities						
• To learn different knowledge r	epresentation techniques						
• To understand the application	ns of AI namely, Game P	laying, Theorem Prov	ving,				
Expert Systems, Machine Lear	rning and Natural Language	e Processing					
Learning Course Outcome:							
After successful completion of the cour	se, students will able to:						
• Gain the knowledge of what is	AI, risks and benefits of A	I, limits of AI and the					
ethics involved in building an	AI application.						
• Understand the nature of envir	onments and the structure o	f agents.					
• Possess the ability to select a s	earch algorithm for a probl	em and characterize it	s				
time and space complexities.							
Possess the skill for representing	ng knowledge using the app	ropriate technique					
Gain an understanding of the a	pplications of AI						
	Course Contents						
UNIT-I	Foundations of AI		07 Hours				
Introduction to AI, History of AI, Stron	ng and Weak AI, The State	of the Art, Risks and					
Benefits of AI							
Philosophy, Ethics and Safety of AI:	The Limits of AI, Machine	thinking capability, T	"he				
Ethics of AI Intelligent Agents: Agent	s and Environments, Good	Behavior: The Concep	t of				
Rationality, The Nature of Environmen	ts, The Structure of Agents						
UNIT-II	Solving Problems by Se	earching	08 Hours				

Problem – Solving Agents

Uninformed Search Strategies: Best-First Search, Breadth-First Search, Uniform-Cost Search, Depth-First Search, Iterative Deepening Search and Bidirectional Search **Informed Search Strategies:** Greedy Best-First Search, A* Search.

UNIT-III	Order Logic	08 Hours

Logical Agents: Knowledge-based agents, Propositional Logic, Propositional Theorem Proving **First-Order Logic:** Syntax and Semantics of First-Order Logic

Inference in First-Order Logic: Propositional Vs. First-Order Inference, Unification and

First-Order Inference, Forward Chaining, Backward Chaining

Knowledge Representation: Ontological Engineering, Categories and Objects, Events

UNIT-IV	Quantifying Uncertainty	07
		Hours

Basic Probability Notation, Inference Using Full-Joint Distributions, Independence, Bayes' Rule and its Use, Naive Bayes Models

Probabilistic Reasoning: Representing Knowledge in an Uncertain Domain, The semantics of Bayesian Networks, Exact Inference in Bayesian Networks

UNIT-V								Lea	rnin	g fro	m Ex	am	ples			08	1
																Hours	
	C T		2	•	1 T	•	т		D		T		3 6 1 1	0 1	 т.		

Forms of Learning, Supervised Learning, Learning Decision Trees, Model Selection, Linear Regression and Classification, Ensemble Learning

Natural Language Processing: Language Models, Grammar, Parsing, Complications of RealNatural Language, Natural Language Tasks

Robotics: Robots, Robot Hardware, Kind of Problems solved, Application Domains **Computer Vision:** Simple Image Features, Using Computer Vision

TEXT BOOKS:

 "Artificial Intelligence a Modern Approach", Fourth Edition, Stuart J. Russell & Peter Norvig – Pearson.

REFERENCE BOOKS:

- "Artificial Intelligence", Elaine Rich, Kevin Knight & Shivashankar B Nair McGraw Hill Education.
- 2. Artificial Intelligence, 3rd Edn, E. Rich and K. Knight (TMH)
- 3. Artificial Intelligence, 3rd Edn., Patrick Henny Winston, Pearson Education.
- 4. Artificial Intelligence, Shivani Goel, Pearson Education.
- 5. Artificial Intelligence and Expert systems Patterson, Pearson Education

INTERNAL ASSESSMENT (IA)

Two internal assessments and an end semester examination to test students' reading and writing skills along with their grammatical and lexical competence. Assessment will include following things:

• Internal Assessment: 25 Marks - 1. Attendance

2. Assignments

3. Case Study/Mini Project/Presentation

- Mid Semester Exam: 25 Marks
- End Semester Exam: 50 Marks

CO's-PO's & PSO's MAPPING

Cos	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	3	3	3	2	2	3	3	5
2	17	3	3	1	1	3	3	2
3	(2	2	2	2	3	2	1
4	1	2	2	2	2	3	2	1
5	1-1	2	2	3	3	3	3	11
Avg	3	2.4	2.4	2	2	- 3	2.6	1

1 - low, 2 - medium, 3 - high, '-' - no correlation

BTDS 612OE: MACHINE LEARNING BASICS (Open Elective – I) B.Tech. III Year II Sem.

Teaching Scheme: TH: - 4 Hours/Week		Credit TH: 04	Examination Sc In Sem. Evaluation: Mid. Sem. Exam:	heme: 25 Marks 25 Marks					
			End Sem. Exam:	50 Marks					
Course Prerequisites: None			Total :	100 Marks					
Course Objective:									
To introduce students to the basic concepts and techniques of Machine Learning									
• To have a thorough und	lerstandi	ng of the Supervised and U	Jnsupervised learning to	echniques					
• To study the various pro	obability	based learning techniques	3	•					
Learning Course Outcome:									
After successful completion of t	he cours	e, students will able to:							
• Distinguish between, su	pervised	, unsupervised and semi-su	upervised learning						
Understand algorithms	for buil	ding classifiers applied or	datasets of non-linear	ly					
separable classes									
Understand the principles of evolutionary computing algorithms									
Design an ensembler to increase the classification accuracy									
Course Contents									
		Types of Machine Lear	ning	07 Hours					
Learning – Types of Machine I	Learning	g – Supervised Learning –	The Brain and the New	uron					
– Design a Learning System – P	erspectiv	ves and Issues in Machine I	earning – Concept Lear	ning					
Task – Concept Learning as Se	arch – F	inding a Maximally Spec	cific Hypothesis – Ver	sion					
Spaces and the Candidate Elin	nination	Algorithm – Linear Dise	criminants: – Perceptro	on –					
Linear Separability – Linear Re	gression		• • •						
UNIT-II		Multi-layer Perceptro	on in Practice	08 Hours					
Multi-layer Perceptron– Going	g Forwa	rds – Going Backwards:	Back Propagation Err	or –					
Multi-layer Perceptron in Prac	tice – E	Examples of using the MI	LP – Overview – Deriv	ving					
Back-Propagation									
UNIT-III	UNIT-IIILearning with Trees08 Hours								
Decision Trees – Constructing Decision Trees – Classification and Regression Trees –									
Ensemble Learning – Boostir	Ensemble Learning – Boosting – Bagging – Different ways to Combine Classifiers –								
Nearest Neighbor Methods – U	Jnsuper	vised Learning – K mean	s Algorithms						
UNIT-IV	S	upport Vector Machines		07					
		B. Tech Data Science							

			Hours					
Evolution	nary Learning – G	Genetic algorithms – Genetic Offspring: - Genetic Operators – Usin	ng					
Genetic A	Algorithms							
	UNIT V Poinforcement Learning							
	UN11-V	Kennorcement Learning	Hours					
Verview	v – Getting Lost H	Example	I					
/larkov	Chain Monte Car	rlo Methods – Sampling – Proposal Distribution – Markov Cha	in					
Ionte C	arlo — Hidden M	Aarkov Models						
TEXT	BOOKS:							
1.	Stephen Marslan	nd, —Machine Learning — An Algorithmic Perspective,						
	Second Edition,	Chapman and Hall/CRC Machine Learning and Pattern						
	Recognition Series	es, 2014.						
REFE	RENCE BOOKS:	:						
1.	Tom M Mitchell,	—Machine Learning, First Edition, McGraw Hill Education, 201	3.					
2.	Peter Flach, —Ma	achine Learning: The Art and Science of Algorithms that Make						
1	Sense of Datal, Fi	irst Edition, Cambridge University Press, 2012.						
3.	Jason Bell, —Mac	chine learning – Hands on for Developers and Technical						
	Professionals, Fir	rst Edition, Wiley, 2014						
4.	Ethem Alpaydin,	—Introduction to Machine Learning 3e (Adaptive Computation						
	and Machine Lean	rning Series), Third Edition, MIT Press, 2014						

Two internal assessments and an end semester examination to test students' reading and writing skills along with their grammatical and lexical competence. Assessment will include following things:

- Internal Assessment: 25 Marks 1. Attendance
 - 2. Assignments
 - 3. Case Study/Mini Project/Presentation
- Mid Semester Exam: 25 Marks
- End Semester Exam: 50 Marks

CO's-PO's & PSO's MAPPING

Cos	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	3	3	3	2	2	3	3	2
2	5	3	3	1	1	3	3	3
3	1-	2	2	2	2	3	2	1
4	100	2	2	2	2	3	2	2
5	340	2	2	3	3	3	3	2
Avg	3	2.4	2.4	2	2	3	2.6	2

1 - low, 2 - medium, 3 - high, '-' - no correlation

31

कियाधान

1.11

BTDS 602L: MACHINE LEARNING LAB B.Tech. III Year II Sem

B.	l'ech. III Year II Sem						
Teaching Scheme:	Credit	Examination Scheme:					
TH: - 4 Hours/Week	TH: 04	In Sem. Evaluation: 25 Marks					
		Mid Sem. Exam: 25 Marks					
		End Sem. Exam: 50 Marks					
		Total : 100 Marks					
Course Prerequisites: ML Practice							
Course Objective:							
• The objective of this lab is to g	et an overview of the vario	ous machine learning					
techniques and can demonstrat	e them using python	6					
	e them using pythem						
Learning Course Outcome:							
After successful completion of the cour	se, students will able to:						
• Understand modern notions in	predictive data analysis						
Select data, model selection, m	odel complexity and identi	fy the trends					
Understand a range of machine	e learning algorithms along	with their					
strengths and weaknesses							
Build predictive models from a	lata and analyze their perfo	rmance					
Course Contents							
	Course contents	07 Hours					
List of Experiments Eveneice 1. Introduction to Soikit learn for	- Supervised Learning	07 Hours					
Objective: To gain hands-on experies	r Supervised Learning	sed learning algorithms using the Scikit.					
learn library in Python	nee with implementing supervi	sed rearning argonums using the Serkit-					
Exercise 2: Exploring Unsupervised Learn	ing with K-Means Clusterin	g					
Objective: To explore the concepts o	f unsupervised learning and cl	ustering using the K-Means algorithm.					
Exercise 3: Implementing Linear Regressi	on from Scratch						
Objective: To gain a deeper understan	nding of linear regression by im	plementing it from scratch using Python.					
Exercise 4: Binary Classification with Log	istic Regression						
real world scenarios	ression for binary classificatio	in tasks and understand its application in					
Exercise 5: Decision Tree Classifier for M	ulticlass Classification						
Objective: To understand the worl	king of decision tree classified	ers and their application in multiclass					
classification problems.	C	11					
Exercise 6: Support Vector Machine (SVM	I) for Classification						
Objective: To implement support ver	ctor machine (SVM) classifiers	s for binary and multiclass classification					
tasks and understand their kernel tric	k						
Exercise 7: Ensemble Learning with Rand	om Forests						
Objective: To implement random for	ests, an ensemble learning me	thod, and understand their advantages in					
Exercise 8: Hierarchical Clustering							
Objective: To understand hierarchic	al clustering algorithms and the	heir application in grouping data points					
	B. Tech Data Science						

based on their similarity.
Exercise 9: Density-Based Clustering (DBSCAN)
Objective: To implement the DBSCAN algorithm and understand its effectiveness in identifying clusters of
arbitrary shapes in noisy datasets.
Exercise 10: Principal Component Analysis (PCA)
Objective: To understand the concept of dimensionality reduction using PCA and apply it to high-
dimensional datasets for visualization and feature extraction.
Exercise 11: Convolutional Neural Network (CNN) for Image Classification
Objective: To implement a Convolutional Neural Network (CNN) using Python and TensorFlow/Keras
library for image classification tasks.
Exercise 12: Recurrent Neural Network (RNN) for Text Generation
Objective: To implement a Recurrent Neural Network (RNN) using Python and TensorFlow/Keras library
for text generation tasks.
Exercise 13: Reinforcement Learning with OpenAI Gym
Objective: To implement reinforcement learning algorithms using Python and OpenAI Gym library for
training agents in various environments.
Exercise 14: Evaluation Metrics for Classification Models
Objective: To understand and implement various evaluation metrics for classification models using Python
and Scikit-learn library.
Exercise 15: Regression Model Evaluation Techniques
Objective: To explore and apply various evaluation techniques for regression models using Python and
Scikit-learn library.
Exercise 16: Cluster Validation Measures
Objective: To understand and apply cluster validation measures to assess the quality of clustering solutions
using Python and Scikit-learn library.
Exercise 17: Model Selection Techniques
Objective: To explore and apply model selection techniques for choosing the best machine learning models
using Python and Scikit-learn library.
Exercise 18: Hyperparameter Tuning and Optimization
Objective: To understand and apply hyperparameter tuning and optimization techniques for improving
machine learning model performance using Python and Scikit-learn library.
Exercise 19: Transfer Learning in Image Classification
Objective: To apply transfer learning techniques using pre-trained convolutional neural network (CNN)
models for image classification tasks using TensorFlow/Keras.
Exercise 20: Meta-Learning for Few-Shot Learning
Objective: To implement meta-learning algorithms for few-shot learning tasks using Python and
TensorFlow/Keras.
Exercise 21: Adversarial Attacks and Defenses
Objective: To understand adversarial attacks and defenses in deep learning models and evaluate their
robustness using Python and TensorFlow.

TEXT BOOK:

1. Machine Learning – Tom M. Mitchell, - MGH.

REFERENCE BOOK:

1. Machine Learning: An Algorithmic Perspective, Stephen Marshland, Taylor & Francis.

INTERNAL ASSESSMENT (IA)

Two internal assessments and an end semester examination to test students' reading and writing skills along with their grammatical and lexical competence. Assessment will include following things:

• Internal Assessment: 25 Marks - 1. Attendance

2. Assignments

3. Case Study/Mini Project/Presentation

- Mid Semester Exam: 25 Marks
- End Semester Exam: 50 Marks

CO's-PO's & PSO's MAPPING

Cos	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	3	3	3	2	2	3	3	2
2	-	3	3	1	N	3	3	3
3	-	2	2	2	2	3	2	1
4	-	2	2	2	2	3	2	2
5	-	2	2	3	3	3	3	2
Avg	3	2.4	2.4	2	2	3	2.6	2

1 - low, 2 - medium, 3 - high, '-' - no correlation

BTDS 603L: PREDICTIVE ANALYTICS LAB B.Tech. III Year II Sem

			-
Teaching Scheme:	Credit	Examination So	cheme:
TH: - 4 Hours/Week	TH: 04	In Sem. Evaluation:	: 25 Marks
		Mid Sem. Exam:	25 Marks
		End Sem. Exam:	50 Marks
		Total	: 100 Marks
Course Prerequisites: ML Practice			
Course Objective:			
• The objective of this lab is to g	et an overview of the vario	us machine learning	
techniques and can demonstrat	e them using python.		
Learning Course Outcome:			
After successful completion of the cour	se, students will able to:		
• Understand modern notions in	predictive data analysis		
• Select data, model selection, m	odel complexity and identi	fy the trends	
• Understand a range of machine	e learning algorithms along	with their	
strengths and weaknesses			
• Build predictive models from a	lata and analyze their perfo	rmance	
	Course Contents		
List of Experiments			07 Hours
Unit 1: Introduction to Predictive Analytic	2S		
Lab 1: Introduction to Predictive Analytic	s Tools		
• Objective: Familiarize students with	Python, R, and Tidyverse for p	predictive analytics.	
• Tasks:			
• Install and set up Python and	R environments.		
 Introduction to Jupyter Note 	books and RStudio.		
• Basic operations and syntax	in Python and R.		
Unit 2: Data Understanding and Preparat	ion		
Lab 2: Data Collection and Importing Dat	a		
Objective: Understand data collection	n methods and how to import of	lata.	
• Tasks:			
 Import datasets from CSV, E DBI packages). 	Excel, and databases into Pytho	on (using Pandas) and R (u	ising readr and
Lab 3: Data Cleaning and Preprocessing			
• Objective: Learn data cleaning and p	reprocessing techniques.		
• Tasks:			
• Handle missing values using	Pandas in Python and Tidyver	rse in R.	
• Perform data transformation	s and normalization.		
Lab 4: Exploratory Data Analysis (EDA)			
• Objective: Perform EDA to understa	nd data distributions and relati	onships.	
• Tasks:			

- Generate descriptive statistics in Python (Pandas) and R (dplyr).
- Create visualizations (histograms, box plots) using Matplotlib and Seaborn in Python, and ggplot2 in R.

Lab 5: Feature Engineering

- Objective: Practice feature selection and extraction techniques.
- Tasks:
 - Use Python's Scikit-learn and R's caret package for feature selection.
 - Perform feature extraction techniques such as PCA.

Unit 3: Probability Theory and Statistics for Predictive Modeling

Lab 6: Probability Distributions

- Objective: Understand and visualize different probability distributions.
- Tasks:
 - o Generate and plot discrete and continuous distributions in Python (SciPy) and R (ggplot2).

Lab 7: Statistical Inference

- Objective: Perform point estimation, confidence intervals, and hypothesis testing.
- Tasks:
 - Conduct hypothesis tests and construct confidence intervals using Python (SciPy, Statsmodels) and R (stats package).

Unit 4: Regression Analysis

Lab 8: Simple Linear Regression

- Objective: Implement and evaluate simple linear regression models.
- Tasks:
 - Build and interpret a simple linear regression model in Python (Scikit-learn) and R (Im function).

Lab 9: Multiple Linear Regression

- Objective: Develop and analyze multiple linear regression models.
- Tasks:
 - Perform multiple linear regression and interpret coefficients in Python (Scikit-learn) and R (Im function).
 - Conduct diagnostics and residual analysis.

Lab 10: Advanced Regression Techniques

- Objective: Implement logistic and polynomial regression models.
- Tasks:
 - Build logistic regression models in Python (Scikit-learn) and R (glm function).
 - Create polynomial regression models and evaluate performance.

Unit 5: Machine Learning Algorithms for Predictive Modeling

Lab 11: Decision Trees

- Objective: Implement and evaluate decision tree models.
- Tasks:
 - \circ $\;$ Train decision tree models using Python (Scikit-learn) and R (rpart package).
 - \circ Visualize and interpret decision trees.

Lab 12: Random Forests

- Objective: Develop and analyze random forest models.
- Tasks:
 - Build random forest models in Python (Scikit-learn) and R (randomForest package).

• Evaluate model performance using accuracy and feature importance.

Lab 13: Support Vector Machines (SVM)

- Objective: Implement SVM for classification tasks.
- Tasks:
 - Train SVM models in Python (Scikit-learn) and R (e1071 package).
 - Tune hyperparameters and evaluate model performance.

Lab 14: k-Nearest Neighbors (k-NN)

- Objective: Apply k-NN algorithm for classification and regression.
- Tasks:
 - Implement k-NN in Python (Scikit-learn) and R (class package).
 - Optimize the value of k and assess model accuracy.

Lab 15: Clustering Algorithms

- Objective: Perform clustering using k-means and hierarchical clustering.
- Tasks:
 - Apply k-means clustering in Python (Scikit-learn) and R (stats package).
 - Implement hierarchical clustering and visualize dendrograms.

Lab 16: Association Rule Mining

- Objective: Discover association rules in datasets.
- Tasks:
 - Use Python (mlxtend package) and R (arules package) to perform association rule mining.

Lab 17: Ensemble Methods

- Objective: Implement ensemble learning techniques.
- Tasks:
 - Apply bagging and boosting methods using Python (Scikit-learn) and R (caret package).
 - Build Gradient Boosting Machines (GBM) and evaluate performance.

Unit 6: Time Series Analysis

Lab 18: Time Series Decomposition

- Objective: Decompose time series data into trend, seasonality, and residuals.
- Tasks:
 - Perform time series decomposition in Python (Statsmodels) and R (stl function).

Lab 19: Smoothing Techniques

- Objective: Apply smoothing techniques to time series data.
- Tasks:
 - Implement moving average and exponential smoothing in Python (Pandas) and R (forecast package).

Lab 20: Time Series Forecasting Models

- Objective: Develop time series forecasting models.
- Tasks:
 - Build ARIMA models in Python (Statsmodels) and R (forecast package).
 - \circ Apply Seasonal Decomposition of Time Series (STL) and forecast.

Unit 7: Model Evaluation and Validation

Lab 21: Model Evaluation Metrics

- Objective: Calculate and interpret model evaluation metrics.
- Tasks:

Compute accuracy, precision, recall, F1-score, and ROC-AUC in Python (Scikit-learn) and R (caret package).

Lab 22: Cross-Validation Techniques

- Objective: Implement cross-validation methods.
- Tasks:
 - Perform k-fold and leave-one-out cross-validation in Python (Scikit-learn) and R (caret package).

Lab 23: Overfitting and Underfitting

- Objective: Identify and mitigate overfitting and underfitting.
- Tasks:
 - Visualize model performance to detect overfitting and underfitting.
 - Apply regularization techniques (Lasso, Ridge) in Python (Scikit-learn) and R (glmnet package).

Lab 24: Model Selection Criteria

- Objective: Use AIC and BIC for model selection.
- Tasks:
 - Calculate AIC and BIC for model comparison in Python (Statsmodels) and R (stats package).

Unit 8: Model Deployment

Lab 25: Preparing Models for Deployment

- Objective: Prepare predictive models for deployment.
- Tasks:
 - Export trained models using Python (joblib, pickle) and R (saveRDS, PMML).

Lab 26: Model Implementation

- Objective: Implement models in a production environment.
- Tasks:
 - Deploy models as web services using Flask (Python) and plumber (R).

Lab 27: Monitoring and Updating Models

- Objective: Monitor and update deployed models.
 - Tasks:
 - Set up monitoring for model performance metrics.
 - Retrain models with new data and update deployment using Python (Scikit-learn, Flask) and R (caret, plumber).

INTERNAL ASSESSMENT (IA)

Two internal assessments and an end semester examination to test students' reading and writing skills along with their grammatical and lexical competence. Assessment will include following things:

- Internal Assessment: 25 Marks 1. Attendance
 - 2. Assignments
 - 3. Case Study/Mini Project/Presentation
- Mid Semester Exam: 25 Marks
- End Semester Exam: 50 Marks

CO's-PO's & PSO's MAPPING

Cos	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	3	3	3	2	2	3	3	2
2	/ i	3	3	1	1	3	3	3
3	1	2	2	2	2	3	2	1
4	1	2	2	2	2	3	2	2
5	1.12	2	2	3	3	3	3	2
Avg	3	2.4	2.4	2	2	3	2.6	2

1000300

1 - low, 2 - medium, 3 - high, '-' - no correlation

न्यः क्रियांचान

BTDS 605L: UI DESIGN-FLUTTER B Tech III Vear II Sem

D,	rech. III rear II Sem							
Teaching Scheme:	Credit	Examination S	cheme:					
TH: - 4 Hours/Week	TH: 04	In Sem. Evaluation	: 25 Marks					
		Mid Sem. Exam:	25 Marks					
		End Sem. Exam:	50 Marks					
		Total	: 100 Marks					
Course Prerequisites: None								
Course Objective:								
• Learns to Implement Flutter W	idgets and Layouts							
• Understands Responsive UI De	esign and with Navigation i	n Flutter						
Knowledge on Widges and cus	tomize widgets for specific	UI elements, Themes						
• Understand to include animation	on apart from fetching data							
Learning Course Outcome:								
After successful completion of the cour	se, students will able to:							
Implements Flutter Widgets an	d Layouts							
Responsive UI Design and with	h Navigation in Flutter							
Create custom widgets for specific UI elements and also Apply styling using themes and								
custom styles.								
• Design a form with various inp	out fields, along with valida	tion and error handling	5					
• Fetches data and write code for	r unit Test for UI componer	nts and also animation						
	Course Contents							
List o	of Experiments		07 Hours					
Students need to implement the following	ng experiments							
1. a) Install Flutter and Dart SDK								
b) Write a simple Dart program	to understand the language	e basics.						
2 a) Evelore verieus Eluttor wide	esta (Taut Imaga Containa	n ata)						
2. a) Explore various Flutter widg	gets (Text, Illage, Collaine	r, etc.).						
b) Implement different layout s	tructures using Row, Colui	nn, and Stack widgets.						
3. a) Design a responsive UI that	3. a) Design a responsive UI that adapts to different screen sizes.							
b) Implement media queries and	d breakpoints for responsive	eness.						
4. a) Set up navigation between d	ifferent screens using Navi	gator.						
b) Implement navigation with r	named routes.							

- 5. a) Learn about stateful and stateless widgets.
 - b) Implement state management using set State and Provider.
- a) Create custom widgets for specific UI elements.b) Apply styling using themes and custom styles.
- 7. a) Design a form with various input fields.
 - b) Implement form validation and error handling.
- 8. a) Add animations to UI elements using Flutter's animation framework.b) Experiment with different types of animations (fade, slide, etc.).
- 9. a) Fetch data from a REST API.b) Display the fetched data in a meaningful way in the UI.
- 10. a) Write unit tests for UI components.
 - b) Use Flutter's debugging tools to identify and fix issues.

TEXT BOOK:

1. Marco L. Napoli, Beginning Flutter: A Hands-on Guide to App Development.

INTERNAL ASSESSMENT (IA)

Two internal assessments and an end semester examination to test students' reading and writing skills along with their grammatical and lexical competence. Assessment will include following things:

- Internal Assessment: 25 Marks 1. Attendance
 - 2. Assignments
 - 3. Case Study/Mini Project/Presentation
- Mid Semester Exam: 25 Marks
- End Semester Exam: 50 Marks

CO's-PO's & PSO's MAPPING

Cos	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	3	3	3	2	2	3	3	2
2	-	3	3	1	1	3	3	3
3	-	2	2	2	2	3	2	1
4	-	2	2	2	2	3	2	2
5	-	2	2	3	3	3	3	2
Avg	3	2.4	2.4	2	2	3	2.6	2

1 - low, 2 - medium, 3 - high, '-' - no correlation

BTDS 701: BIG DATA ANALYTICS B.Tech. III Year II Sem.

Teaching Scheme: TH: - 4 Hours/Week	Credit TH: 04	Examination Scheme: In Sem. Evaluation: 25 Marks Mid Sem. Exam: 25 Marks End Sem. Exam: 50		
		Marks Total · 100		
		Marks		
Course Prerequisites: None				
 Understand the fundamental concepts and characteristics of big data and its importance in modern data-driven decision-making. Explore the architecture and components of big data platforms like Hadoop and Spark. Develop skills in data collection, storage, and processing techniques specific to big data. Learn about various big data storage solutions, including NoSQL databases. Master techniques for data cleaning, transformation, and preparation for analysis. Apply advanced analytical methods and machine learning techniques to big data. Gain proficiency in using big data tools and frameworks for real-world data analysis. Interpret and visualize large data sets effectively to communicate insights. Analyze real-world case studies and understand the application of big data analytics in different industries. Prepare students for advanced study and careers in big data analytics and data science. 				
Learning Course Outcome:				
 After successful completion of the course, students will able to: Explain the key concepts, opportunities, and challenges of big data. Utilize the Hadoop ecosystem and Spark framework for big data processing. Implement data collection, storage, and processing workflows for large datasets. Employ NoSQL databases for efficient data storage and retrieval. Perform data cleaning, transformation, and preparation techniques on big data. Apply machine learning algorithms and advanced analytics techniques to big data. Use big data tools such as Hadoop, Spark, and NoSQL databases for practical data analysis tasks. Create visualizations to effectively communicate insights derived from big data. Implement stream processing pipelines for real-time data analysis. Analyze case studies to understand the application of big data analytics in various industries. Demonstrate the ability to manage and analyze big data projects, preparing for roles in data scienc and big data analytics. 				
Course Contents				

B. Tech Data Science

36 | Page

UNIT-I	Introduction to Big Data, Big Data Technologies	07 Hours		
1.1. Overview of E	Big Data			
Definition and C	Concept			
Evolution of Big Data				
Big Data Ecosys	Big Data Ecosystem			
1.2. Characteristics	1.2. Characteristics and Challenges of Big Data			
Volume, Veloci	ty, Variety, Veracity, and Value			
Data Quality and	d Management Issues			
Scalability and S	Storage Solutions			
Security and Pri	vacy Concerns			
1.3. Big Data vs Tr	raditional Data Analysis			
Differences in D	Data Processing			
Advantages of E	Big Data			
Limitations and	Trade-offs			
Case Studies Co	omparing Both Approaches			
1.4. Importance an	d Applications of Big Data Analytics			
Role in Decision	n-Making			
Industry-Specifi	c Applications (Healthcare, Finance, Retail, etc.)			
Predictive and P	Prescriptive Analytics			
Success Stories	and Real-World Examples			
2.1. Introduction to	o Hadoop Ecosystem			
Overview of Ha	doop Ecosystem Components			
HDFS (Hadoo	op Distributed File System)			
MapReduce				
YARN (Yet Another Resource Negotiator)				
Hadoop Com	Hadoop Common			
Role of Each Co	Role of Each Component in Big Data Processing			
Installation and	Configuration of Hadoop			
2.2. Hadoop Distri	buted File System (HDFS)			
Architecture and	1 Design Principles			
NameNode an	nd DataNode			
Block Storage	e Mechanism			
HDFS Operation	ns			
Read/Write O	perations			
Data Replicat	ion			
Fault Toleran	ce and Reliability			
HDFS Shell and	Command Line Interface			
Best Practices for	or HDFS Usage			
2.3. MapReduce P	rogramming Model			
Basic Concepts	of MapReduce			
Map and Reduce Functions				
Data Flow an	Data Flow and Processing			
Writing a MapReduce Program				
Key-Value Pair Concept				
Example Prog	grams (word Count, Sorting)			

Advanced Map	Reduce Techniques		
Combiner and	1 Partitioner		
Optimization	and Performance Tuning		
Real-World Use	cases and Applications		
2.4. Introduction to	o Spark Framework		
Overview of Ap	ache Spark		
Components a	and Architecture		
Spark Core, S	Spark SQL, Spark Streaming, MLlib, GraphX		
Spark vs. Hadoo	pp: A Comparative Analysis		
Programming w	ith Spark		
RDD (Resilie	nt Distributed Dataset)		
DataFrames a	and Datasets		
Writing Spark A	applications		
Basic Operati	ons (Transformations and Actions)		
Example Prog	grams (Word Count, DataFrame Operations)		
2.5. Comparison o	f Hadoop and Spark		
Performance Co	omparison		
Batch Process	sing vs. Real-Time Processing		
Speed and Ef	ficiency		
Usability and Fl	exibility		
Ease of Use a	nd Learning Curve		
Programming	Languages Supported (Java, Scala, Python, R)		
Ecosystem and I	Integration		
Compatibility	with Other Big Data Tools		
Scalability an	Scalability and Fault Tolerance		
Cost and Resource Utilization			
Resource Management and Optimization			
Cost of Deplo	byment and Maintenance		
UNIT-II	Data Collection and Storage	08 Hours	
3.1. Data Collectio	on Techniques		
Overview of Da	ta Collection Methods		
Structured Da	ta Collection		
Semi-Structur	red and Unstructured Data Collection		
Data Sources			
Logs and Event Data			
Social Media and Web Data			
Sensors and IoT Devices			
Data Quality and Preprocessing			
Data Cleaning			
Handling Missing Values			
Data Normalization and Transformation			
3.2. Data Ingestion Tools (Apache Flume, Sqoop)			
Introduction to I	Data Ingestion		
•			

B. Tech Data Science

38 | Page

Batch vs. Real-Time Data Ingestion Apache Flume Architecture and Components Sources, Channels, and Sinks Configuring and Deploying Flume Agents Example Use Cases Apache Sqoop Introduction and Use Cases Importing Data from Relational Databases to Hadoop Exporting Data from Hadoop to Relational Databases Performance Tuning and Optimization 3.3. Data Storage Solutions Overview of Big Data Storage Requirements Scalability Durability Consistency **Distributed File Systems** HDFS (Hadoop Distributed File System) Google File System (GFS) **Cloud-Based Storage Solutions** Amazon S3 Google Cloud Storage Azure Blob Storage 3.4. Introduction to NoSQL Databases Characteristics of NoSOL Databases Schema-less Data Models Horizontal Scalability High Availability and Fault Tolerance Types of NoSQL Databases Key-Value Stores **Document Stores Column-Family Stores Graph Databases Comparison with Traditional RDBMS** Advantages and Disadvantages Use Cases and Applications 3.5. Key-Value Stores, Document Stores, Column-Family Stores **Key-Value Stores Basic Concepts and Architecture** Examples: Redis, DynamoDB Use Cases and Performance Considerations **Document Stores** Document-Oriented Data Model Examples: MongoDB, CouchDB **Querying and Indexing Documents Column-Family Stores**

Data Model a	nd Architecture	
Examples: Ap	bache Cassandra, HBase	
Column Fami	lies and Wide-Column Data Storage	
Querying and	Performance Tuning	
UNIT-III	Data Processing and Management	08 Hours
4.1. Data Cleaning	and Preparation	
Importance of D	ata Cleaning	
Impact on An	alysis Accuracy	
Data Quality	Issues	
Data Cleaning T	'echniques	
Removing Du	plicates	
Handling Mis	sing Values	
Detecting and	Correcting Errors	
Data Standard	lization and Normalization	
Data Preparation	1	
Data Integrati	on and Fusion	
Feature Engir	leering	
Splitting Data	into Training and Testing Sets	
Dealing with	Imbalanced Datasets	
4.2. Data Transfor	mation Techniques	
Overview of Da	ta Transformation	
Objectives an	d Benefits	
ETL (Extract	Transform, Load) Process	
Common Data 7	Transformation Methods	
Aggregation a	and Summarization	
Filtering and	Subsetting	
Data Enrichm	ent	
Advanced Trans	formation Techniques	
Data Binning		
Encoding Cat	egorical Variables	
Dimensionali	ty Reduction (e.g., PCA)	
Text and Tim	e Series Data Transformations	
4.3. Workflow Ord	hestration Tools (Apache Oozie, Airflow)	
Introduction to	Workflow Orchestration	
Importance in	Big Data Processing	
Key Features	of Orchestration Tools	
Apache Oozie		
Overview and	Architecture	
Defining Wor	kflows and Coordinators	
Job Schedulin	ig and Dependency Management	
Oozie Workf	ow Language	
Apache Airflow		
Overview and	Architecture	
Creating and	Managing Workflows with DAGs (Directed Acyclic Graphs)	

B. Tech Data Science

Task Schedul	ing, Execution, and Monitoring				
Integrating A	irflow with Hadoop, Spark, and Other Big Data Tools				
4.4. Batch Process	ing with Hadoop and Spark				
Introduction to I	Batch Processing				
Batch vs. Rea	I-Time Processing				
Use Cases for	Batch Processing				
Batch Processin	g with Hadoop				
MapReduce F					
Job Config	uration				
Warlaflaw Ev	educe Functions				
WORKIIOW EX	Optimization Tachniques				
Performance Detab Drocossin	opumization Techniques				
Datch Processin	g will Spark				
Spork SOL or	ad DataFrama ADI				
Spark SQL a	ransformations and Actions				
Optimizing S	park Johs				
Integrating St	park with Hive HBase and Other Data Sources				
4 5 Real-Time Pro	accessing with Anache Storm and Kafka				
Introduction to 1	Real-Time Processing				
Importance a	nd Applications				
Challenges in	Real-Time Data Processing				
Real-Time Proc	essing with Anache Storm				
Storm Archite	ecture and Components (Spouts, Bolts, Topologies)				
Building and	Deploving Storm Topologies				
Fault Toleran	ce and Reliability in Storm				
Integrating St	orm with Hadoop and HDFS				
Real-Time Data	Streaming with Apache Kafka				
Kafka Archite	ecture (Producers, Consumers, Brokers, Topics)				
Kafka Stream	s API for Stream Processing				
Building Real-Time Data Pipelines with Kafka Connect					
Ensuring Data Durability and Scalability with Kafka					
Integrating K	Integrating Kafka with Spark Streaming and Storm				
UNIT-IV	Query Languages and Tools, Advanced Analytical Methods	07 Hours			
5.1. Introduction to	HiveQL				
Overview of Hi	ve				
Apache Hive	Architecture				
Key Features	and Use Cases				
HiveQL Basics					
Data Definition	on Language (DDL)				
CREATE, ALTER, DROP Statements					

SELECT, INSERT, UPDATE, DELETE Statements Data Types and Storage Formats

Data Manipulation Language (DML)

Primitive and Complex Data Types File Formats (Text, Parquet, ORC) 5.2. Querying Big Data with Hive Writing Hive Queries **Basic Query Structure** Joins and Unions Subqueries and Nested Queries Aggregation Functions and Grouping **Hive Functions Built-in Functions** String Functions **Date Functions** Mathematical Functions User-Defined Functions (UDFs) Creating and Using UDFs Hive Query Performance Optimization Partitioning and Bucketing Indexing and Query Caching Cost-Based Optimization (CBO) Integrating Hive with Other Tools Hive and HDFS Hive and Spark SQL Hive and HBase 5.3. Data Processing with Pig Introduction to Pig Pig Architecture and Execution Modes Pig Latin Language Overview Writing Pig Scripts Loading and Storing Data Relational Operators (FOREACH, FILTER, JOIN, GROUP, ORDER BY) User-Defined Functions (UDFs) in Pig Pig Data Types and Schemas Scalar and Complex Data Types Defining and Using Schemas Advanced Pig Techniques Data Transformations and Aggregations Error Handling and Debugging Pig Scripts **Optimizing Pig Performance** Pig and Hadoop Integration Running Pig on Hadoop Pig and HCatalog Integration 5.4. Using JAQL for Data Analysis Introduction to JAQL Overview and Architecture Key Features and Use Cases JAQL Syntax and Data Model

Basic Syntax and Expressions Handling JSON Data in JAQL Writing JAQL Queries Data Loading and Transformation Filtering, Mapping, and Reducing Data Aggregations and Grouping Advanced JAQL Techniques Joins and Nested Queries User-Defined Functions in JAQL Error Handling and Debugging Integrating JAQL with Hadoop Ecosystem Running JAQL on Hadoop JAQL and HDFS Integration JAQL with Hive and HBase 5.5. Advanced Query Optimization Techniques Importance of Query Optimization Impact on Performance and Resource Utilization Optimization Strategies in Hive Cost-Based Optimization (CBO) Partition Pruning Predicate Pushdown Vectorized Query Execution **Optimizing Pig Scripts** Understanding Logical and Physical Plans **Combiner Optimization** Multi-query Execution Schema and Type Optimization General Optimization Techniques Data Partitioning and Distribution Indexing and Caching Strategies Efficient Join and Aggregation Techniques Monitoring and Tuning Query Performance Analyzing Query Execution Plans **Resource Allocation and Management** Using Tools for Performance Monitoring (Ganglia, Nagios, Ambari) 6.1. Introduction to Machine Learning on Big Data **Overview of Machine Learning Concepts** Supervised Learning Unsupervised Learning **Reinforcement Learning** Machine Learning Challenges with Big Data Scalability Data Quality and Preprocessing Model Training and Evaluation **Big Data Machine Learning Platforms**

Apache Spark MLlib Hadoop Mahout TensorFlow on Big Data 6.2. Implementing Algorithms with Spark MLlib Overview of Spark MLlib Key Features and Architecture MLlib vs. ML Pipeline API Data Preparation for MLlib Loading and Transforming Data Feature Engineering and Selection Supervised Learning Algorithms Linear Regression Logistic Regression **Decision Trees and Random Forests** Support Vector Machines Unsupervised Learning Algorithms K-means Clustering Principal Component Analysis (PCA) Singular Value Decomposition (SVD) Model Evaluation and Tuning **Cross-Validation** Hyperparameter Tuning Metrics for Model Performance 6.3. Scalable Analytics with R and Python Introduction to Scalable Analytics Benefits and Challenges Key Concepts and Approaches Using R for Big Data Analytics R Packages for Big Data (e.g., dplyr, data.table) Integrating R with Hadoop and Spark Parallel Processing in R Using Python for Big Data Analytics Python Libraries for Big Data (e.g., NumPy, Pandas, Dask) Integrating Python with Hadoop and Spark Parallel Processing in Python with Dask and PySpark **Comparative Analysis** R vs. Python for Big Data Selecting the Right Tool for the Task 6.4. Predictive Analytics and Modeling **Overview of Predictive Analytics Concepts and Applications** Workflow for Predictive Modeling **Building Predictive Models** Data Collection and Preparation Feature Engineering Model Selection and Training

Tachniques in Dr	adjutive Analytice								
Decreasion Ar									
Classification	lalysis Techniques								
Decision Tr	Percentingues								
Time Series A	nelvois and Epressesting								
Time Series A Model Evoluctio	narysis and Forecasting								
	n and Deployment								
Evaluating Nic	Model Deployment Strategies								
Model Deploy	Model Deployment Strategies								
Monitoring an	a Updating Models								
0.5. Case Studies of	n Advanced Analytics								
Case Study 1: Pr									
Problem Defin	nition and Data Collection								
	ig and Evaluation								
Implementatio	on and Results								
Case Study 2: Cl	istomer Segmentation								
Data Preparati	on and Feature Selection								
Clustering An	alysis								
Business Impl	ications and Actionable Insignts								
Lase Study 5: Fr	aud Detection								
Model Trainin	audulent Patterns								
Nodel Trainin	g and validation								
Coso Study 4: Do	a Detection Systems								
Case Study 4. Ke	Filtering Techniques								
Ruilding a Par	rmering recimiques								
Evoluation and	d Tuning								
L'valuation and	and Rost Practices								
Key Takeaway	us from Case Studies								
Common Pitts	alls and How to Avoid Them								
Future Trends	in Big Data Analytics								
i uture menus	In Dig Data Analytics								
UNIT-V	Data Visualization and Interpretation, Stream Processing	08 Hours							
	and Real-Time Analytics								
7.1. Principles of D	ata Visualization								
Basics of Data V	Isualization								
Definition and Importance									
History and Evolution of Data Visualization									
Key Principles									
Clarity and Simplicity									
Accuracy and Integrity									
Context and Relevance									
Types of Data Visualizations									
Charts: Bar, L	ine, Pie, Scatter Plots								
Graphs and No	etworks								
Maps and Geo	spatial Visualizations								
Dashboards and Interactive Visualizations									

B. Tech Data Science

Design Best Practices Choosing the Right Visualization Type Color Theory and Usage Layout and Design Principles Avoiding Common Pitfalls 7.2. Tools for Big Data Visualization (Tableau, D3.js) **Overview of Visualization Tools** Criteria for Selecting Visualization Tools Tableau Introduction to Tableau Key Features and Capabilities Data Connection and Preparation **Creating Basic Visualizations** Advanced Tableau Features (Calculated Fields, Parameters, Tableau Prep) D3.js Introduction to D3.js Key Features and Capabilities Basic D3.js Syntax and Structure Creating Simple Visualizations with D3.js Advanced D3. is Techniques (Transitions, Animations, Interactivity) **Comparison and Integration** Integrating Tableau and D3.js with Big Data Platforms Strengths and Weaknesses of Each Tool 7.3. Creating Effective Visualizations **Visualization Process** Data Preparation and Cleaning Identifying Key Insights and Messages Selecting Appropriate Visualization Techniques **Design and Implementation** Designing for Your Audience Using Visual Elements to Enhance Understanding Interactive vs. Static Visualizations Enhancing Visual Appeal Using Color and Fonts Effectively **Incorporating Branding Elements** Creating Storyboards and Prototypes **Testing and Refinement** User Testing and Feedback Iterative Design and Improvement Ensuring Accessibility and Inclusivity 7.4. Interpreting and Communicating Insights Interpreting Data Visualizations Analyzing Patterns, Trends, and Outliers Drawing Conclusions from Visual Data Identifying Misleading Visualizations Storytelling with Data

Crafting a Narrative Structuring the Presentation of Insights Using Visuals to Support Your Story **Effective Communication Strategies** Tailoring Communication to Different Audiences Combining Visuals with Verbal and Written Explanations Persuasive Presentation Techniques **Documentation and Reporting Creating Comprehensive Reports** Including Visualizations in Reports and Presentations Ensuring Reproducibility and Transparency 7.5. Real-World Visualization Examples Case Study 1: Business Analytics Visualizing Sales and Revenue Data Creating Dashboards for Business Intelligence Interactive Visualizations for Decision Support Case Study 2: Healthcare Analytics Visualizing Patient Data and Health Outcomes Mapping Disease Spread and Epidemiological Data Using Visualizations for Public Health Communication Case Study 3: Social Media Analytics Analyzing Social Media Trends and Sentiments Network Visualizations of Social Connections Interactive Visuals for Social Media Engagement Case Study 4: Environmental Data Visualizing Climate Data and Environmental Changes Geospatial Visualizations of Environmental Impact Using Visualizations for Environmental Policy and Advocacy 8.1. Introduction to Stream Processing **Concepts and Definitions Definition of Stream Processing** Differences Between Stream Processing and Batch Processing Key Terminologies: Streams, Events, Windows Importance of Stream Processing Applications and Benefits Challenges in Stream Processing Stream Processing Models Event-driven Architecture Data Flow Models Windowing and Aggregation Techniques Stream Processing vs. Real-Time Analytics Understanding the Need for Real-Time Data Use Cases in Various Industries (Finance, Healthcare, IoT) 8.2. Tools for Real-Time Data Processing (Apache Flume, Kafka) Apache Flume

Overview and Architecture Key Components: Sources, Channels, Sinks Data Flow in Flume Configuring and Deploying Flume Agents Use Cases and Examples Apache Kafka **Overview and Architecture** Key Concepts: Producers, Consumers, Topics, Partitions, Brokers Kafka Streams API Setting Up a Kafka Cluster Data Ingestion and Processing with Kafka Use Cases and Examples Comparison of Flume and Kafka Strengths and Weaknesses Use Case Scenarios for Each Tool 8.3. Building Stream Processing Pipelines **Pipeline Architecture** Designing a Stream Processing Pipeline Key Components and Their Roles Integrating Various Tools and Technologies **Data Ingestion** Techniques for Capturing Real-Time Data Integrating Data Sources with Flume and Kafka Handling Data Streams at Scale Stream Processing Frameworks Introduction to Apache Storm Architecture and Key Concepts Setting Up and Configuring Storm Clusters **Developing Storm Topologies** Introduction to Apache Samza Architecture and Key Concepts Setting Up and Configuring Samza Jobs **Developing Samza Applications** Introduction to Apache Flink Architecture and Key Concepts Setting Up and Configuring Flink Clusters **Developing Flink Applications** Data Transformation and Enrichment Applying Transformations on Streaming Data Joining and Aggregating Data Streams Handling Out-of-Order and Late Arriving Data Monitoring and Managing Pipelines Tools for Monitoring Stream Processing Troubleshooting and Debugging Pipelines Scaling Stream Processing Applications 8.4. Real-Time Analytics Use Cases

Financial Servic	es	
Fraud Detection		
Centering Dal	ading Analytics	
Customer Ben	lavior Analysis	
Healthcare		
Real-Time Pa	tient Monitoring	
Predictive An	alytics for Emergency Response	
Disease Outbr	eak Tracking	
E-Commerce and	d Retail	
Real-Time Inv	ventory Management	
Personalized I	Recommendations	
Customer Sen	timent Analysis	
Telecommunicat	tions	
Network Perio	ormance Monitoring	
Keal-Time Cu	A subject	
Usage Pattern	Analysis	
Internet of Thing	25 (101)	
Smart Cities a	ind Infrastructure	
Real-Time En	vironmental Monitoring	
Predictive Ma	Intenance	
Case Studies and	1 Examples	
Detailed Anal	ysis of Successful Real-Time Analytics Implementations	
ΤΤ	· · · · · · · · · · · · · · · · · · ·	
Lessons Learr	ined and Best Practices	
Lessons Learr Future Trends	ned and Best Practices in Real-Time Analytics	
Lessons Learr Future Trends UNIT-VI	the and Best Practices in Real-Time Analytics Case Studies and Applications	08 Hours
Lessons Learr Future Trends UNIT-VI	ed and Best Practices in Real-Time Analytics Case Studies and Applications	08 Hours
Lessons Learr Future Trends UNIT-VI 9.1. Big Data Anal	the d and Best Practices in Real-Time Analytics Case Studies and Applications ytics in Business	08 Hours
Lessons Learr Future Trends UNIT-VI 9.1. Big Data Anal Overview of Big	and Best Practices in Real-Time Analytics Case Studies and Applications ytics in Business Data in Business	08 Hours
Lessons Learr Future Trends UNIT-VI 9.1. Big Data Anal Overview of Big Importance ar	med and Best Practices in Real-Time Analytics Case Studies and Applications ytics in Business g Data in Business ad Benefits of Big Data Analytics in Business	08 Hours
Lessons Learr Future Trends UNIT-VI 9.1. Big Data Anal Overview of Big Importance an Common Cha	med and Best Practices in Real-Time Analytics Case Studies and Applications ytics in Business g Data in Business ad Benefits of Big Data Analytics in Business llenges and Solutions	08 Hours
Lessons Learr Future Trends UNIT-VI 9.1. Big Data Anal Overview of Big Importance ar Common Cha Customer Insigh	The damage of the second seco	08 Hours
Lessons Learr Future Trends UNIT-VI 9.1. Big Data Anal Overview of Big Importance an Common Cha Customer Insigh Analyzing Cu	med and Best Practices in Real-Time Analytics Case Studies and Applications ytics in Business ytics in Business g Data in Business ad Benefits of Big Data Analytics in Business llenges and Solutions ts and Personalization stomer Behavior and Preferences	08 Hours
Lessons Learr Future Trends UNIT-VI 9.1. Big Data Anal Overview of Big Importance ar Common Cha Customer Insigh Analyzing Cu Personalized I	med and Best Practices in Real-Time Analytics Case Studies and Applications ytics in Business g Data in Business ad Benefits of Big Data Analytics in Business llenges and Solutions ts and Personalization stomer Behavior and Preferences Marketing and Recommendation Systems	08 Hours
Lessons Learr Future Trends UNIT-VI 9.1. Big Data Anal Overview of Big Importance an Common Cha Customer Insigh Analyzing Cu Personalized I Case Study: N	med and Best Practices in Real-Time Analytics Case Studies and Applications ytics in Business g Data in Business ad Benefits of Big Data Analytics in Business llenges and Solutions ts and Personalization stomer Behavior and Preferences Marketing and Recommendation Systems letflix's Recommendation Algorithm	08 Hours
Lessons Learr Future Trends UNIT-VI 9.1. Big Data Anal Overview of Big Importance an Common Cha Customer Insigh Analyzing Cu Personalized I Case Study: N Operational Effi	In Real-Time Analytics Case Studies and Applications ytics in Business Image: Studies and Applications ytics in Business Image: Studies and Applications g Data in Business Image: Studies and Applications id Benefits of Big Data Analytics in Business Image: Studies and Solutions its and Personalization Image: Studies and Performed ation Systems Marketing and Recommendation Algorithm Image: Studies at the studies	08 Hours
Lessons Learr Future Trends UNIT-VI 9.1. Big Data Anal Overview of Big Importance ar Common Cha Customer Insigh Analyzing Cu Personalized I Case Study: N Operational Effi Supply Chain	med and Best Practices in Real-Time Analytics Case Studies and Applications ytics in Business ytics in Business generation ytics of Big Data Analytics in Business generation llenges and Solutions generation stomer Behavior and Preferences Marketing and Recommendation Systems Verticity's Recommendation Algorithm generation and Logistics Optimization generation	08 Hours
Lessons Learr Future Trends UNIT-VI 9.1. Big Data Anal Overview of Big Importance ar Common Cha Customer Insigh Analyzing Cu Personalized I Case Study: N Operational Effi Supply Chain Predictive Ma	med and Best Practices in Real-Time Analytics Case Studies and Applications ytics in Business g Data in Business ad Benefits of Big Data Analytics in Business and Benefits of Big Data Analytics in Business Blenefits of Big Data Analytics in Business llenges and Solutions ts and Personalization stomer Behavior and Preferences Marketing and Recommendation Systems Marketing and Recommendation Algorithm ciency and Optimization and Logistics Optimization and Logistics Optimization intenance and Asset Management Descent for the Systems	08 Hours
Lessons Learr Future Trends UNIT-VI 9.1. Big Data Anal Overview of Big Importance ar Common Cha Customer Insigh Analyzing Cu Personalized I Case Study: N Operational Effi Supply Chain Predictive Ma Case Study: U	med and Best Practices in Real-Time Analytics Case Studies and Applications ytics in Business g Data in Business g Data in Business ad Benefits of Big Data Analytics in Business g Data in Business llenges and Solutions g Data Analytics in Business llenges and Solutions g Data Analytics in Business stomer Behavior and Preferences g Data Analytics In Business Marketing and Recommendation Systems g Data Analytics In Business Identities and Optimization g Data Analytics In Business Identities Internance and Asset Management JPS's ORION Routing System	08 Hours
Lessons Learr Future Trends UNIT-VI 9.1. Big Data Anal Overview of Big Importance an Common Cha Customer Insigh Analyzing Cu Personalized I Case Study: N Operational Effic Supply Chain Predictive Ma Case Study: U Financial Analyt	med and Best Practices in Real-Time Analytics Case Studies and Applications ytics in Business g Data in Business g Data Analytics in Business ad Benefits of Big Data Analytics in Business llenges and Solutions ts and Personalization stomer Behavior and Preferences Marketing and Recommendation Systems letflix's Recommendation Algorithm ciency and Optimization and Logistics Optimization intenance and Asset Management IPS's ORION Routing System tics stand Detection	08 Hours
Lessons Learr Future Trends UNIT-VI 9.1. Big Data Anal Overview of Big Importance an Common Cha Customer Insigh Analyzing Cu Personalized I Case Study: N Operational Effi Supply Chain Predictive Ma Case Study: U Financial Analyt Risk Manager	Image: Second	08 Hours
Lessons Learr Future Trends UNIT-VI 9.1. Big Data Anal Overview of Big Importance ar Common Cha Customer Insigh Analyzing Cu Personalized I Case Study: N Operational Effi Supply Chain Predictive Ma Case Study: U Financial Analyt Risk Manager Real-Time Fin	Inequal Practices in Real-Time Analytics Case Studies and Applications ytics in Business g Data in Business ad Benefits of Big Data Analytics in Business llenges and Solutions ts and Personalization stomer Behavior and Preferences Marketing and Recommendation Systems Vetflix's Recommendation Algorithm ciency and Optimization and Logistics Optimization intenance and Asset Management JPS's ORION Routing System tics nent and Fraud Detection handlytics and Trading backits Searing Madels in Parking	08 Hours
Lessons Learr Future Trends UNIT-VI 9.1. Big Data Anal Overview of Big Importance ar Common Cha Customer Insigh Analyzing Cu Personalized I Case Study: N Operational Effi Supply Chain Predictive Ma Case Study: U Financial Analyt Risk Manager Real-Time Fin Case Study: C	Inequal Practices in Real-Time Analytics Case Studies and Applications ytics in Business g Data in Business ad Benefits of Big Data Analytics in Business llenges and Solutions ts and Personalization stomer Behavior and Preferences Marketing and Recommendation Systems Vetflix's Recommendation Algorithm ciency and Optimization and Logistics Optimization intenance and Asset Management JPS's ORION Routing System tics nent and Fraud Detection hancial Analytics and Trading Credit Scoring Models in Banking the and Talent Management	08 Hours
Lessons Learr Future Trends UNIT-VI 9.1. Big Data Anal Overview of Big Importance an Common Cha Customer Insigh Analyzing Cu Personalized I Case Study: N Operational Effic Supply Chain Predictive Ma Case Study: U Financial Analyt Risk Manager Real-Time Fin Case Study: C Human Resource	Inequal Practices in Real-Time Analytics Case Studies and Applications ytics in Business ytics in Business ytics of Big Data Analytics in Business Id Benefits of Big Data Analytics in Business Ilenges and Solutions ts and Personalization stomer Behavior and Preferences Marketing and Recommendation Systems Vetflix's Recommendation Algorithm ciency and Optimization and Logistics Optimization intenance and Asset Management JPS's ORION Routing System tics nent and Fraud Detection nancial Analytics and Trading Credit Scoring Models in Banking es and Talent Management	08 Hours
Lessons Learr Future Trends UNIT-VI 9.1. Big Data Anal Overview of Big Importance an Common Cha Customer Insigh Analyzing Cu Personalized I Case Study: N Operational Effi Supply Chain Predictive Ma Case Study: U Financial Analyt Risk Manager Real-Time Fin Case Study: C Human Resource People Analyt	Inequal Practices In Real-Time Analytics Case Studies and Applications ytics in Business g Data in Business Id Benefits of Big Data Analytics in Business Ilenges and Solutions ts and Personalization stomer Behavior and Preferences Marketing and Recommendation Systems Jetflix's Recommendation Algorithm ciency and Optimization and Logistics Optimization intenance and Asset Management PPS's ORION Routing System tics nent and Fraud Detection nancial Analytics and Trading Credit Scoring Models in Banking es and Talent Management tics and Employee Retention Strategies	08 Hours

Case Study: Google's People Operations 9.2. Big Data in Healthcare Overview of Big Data in Healthcare Importance and Impact on Healthcare **Challenges and Ethical Considerations** Electronic Health Records (EHR) Data Integration and Management Predictive Analytics for Patient Outcomes Case Study: Predictive Analytics in Hospital Readmissions Personalized Medicine and Genomics Analyzing Genomic Data for Personalized Treatments Drug Discovery and Development Case Study: IBM Watson in Oncology Public Health and Epidemiology Tracking and Predicting Disease Outbreaks Health Surveillance and Population Health Management Case Study: Google Flu Trends **Remote Monitoring and Telemedicine Real-Time Patient Monitoring Systems Big Data in Telehealth Services** Case Study: Remote Monitoring for Chronic Disease Management 9.3. Big Data for Social Media Analysis Overview of Big Data in Social Media Importance and Applications in Social Media Data Privacy and Ethical Issues Sentiment Analysis and Opinion Mining Techniques for Analyzing Social Media Sentiments Tools and Frameworks for Sentiment Analysis Case Study: Sentiment Analysis for Brand Monitoring Influencer Identification and Network Analysis Identifying Key Influencers and Opinion Leaders Social Network Analysis Techniques Case Study: Influencer Marketing Strategies Trend Analysis and Event Detection Real-Time Trend Analysis on Social Media Platforms Event Detection and Analysis Case Study: Twitter Data Analysis for Event Detection Campaign Performance and Social Media ROI Measuring the Impact of Social Media Campaigns Techniques for Calculating Social Media ROI Case Study: Campaign Analysis for a Major Brand 9.4. Big Data in E-commerce Overview of Big Data in E-commerce Importance and Benefits for E-commerce Businesses Key Challenges and Considerations Customer Behavior and Personalization

Analyzing Browsing and Purchase Behavior Personalized Recommendations and Marketing Case Study: Amazon's Recommendation Engine Inventory Management and Demand Forecasting Optimizing Inventory Levels with Predictive Analytics **Demand Forecasting Techniques** Case Study: Walmart's Inventory Management System Fraud Detection and Prevention Techniques for Detecting and Preventing Fraudulent Activities **Real-Time Fraud Detection Systems** Case Study: PayPal's Fraud Detection Algorithm Customer Retention and Churn Analysis Analyzing Customer Churn and Retention Strategies Implementing Loyalty Programs Based on Data Insights Case Study: Customer Retention Strategies in E-commerce 9.5. Industry-Specific Case Studies Big Data in Manufacturing Predictive Maintenance and Quality Control Supply Chain Optimization Case Study: GE's Big Data Strategy for Predictive Maintenance Big Data in Energy and Utilities Smart Grids and Energy Management Predictive Analytics for Equipment Maintenance Case Study: Big Data for Energy Consumption Optimization Big Data in Transportation and Logistics Route Optimization and Fleet Management Real-Time Traffic Analysis and Prediction Case Study: DHL's Logistics Optimization with Big Data **Big Data in Telecommunications** Network Performance Monitoring and Optimization Customer Experience and Churn Management Case Study: Telecoms Using Big Data for Customer Retention **Big Data in Retail** Personalized Shopping Experiences and Targeted Promotions Inventory and Supply Chain Management Case Study: Big Data Analytics in a Major Retail Chain

TEXT BOOKS:

- 1. Big Data Analytics, Seema Acharya, Subhashini Chellappan, Wiley 2015.
- 2. R programming for beginners, sandhya arora, latesh malik, university press.

REFERENCE BOOKS:

- 1. chandramouli subramanian, Asha A Geroge, C R Rene Robin, big data analytics, University press.
- Big Data, Big Analytics: Emerging Business Intelligence and Analytic Trends for Today's Business, Michael Minelli, Michehe Chambers, 1st Edition Ambiga Dhirai Wiley CIO Series 2013
- 1st Edition, Ambiga Dhiraj, Wiley CIO Series, 2013.
 Hadoop: The Definitive Guide, Tom White, 3rd Edition, O'Reilly Media, 2012.
- 4. Big Data Analytics: Disruptive Technologies for Changing the Game, Arvind

Sathi, 1st Edition, IBM Corporation, 2012.

INTERNAL ASSESSMENT (IA)

Two internal assessments and an end semester examination to test students' reading and writing skills along with their grammatical and lexical competence. Assessment will include following things:

- Internal Assessment: 25 Marks 1. Attendance
 - 2. Assignments
 - 3. Case Study/Mini Project/Presentation
- Mid Semester Exam: 25 Marks
- End Semester Exam: 50 Marks

CO's-PO's & PSO's MAPPING

Cos	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	3	3	3	2	2	3	3	2
2	-	3	3	1	1	3	3	3
3	-	2	2	2	2	3	2	1
4	-	2	2	2	2	3	2	2
5	-	2	2	3	3	3	3	2
Avg	3	2.4	2.4	2	2	3	2.6	2

1 - low, 2 - medium, 3 - high, '-' - no correlation

BTDS 702: WEB AND SOCIAL MEDIA ANALYTICS B.Tech. IV Year I Sem.

		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
Teaching Scheme:	Credit	Examination Scheme:		
TH: - 4 Hours/Week	TH: 04	In Sem. Evaluation: 25 Marks		
		Mid Sem. Exam: 25 Marks		
		End Sem. Exam: 50 Marks		
		Total : 100 Marks		
Course Prerequisites: None				
Course Objective:				
• Exposure to various web and s	ocial media analytic techniq	nues		

Learning Course Outcon	me: tion of the course, students will able to:							
Knowledge on (lecision support systems							
 Apply natural language processing concepts on text analytics 								
 Apply natural language processing concepts on text analytics Understand sentiment analysis 								
 Knowledge on search engine optimization and web analytics 								
Course Contents								
UNIT-I	An Overview of Business Intelligence, Analytics, and Decision Support	07 Hours						
Analytics to Manage a	Vaccine Supply Chain Effectively and Safely, Changing Busi	ness						
Environments and Comp	outerized Decision Support, Information Systems Support for Deci	sion						
Making, The Concept of	of Decision Support Systems (DSS), Business Analytics Overv	iew,						
Brief Introduction to Big	g Data Analytics	,						
UNIT-II	Text Analytics and Text Mining	08 Hours						
Machine Versus Men or	Jeopardy: The Story of Watson, Text Analytics and Text Mining	ŗ						
Concepts and Definition	s, Natural Language Processing, Text Mining Applications, Text							
Mining Process, Text M	ining Tools							
UNIT-III	Sentiment Analysis	08 Hours						
Sentiment Analysis Over	rview, Sentiment Analysis Applications, Sentiment Analysis Proc	ess,						
Sentiment Analysis and	Speech Analytics							
UNIT-IV	Web Analytics, Web Mining	07 Hours						
Security First Insurance	Deepens Connection with Policyholders, Web Mining Overview,							
Web Content and Web S	Structure Mining, Search Engines, Search Engine Optimization, V	Veb						
Usage Mining (Web Analytics), Web Analytics Maturity Model and Web Analytics Tools								
UNIT-V	Social Analytics and Social Network Analysis	08						
		Hours						
Social Analytics and Soc Social Media Analytics Prescriptive Analytics -	cial Network Analysis, Social Media Definitions and Concepts, Optimization and Multi-Criteria Systems:							
Multiple Goals, Sensitiv	ity Analysis, What-If Analysis, and Goal Seeking							

TEXT BOOK:

1. Ramesh Sharda, Dursun Delen, Efraim Turban, Business Intelligence and Analytics: Systems for Decision Support, Pearson Education

REFERENCE BOOKS:

- 1. Rajiv Sabherwal, Irma Becerra- Fernandez," Business Intelligence– Practice, Technologies and Management", John Wiley 2011.
- 2. Lariss T. Moss, Shaku Atre, "Business Intelligence Roadmap", Addison-Wesley It Service.
- **3.** Yuli Vasiliev, "Oracle Business Intelligence: The Condensed Guide to Analysis and Reporting", SPD Shroff, 2012.

INTERNAL ASSESSMENT (IA)

Two internal assessments and an end semester examination to test students' reading and writing skills along with their grammatical and lexical competence. Assessment will include following things:

Internal Assessment: 25 Marks - 1. Attendance

2. Assignments

याचाच् म प्रचिद्धि

3. Case Study/Mini Project/Presentation

- Mid Semester Exam: 25 Marks
- End Semester Exam: 50 Marks

CO's-PO's & PSO's MAPPING

Cos	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	3	3	3	2	2	3	3	2
2	-	3	3	1	1	3	3	3
3	-	2	2	2	2	3	2	1
4	-	2	2	2	2	3	2	2
5	-	2	2	3	3	3	3	2

B. Tech Data Science 55 | P a g e

1 - low, 2 - medium, 3 - high, '-' - no correlation

BTDS 701L: BIG DATA ANALYTICS LAB B Tech III Vear II Sem

Teaching Scheme:	Credit	Examination Scheme:					
TH: - 4 Hours/Week	TH: 04	In Sem. Evaluation: 25 Marks					
		Mid Sem. Exam: 25 Marks					
		End Sem. Exam: 50 Marks					
		Total : 100 Marks					
Course Prerequisites: None							
Course Objective:							
Provide knowledge of Big data	Analytics principles and te	chniques.					
• Designed to give an exposure of	of the frontiers of Big data A	Analytics					
Learning Course Outcome:							
After successful completion of the cour	se, students will able to:						
• Use Excel as an Analytical too	and visualization tool.						
Ability to program using HAD	OOP and Map reduce						
Ability to perform data analytic	rs using ML in R						
• Use MongoDB to perform data	analytics						
	Course Contents						
List of Experiments		07 Hours					
Introduction to Big Data							
Lab 1. Exploring Big Data Sets							
- Objective: Introduction to large dat	asets.						
- Tools: Python, Pandas, Jupyter Not	ebook.						
- Description: Load and explore a lar	ge dataset, summarize its key o	characteristics, and visualize basic					
statistics.							
Big Data Technologies							
Lab 2. Setting Up Hadoop Environm	ent						
- Objective: Install and configure Ha	doop.						
- 1001s: Hadoop. Description: Set up a single node I	Jadoon cluster and explore its	hasic functionalities					
I ab 3 Working with HDFS	radoop cluster and explore its	basic functionanties.					
- Objective: Understand HDES							
- Tools: Hadoop HDFS.							
- Description: Perform file operation	s on HDFS (upload, download	, delete files).					
Lab 4. MapReduce Programming							
- Objective: Write a simple MapReduce program.							
- Tools: Hadoop MapReduce, Java.							
- Description: Implement a word cou	nt example using MapReduce.						
Lab 5. Introduction to Spark	G 1						
- Objective: Get started with Apache	Spark.						
- 1001S: Apache Spark, PySpark.	ne and transformations using	Snark					
- Description. Ferrorin basic operation	ons and transformations using 2	ipark.					

B. Tech Data Science

57 | P a g e

Lab 6 Comparison of Hadoon and Snark						
- Objective: Compare performance between Hadoon and Snark						
- Tools: Hadoon Snark						
- Description: Implement a simple data processing task and compare execution times						
Dete Collection and Storage						
Lab 7 Data Collection with Anacha Eluma						
Objective Use Elume to collect date						
- Objective: Use Flume to conect data.						
- Tools: Apache Flume.						
- Description: Set up a Flume agent to collect and transport log data.						
Lab 8. Data Ingestion with Sqoop						
- Objective: Import data from SQL to Hadoop.						
- Tools: Apache Sqoop.						
- Description: Use Sqoop to import data from MySQL to HDFS.						
Lab 9. Setting Up NoSQL Database (MongoDB)						
- Objective: Install and use a NoSQL database.						
- Tools: MongoDB.						
- Description: Install MongoDB, create collections, and perform CRUD operations.						
Lab 10. Working with Key-Value Stores						
- Objective: Understand key-value stores.						
- Tools: Redis.						
- Description: Set up Redis, store and retrieve key-value pairs.						
Data Processing and Management						
Lab 11. Data Cleaning with Pandas						
- Objective: Clean and preprocess data.						
- Tools: Python, Pandas.						
- Description: Perform data cleaning operations such as handling missing values and data normalization.						
Lab 12. Data Transformation with Spark						
- Objective: Transform data using Spark.						
- Tools: Apache Spark, PvSpark,						
- Description: Perform various data transformation tasks using Spark.						
Lab 13 Workflow Orchestration with Anache Airflow						
- Objective: Automate data workflows						
- Tools: Anache Airflow						
- Description: Create and schedule a data processing pipeline using Airflow						
I ab 14 Batch Processing with Hadoon						
- Objective: Implement batch processing						
- Tools: Hadoon ManReduce						
Description: Perform a batch processing task using ManPeduce						
- Description. Terrorin a batch processing task using MapReduce.						
Objective: Implement real time data processing						
Toole: Apacha Kafka, Apacha Storm						
- Tools: Apache Karka, Apache Storm to groops and time data streams						
- Description: Set up Karka and Storm to process real-time data streams.						
Query Languages and 1001s						
Lab 10. Querying Big Data with Hive						
- Objective: Use Hive for data queries.						
- Tools: Apache Hive.						
B. Tech Data Science						
οδ P a g e						

- Description: Write and execute HiveQL queries.
- Lab 17. Data Processing with Pig
- Objective: Use Pig for data processing.
- Tools: Apache Pig.
- Description: Write Pig scripts to process data.
- Lab 18. Data Analysis with JAQL
- Objective: Analyze data with JAQL.
- Tools: JAQL.
- Description: Write JAQL queries for data analysis.
- Lab 19. Advanced Query Optimization in Hive
- Objective: Optimize Hive queries.
- Tools: Apache Hive.
- Description: Implement and test various query optimization techniques in Hive.

Advanced Analytical Methods

- Lab 20. Machine Learning with Spark MLlib
- Objective: Implement ML algorithms.
- Tools: Apache Spark MLlib.
- Description: Build and evaluate a machine learning model using Spark MLlib.
- Lab 21. Scalable Analytics with R
- Objective: Perform analytics using R.
- Tools: R, SparkR.
- Description: Use SparkR for scalable data analysis.
- Lab 22. Predictive Analytics with Python
- Objective: Implement predictive models.
- Tools: Python, scikit-learn.
- Description: Build and evaluate predictive models on large datasets.
- Lab 23. Case Study Analysis
- Objective: Analyze real-world data.
- Tools: Various.
- Description: Perform a comprehensive analysis of a case study involving advanced analytics.

Data Visualization and Interpretation

- Lab 24. Data Visualization with Tableau
- Objective: Create visualizations.
- Tools: Tableau.
- Description: Use Tableau to create and interpret data visualizations.
- Lab 25. Data Visualization with D3.js
- Objective: Visualize data using D3.js.
- Tools: D3.js.
- Description: Create interactive data visualizations using D3.js.
- Lab 26. Interpreting Data Insights
- Objective: Communicate insights effectively.
- Tools: Various visualization tools.
- Description: Create a report or presentation to communicate data insights.

Stream Processing and Real-Time Analytics

- Lab 27. Building Stream Processing Pipelines
- Objective: Implement a stream processing pipeline.

- Tools: Apache Kafka, Apache Flume.
- Description: Build a stream processing pipeline to process real-time data.

TEXT BOOKS:

- 1. Big Data Analytics, Seema Acharya, Subhashini Chellappan, Wiley 2015.
- Big Data, Big Analytics: Emerging Business Intelligence and Analytic Trends for Today's Business, Michael Minelli, Michehe Chambers, 1st Edition, Ambiga Dhiraj, Wiely CIO Series, 2013.
- 3. Hadoop: The Definitive Guide, Tom White, 3rd Edition, O"Reilly Media, 2012.
- 4. Big Data Analytics: Disruptive Technologies for Changing the Game, Arvind Sathi, 1st Edition, IBM Corporation, 2012.

REFERENCE BOOKS:

- 1. Big Data and Business Analytics, Jay Liebowitz, Auerbach Publications, CRC press (2013)
- 2. Using R to Unlock the Value of Big Data: Big Data Analytics with Oracle R Enterprise and Oracle R Connector for Hadoop, Tom Plunkett, Mark Hornick, McGraw-Hill/Osborne Media (2013), Oracle press.
- 3. Professional Hadoop Solutions, Boris lublinsky, Kevin t. Smith, Alexey Yakubovich, Wiley, ISBN: 9788126551071, 2015.
- 4. Understanding Big data, Chris Eaton, Dirk deroos et al, McGraw Hill, 2012.
- 5. Intelligent Data Analysis, Michael Berthold, David J. Hand, Springer, 2007.
- 6. Taming the Big Data Tidal Wave: Finding Opportunities in Huge Data Streams with Advanced Analytics, Bill Franks, 1st Edition, Wiley and SAS Business Series, 2012.

(1) यो क्रियाचान स पण्डिल)

INTERNAL ASSESSMENT (IA)

Two internal assessments and an end semester examination to test students' reading and writing skills along with their grammatical and lexical competence. Assessment will include following things:

- Internal Assessment: 25 Marks 1. Attendance
 - 2. Assignments
 - 3. Case Study/Mini Project/Presentation
- Mid Semester Exam: 25 Marks
- End Semester Exam: 50 Marks

CO's-PO's & PSO's MAPPING

Cos	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	3	3	3	2	2	3	3	2
2	1-	3	3	1	1	3	3	3
3	-10	2	2	2	2	3	2	V/V
4	3-1	2	2	2	2	3	2	2
5	- 18	2	2	3	3	3	3	2
Avg	3	2.4	2.4	2	2	3	2.6	2

1 - low, 2 - medium, 3 - high, '-' - no correlation

56-011011-0

117

BTDS 731PE: INTERNET OF THINGS (Professional Elective – III) B.Tech. IV Year I Sem.

Teaching Scheme:	Credit	Examination So	cheme:				
TH: - 4 Hours/Week	TH: 04	In Sem. Evaluation:	25 Marks				
		Mid Sem. Exam:	25 Marks				
		End Sem. Exam:	50 Marks				
Course Prerequisites: Computer orga	nization Computer Netwo	10tai :	TUU Marks				
Course Objective:	inzation, computer retwo	1 K5					
• To introduce the terminology.	technology and its applicat	ions					
• To introduce the concept of M	2M (machine to machine)	with necessary protocol	ls				
• To introduce the Python Scrip	ting Language which is use	d in many IoT devices					
• To introduce the Raspberry PI	platform, that is widely us	ed in IoT applications					
• To introduce the implementati	on of web-based services o	n IoT devices					
Learning Course Outcome:							
After successful completion of the cour	se, students will able to:						
• Interpret the impact and challe	nges posed by IoT network	s leading to new					
architectural models.							
Compare and contrast the depl	oyment of smart objects an	d the technologies to					
connect them to network.							
• Appraise the role of IoT protoc	cols for efficient network co	ommunication.					
Identify the applications of IoT	in Industry.						
	Course Contents						
UNIT-I II	ntroduction to Internet of	Things	07 Hours				
Definition and Characteristics of IoT,	Physical Design of IoT, I	Logical Design of IoT	, IoT				
Enabling Technologies, IoT Levels and	l Deployment Templates		1				
Domain Specific 101s – Home automa	Lon, Environment, Agricult	ure, Health and Lifesty					
UNIT-II			00 110015				
M2M, Difference between IoT and M2N	M, SDN and NFV for IoT,						
IoT System Management with NETCO	DZF, YANG- Need for IoT	system Management, Si	imple				
Network management protocol, Netw	ork operator requirements	, NETCONF, YANG,	, IoT				
Systems Management with NETCONF-YANG							
UNIT-III IoT Sy	ystems – Logical design u	sing Python	08 Hours				
Introduction to Python – Python D	ata types & Data structur	es, Control flow, Funct	tions,				
Modules, Packaging, File handling, Data	Time operations, Classes, E	xception, Python pack	tages				
of Interest for IoT							

UNIT-IV	IoT Physical Devices and Endpoints	07 Hours						
Raspberry Pi, Linux on Ras	pberry Pi, Raspberry Pi Interfaces, Programming Raspberry PI wi	th						
Python, Other IoT devices.								
IoT Physical Servers and Cloud Offerings - Introduction to Cloud Storage models and								
communication APIs, WAMP-AutoBahn for IoT, Xively Cloud for IoT, Python web								
application framework –Designing a RESTful web API								
UNIT-V Case studies 08 Hours								
Home Automation, Environment-weather monitoring-weather reporting- air pollution monitoring, Agriculture.								
TEXT BOOK:								
1. Internet of Things	- A Hands-on Approach, Arshdeep Bahga and Vijay Madisetti,							
Universities Press, 2015, ISBN: 9788173719547.								
REFERENCE BOOK: 1. Getting Started wit 2014, ISBN: 9789350	h Raspberry Pi, Matt Richardson & Shawn Wallace, O'Reilly (SP 239759.	PD),						

INTERNAL ASSESSMENT (IA)

Two internal assessments and an end semester examination to test students' reading and writing skills along with their grammatical and lexical competence. Assessment will include following things:

• Internal Assessment: 25 Marks - 1. Attendance

2. Assignments

3. Case Study/Mini Project/Presentation

- Mid Semester Exam: 25 Marks
- End Semester Exam: 50 Marks

CO's-PO's & PSO's MAPPING

Cos	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	3	3	3	2	2	3	3	2
2	-	3	3	1	1	3	3	3
3	-	2	2	2	2	3	2	1
4	-	2	2	2	2	3	2	2
5	-	2	2	3	3	3	3	2
Avg	3	2.4	2.4	2	2	3	2.6	2

1 - low, 2 - medium, 3 - high, '-' - no correlation

BTDS 732PE: DATA MINING (Professional Elective – III)

	B. '	Tech. IV Year I Sem.		
Teaching Sch	neme:	Credit	Examination S	cheme:
TH: - 4 Hours	/Week	TH: 04	In Sem. Evaluation	: 25 Marks
			Mid Sem. Exam:	25 Marks
			End Sem. Exam:	50 Marks
			Total	: 100 Marks
Course Prerequisites:				
1. Database Mana	gement System			
2. Probability and	Statistics			
Course Objective:				
• Students will b	ecome acquaint	ed with both the strengths a	nd limitations of vario	ous
data mining tec	chniques like As	sociation, Classification, C	Cluster and Outlier ana	lysis.
	•			-
Learning Course Outco	ome:			
After successful comple	tion of the cour	se, students will able to:		
Understand the	need of data mi	ning and pre-processing te	chniques.	
Perform marke	t basket analysis	s using association rule min	ing.	
Utilize classific	cation technique	s for analysis and interpreta	ation of data.	
 Identify approp 	priate clustering	and outlier detection techni	ques to handle comple	ex data.
Understand the	mining of data	from web, text and time set	ries data.	
		Course Contents		
UNIT-I	Introduction	to Data Mining		07 Hours
What Data mining? Kine	ds of Data, Knov	vledge Discovery process, I	Data Mining Functiona	lities,
Kinds of Patterns, Maj	or Issues in Da	ta Mining. Data Objects	and Attribute Types,	Basic
Statistical Descriptions	s of Data, Da	ata Visualization, Measu	ring Data Similarity	and
Dissimilarity, Data Pre-	processing: Ma	jor Tasks in Data Pre-proc	essing, Data Cleaning,	, Data
Integration, Data Reduc	tion, Data Tran	sformation and Data Discre	etization.	,
UNIT-II		Association Analysis		08 Hours
Basic Concepts, Marke	t Basket Analy	sis, Apriori Algorithm, FP	-growth, From Assoc	iation
Analysis to Correlati	on Analysis,	Pattern Mining in Mu	ltilevel Associations	and
Multidimensional Asso	ciations.			
UNIT-III		Classification		08 Hours
Basic Concepts, Deci	sion Tree Ind	uction, Bayes Classificat	ion Methods, Rule-l	Based
Classification, Metrics	for Evaluating C	Classifier Performance, Ens	emble Methods, Mult	ilayer
Feed- Forward Neural N	Network, Suppo	rt Vector Machines, k-Nea	rest-Neighbor Classifi	ers.
			-	
	Overview	f Dagia Clustowing Mathe	da	07 Hours
UNII-IV	Overview of	I Basic Clustering Metho	us	U / Hours

Requirements for Cluster Analysis, Overview of Basic Clustering Methods, Partitioning Methods-k-Means, k-Medoids, Hierarchical Methods-AGENES, DIANA, BIRCH, Density- Based Method-DBSCAN, Outlier Analysis: Types of Outliers, Challenges of Outlier Detection, and Overview of Outlier Detection Methods

ouner Deteenon memou	,	
UNIT- V	Advanced Concepts	08
		Hours
Web Mining- Web Conte	ent Mining, Web Structure Mining, Web Usage Mining, Spati	al
		1

Mining- web Content Mining, web Structure Mining, web Usage Mining, Spatial Mining- Spatial Data Overview, Spatial Data Mining Primitives, Spatial Rules, Spatial Classification Algorithm, Spatial Clustering Algorithms, Temporal Mining- Modeling Temporal Events, Time Series, Pattern Detection, Sequences, Temporal Association Rules.

TEXT BOOKS:

- Jiawei Han, Micheline Kamber, Jian Pei., Data Mining: Concepts and Techniques, 3rd Edition, Morgan Kaufmann/Elsevier, 2012.
- 2. Margaret H Dunham, Data Mining Introductory and Advanced Topics, 2nd Edition, Pearson Education, India, 2006.

REFERENCE BOOKS:

- 1. Data Mining Techniques, Arun K Pujari, 3rd Edition, Universities Press.
- Pang-Ning Tan, Michael Steinbach, Anuj Karpatne and Vipin Kumar, Introduction to Data Mining, 2nd Edition, Pearson Education India, 2021.
- 3. Amitesh Sinha, Data Warehousing, Thomson Learning, India, 2007.

INTERNAL ASSESSMENT (IA)

Two internal assessments and an end semester examination to test students' reading and writing skills along with their grammatical and lexical competence. Assessment will include following things:

- Internal Assessment: 25 Marks 1. Attendance
 - 2. Assignments
 - 3. Case Study/Mini Project/Presentation
- Mid Semester Exam: 25 Marks
- End Semester Exam: 50 Marks

CO's-PO's & PSO's MAPPING

Cos	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	3	3	3	2	2	3	3	2
2	-	3	3	1	1	3	3	3
3	-	2	2	2	2	3	2	1
4	-	2	2	2	2	3	2	2
5	-	2	2	3	3	3	3	2
Avg	3	2.4	2.4	2	2	3	2.6	2

1 - low, 2 - medium, 3 - high, '-' - no correlation

BTDS 733PE: SCRIPTING LANGUAGES (Professional Elective – III) B.Tech. IV Year I Sem.

D.	Tech. Iv Tear I Seni.					
Teaching Scheme:	Credit	Examination Sector	cheme:			
TH: - 4 Hours/Week	TH: 04	In Sem. Evaluation	: 25 Marks			
		Mid Sem. Exam:	25 Marks			
		End Sem. Exam:	50 Marks			
		Total	: 100 Marks			
Course Prerequisites:						
1. A course on "Computer Progra	amming and Data Structures	5".				
2. A course on "Object Oriented"	Programming Concepts".					
Course Objective:						
This course introduces the scr	ipt programming paradigm					
Introduces scripting languages	s such as Perl, Ruby and TC	Ľ.				
Learning TCL						
Learning Course Outcome:						
After successful completion of the cour	se, students will able to:					
Comprehend the differences be	etween typical scripting lan	guages and typical				
system and application program	mming languages.					
• Gain knowledge of the strengt	hs and weakness of Perl, To	CL and Ruby; and				
select an appropriate language	for solving a given problem	n.				
• Acquire programming skills in	scripting language					
	Course Contents					
UNIT-I	Introduction		07 Hours			
Ruby, Rails, The structure and Executive	ution of Ruby Programs.	Package Management	with			
RUBYGEMS, Ruby and web: Writing	CGI scripts, cookies, Choic	e of Webservers, SOA	Pand			
web services			i uno			
RubyTk – Simple Tk Application, wide	ets. Binding events. Canvas	s. scrolling				
UNIT-II	Extending Ruby		08 Hours			
Ruby Objects in C, the Jukebox e	extension, Memory alloca	tion, Ruby Type Sy	stem,			
Embedding Ruby to Other Languages, Embedding a Ruby Interpreter						
UNIT-III Introduc	tion to PERL and Scriptin	ng	08 Hours			
Scripts and Programs, Origin of Scr	ipting, Scripting Today, C	Characteristics of Scri	pting			
Languages, Uses for Scripting Langu	ages, Web Scripting, and	the universe of Scri	pting			
Languages. PERL- Names and Value	es, Variables, Scalar Expre	essions, Control Struc	tures,			
arrays, list, hashes, strings, pattern and	regular expressions, subrou	tines.				

UNIT-IV	Advanced Perl	07 Hours						
		nours						
iner points of looping, pack and unpack, filesystem, eval, data structures, packages, modules,								
bjects, interfacing to the	operating system, Creating Internet ware applications, Dirty Hand	ls						
nternet Programming, sec	urity Issues.							
UNIT-V	TCL/ Tk	08						
		Hours						
CL Structure, syntax,	Variables and Data in TCL, Control Flow, Data Structure	s,						
nput/output, procedures, s	trings, patterns, files, Advance TCL- eval, source, exec and uplev	el						
commands, Name spaces, t	trapping errors, event driven programs, making applications intern	et						
ware, Nuts and Bolts Inte	rnet Programming, Security Issues, C Interface.							
Гk								
K-Visual Tool Kits, Fund	amental Concepts of Tk, Tk by example, Events and Binding, Perl	-Tk.						
TEXT BOOKS:								
1. The World of Scripting Languages, David Barron, Wiley Publications.								
2. Ruby Programming language by David Flanagan and Yukihiro Matsumoto O'Reilly								
3. "Programming Ru	by" The Pramatic Progammers guide by Dabve Thomas Second e	dition						

REFERENCE BOOKS:

- 1. Open Source Web Development with LAMP using Linux Apache, MySQL, Perl and PHP, J.Lee and B. Ware (Addison Wesley) Pearson Education.
- 2. Perl by Example, E. Quigley, Pearson Education.

년(국)

- 3. Programming Perl, Larry Wall, T. Christiansen and J. Orwant, O'Reilly, SPD.
- 4. Tcl and the Tk Tool kit, Ousterhout, Pearson Education.

Perl Power, J. P. Flynt, Cengage Learning.

INTERNAL ASSESSMENT (IA)

Two internal assessments and an end semester examination to test students' reading and writing skills along with their grammatical and lexical competence. Assessment will include following things:

- Internal Assessment: 25 Marks 1. Attendance
 - 2. Assignments
 - 3. Case Study/Mini Project/Presentation
- Mid Semester Exam: 25 Marks
- End Semester Exam: 50 Marks

CO's-PO's & PSO's MAPPING

Cos	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	3	3	3	2	2	3	3	2
2	1	3	3	1	1	3	3	3
3	/	2	2	2	2	3	2	1
4	12	2	2	2	2	3	2	2
5	3	2	2	3	3	3	3	2
Avg	3	2.4	2.4	2	2	3	2.6	2

1 - low, 2 - medium, 3 - high, '-' - no correlation

किंगापान

BTDS 734PE: MOBILE APPLICATION DEVELOPMENT (Professional Elective – III) B.Tech, IV Year I Sem.

Teaching Sch	eme•	Credit	Examination S	cheme			
TH: - 4 Hours	/Week	TH: 04	In Sem. Evaluation	: 25 Marks			
			Mid Sem. Exam:	25 Marks			
			End Sem. Exam:	50 Marks			
			Total	: 100 Marks			
Course Prerequisites:							
1. Acquaintance w	vith JAVA prog	ramming					
2. A Course on DI	BMS						
Course Objective:							
To demonstrate	their understar	ding of the fundamentals o	f Android operating sy	stems			
• To improves the	eir skills of usin	g Android software develo	pment tools				
To demonstrate	their ability to	develop software with reas	onable complexity				
on mobile platf	orm	-					
To demonstrate	their ability to	deploy software to mobile	devices				
To demonstrate	their ability to	debug programs running or	n mobile devices				
Learning Course Outco	me:						
After successful comple	tion of the cour	se, students will able to:					
Understand the	working of An	droid OS Practically.					
Develop Andro	id user interface	es					
Develop, deploy	y and maintain	the Android Applications.					
		Course Contents					
UNIT-I	Intro	duction to Android Opera	ting System	07 Hours			
Android OS design and F	Seatures – Andro	id development framework,	SDK features, Installin	g and			
running applications on Android Studio. Creating AVDs. Types of Android applications. Best							
practices in Android programming. Android tools Android application components –							
Android Manifest file. Ex	xternalizing reso	ources like values, themes, la	avouts. Menus etc. Resc	ources			
for different devices and languages. Buntime Configuration Changes							
Android Application Lif	A planid Application Liferente Activities Activity liferente activity states						
Anutoiu Application Lif	ecycle – Activit	les, Activity mecycle, activ	ity states, monitoring	state changes			
UNIT-II	Androi	d User Interface: Measu	irements	08 Hours			

Device and pixel density independent measuring unit - s Layouts – Linear, Relative, Grid and Table Layouts

User Interface (UI) Components –Editable and non-editable TextViews, Buttons, Radio and Toggle Buttons, Checkboxes, Spinners, Dialog and pickers

Event Handling – Handling clicks or changes of various UI components

Fragments – Creating fragments, Lifecycle of fragments, Fragment states, Adding fragments to Activity, adding, removing and replacing fragments with fragment transactions, interfacing between fragments and Activities, Multi-screen Activities

|--|

Intent – Using intents to launch Activities, Explicitly starting new Activity, Implicit Intents, Passing data to Intents, Getting results from Activities, Native Actions, using Intent to dial a number or to send SMS

Broadcast Receivers – Using Intent filters to service implicit Intents, Resolving Intent filters, finding and using Intents received within an Activity

Notifications – Creating and Displaying notifications, Displaying Toasts

UNIT-IV	Persistent Storage	07						
		Hours						
Files – Using application sp	Files – Using application specific folders and files, creating files, reading data from files, listing							
contents of a directory Shared Preferences - Creating shared preferences, saving and								
retrieving data using Shar	ed Preference							

UNIT-V	Database	08
		Hours

Introduction to SQLite database, creating and opening a database, creating tables, inserting retrieving and etindelg data, Registering Content Providers, Using content Providers (insert, delete, retrieve and update)

TEXT BOOK:

1. Professional Android 4 Application Development, Reto Meier, Wiley India, (Wrox), 2012

REFERENCE BOOKS:

- 1. Android Application Development for Java Programmers, James C Sheusi, Cengage Learning, 2013
- 2. Beginning Android 4 Application Development, Wei-Meng Lee, Wiley India (Wrox), 2013

INTERNAL ASSESSMENT (IA)

Two internal assessments and an end semester examination to test students' reading and writing skills along with their grammatical and lexical competence. Assessment will include following things:

- Internal Assessment: 25 Marks 1. Attendance
 - 2. Assignments

3. Case Study/Mini Project/Presentation

- Mid Semester Exam: 25 Marks
- End Semester Exam: 50 Marks

CO's-PO's & PSO's MAPPING

Cos	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
- 1	3	3	3	2	2	3	3	
2		3	3	1	1	3	3	
3	7	2	2	2	2	3	2	
4	-	2	2	2	-2	3	2	1 3
5	1	2	2	3	3	3	3	
Avg	3	2.4	2.4	2	2	3	2.6	

1 - low, 2 - medium, 3 - high, '-' - no correlation

BTDS 741PE: QUANTUM COMPUTING (Professional Elective – IV) B.Tech. IV Year I Sem.

Teaching Scheme: TH: - 4 Hours/Week		Credit TH: 04	Examination So In Sem. Evaluation: Mid. Sem. Evam:	cheme: 25 Marks 25 Marks				
			End Sem. Exam:	50 Marks				
Course Prerequisites: None			lotal	100 Marks				
Course Objective:								
• To introduce the fund	amentals	of quantum computing						
• The problem-solving a	pproach	using finite dimensional ma	athematics					
Learning Course Outcome:								
After successful completion of	the cour	se, students will able to:						
Understand basics of a	quantum	computing						
• Understand physical in	nplement	ation of Qubit						
Understand Quantum Understand The Impa	algorithm	ns and their implementation	l					
• Onderstand The Impa		Course Contents	ography					
UNIT-I History of Quantum Computing 07 Hours								
Importance of Mathematics, Physics and Biology. Introduction to Quantum Computing: Bits								
Vs Qubits, Classical Vs Quant	um logic	al operations						
UNIT-II		Background Mathema	tics	08 Hours				
Basics of Linear Algebra, Hilb Paul's exclusion Principle,	ert space, Superpos	Probabilities and measurer sition, Entanglement and	nents. Background Phy super-symmetry, de	/sics: ensity				
operators and correlation, bas	ics of qu	antum mechanics, Measur	rements in bases other	than				
computational basis. Backgro	ound Bic	ology: Basic concepts of	Genomics and Protect	omics				
(Central Dogma)								
UNIT-III		Qubit		08 Hours				
Physical implementations of Qubit. Qubit as a quantum unit of information. The Bloch sphere Quantum Circuits: single qubit gates, multiple qubit gates, designing the quantum circuits. Bell states.								
UNIT-IV		Quantum Algori	07 Hours					
Classical computation on qua complexity classes. Deutsch'	ntum con s algorit	nputers. Relationship betw hm, Deutsch's-Jozsa algo	veen quantum and class rithm, Shor's factoriz	ssical ation				

algorithm, Grover's search algorithm. UNIT-V Noise and error correction 08 Hours Graph states and codes, Quantum error correction, fault-tolerant computation. Quantum Information and Cryptography: Comparison between classical and quantum information theory. Quantum Cryptography, Quantum teleportation **TEXT BOOK:** 1. Nielsen M. A., Quantum Computation and Quantum Information, Cambridge. **REFERENCE BOOKS:** 1. Quantum Computing for Computer Scientists by Noson S. Yanofsky and Mirco A. Mannucci 2. Benenti G., Casati G. and Strini G., Principles of Quantum Computation and Information, Vol. I: Basic Concepts, Vol II. 3. Basic Tools and Special Topics, World Scientific. Pittenger A. O., An Introduction to Quantum Computing Algorithms.

INTERNAL ASSESSMENT (IA)

Two internal assessments and an end semester examination to test students' reading and writing skills along with their grammatical and lexical competence. Assessment will include following things:

• Internal Assessment: 25 Marks - 1. Attendance

41.00

2. Assignments

3. Case Study/Mini Project/Presentation

- Mid Semester Exam: 25 Marks
- End Semester Exam: 50 Marks

CO's-PO's & PSO's MAPPING

Cos	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	3	3	3	2	2	3	3	2
2	-	3	3	1	1	3	3	3
3	-	2	2	2	2	3	2	1
4	-	2	2	2	2	3	2	2
5	-	2	2	3	3	3	3	2
Avg	3	2.4	2.4	2	2	3	2.6	2

1 - low, 2 - medium, 3 - high, '-' - no correlation

BTDS 742PE: EXPERT SYSTEMS (Professional Elective – IV) B.Tech. IV Year I Sem.

Teaching Schem	1e:	Credit	Examination S	cheme:				
TH: - 4 Hours/W	eek	TH: 04	In Sem. Evaluation	: 25 Marks				
			Mid Sem. Exam:	25 Marks				
			End Sem. Exam:	50 Marks				
			Total	: 100 Marks				
Course Prerequisites: Non	ie							
Course Objective:								
• Understand the ba	sic technique	s of artificial intelligence.						
• Understand the No	on-monotonic	reasoning and statistical re	easoning					
Learning Course Outcome	:							
After successful completion	n of the cour	se, students will able to:						
• Apply the basic te	chniques of a	rtificial intelligence.						
• Discuss the archite	ecture of an e	expert system and its tools.						
• Understand the im	portance of b	building an expert systems						
Understand variou	is problems v	with an expert systems						
Course Contents								
UNIT-I Introduction to AI programming languages 07 J								
Blind search strategies,	Breadth-firs	st — Depth-first — Heur	istic search techniques	Hill				
Climbing – Best first – A	Algorithms	AO* algorithm – game tr	ees, Min- max algorit	hms,				
game playing – Alpha-beta pruning.								
UNIT-II Knowledge representation issues predicate logic								
logic programming Sem	nantic nets-	frames and inheritance	e, constraint propaga	tion;				
Representing Knowledge	using rules,	Rules-based deduction sy	vstems.					
	U ,	J						
UNIT-III Introduction to Expert Systems								
Architecture of expert systems, representation and organization of knowledge, Basics								
characteristics, and types of problems nandled by expert systems.								
	-							
UNIT-IV		Expert System T	ools	07				
				Hours				
Techniques of knowledge	representatio	ns in expert systems, know	vledge engineering, sys	stem-				
building aids, support facil	lities, stages i	n the development of expe	ert systems.					

77 | Page

	UNIT-V	Expert System	08 Hours
Buildin	g an Expert Sys	stem: Expert system development, Selection of the tool, Acquiri	ng
Knowle	dge, Building prod	cess.	
Proble	ms with Expert S	Systems: Difficulties, common pitfalls in planning, dealing w	ith
lomain	experts, difficultie	es during development.	
TEX	F BOOKS:		
1.	Elain Rich and K	evin Knight, "Artificial Intelligence", Tata McGraw-Hill, New De	lhi,
2.	Waterman D.A.,	"A Guide to Expert Systems", Addison Wesley Longman,	
REFI	ERENCE BOOKS	S:	
1.	Stuart Russel and	l other Peter Norvig, "Artificial Intelligence – A Modern	
	Approach", Prent	ice- Hall.	
2.	Patrick Henry Wi	inston, "Artificial Intelligence", Addison Wesley.	
3.	Patterson, Artific	ial Intelligence & Expert System, Prentice Hall India, 1999.	
4.	Hayes-Roth, Lena	at, and Waterman: Building Expert Systems, Addison Wesley, We	iss
	S. M. and Kulik	kowski C.A., "A Practical Guide to Designing Expert Systems	s",
	Rowman & Allar	nheld, New Jersey.	
	Act	and an and a second sec	ht .

INTERNAL ASSESSMENT (IA)

Two internal assessments and an end semester examination to test students' reading and writing skills along with their grammatical and lexical competence. Assessment will include following things:

- Internal Assessment: 25 Marks 1. Attendance
 - 2. Assignments
 - 3. Case Study/Mini Project/Presentation
- Mid Semester Exam: 25 Marks
- End Semester Exam: 50 Marks

CO's-PO's & PSO's MAPPING

Cos	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	3	3	3	2	2	3	3	2
2	-	3	3	1	1	3	3	3
3	-	2	2	2	2	3	2	1
4	-	2	2	2	2	3	2	2
5	-	2	2	3	3	3	3	2
Avg	3	2.4	2.4	2	2	3	2.6	2

1 - low, 2 - medium, 3 - high, '-' - no correlation

BTDS 743PE: CLOUD COMPUTING (Professional Elective – III) B.Tech. IV Year I Sem.

Teaching Sch	neme:	Credit	Examination S	cheme:					
TH: - 4 Hours	/Week	TH: 04	In Sem. Evaluation	: 25 Marks					
			Mid Sem. Exam:	25 Marks					
			End Sem. Exam:	50 Marks					
			Total	: 100 Marks					
Course Prerequisites:									
1. A course on "Computer Networks".									
2. A course on "O	2. A course on "Operating System".								
Course Objective:									
This course pro	ovides an insight	into cloud computing							
 Topics covered 	linclude-Cloud	Computing Architecture, D	Peployment Models, Se	ervice					
Models, Tech	nological Drive	ers for Cloud Computin	g, Networking for (Cloud					
Computing and	l Security in Clo	oud Computing							
Learning Course Outco	me:								
After successful comple	tion of the cour	se, students will able to:							
• Understand dif	ferent computin	ng paradigms and potentia	l of the paradigms an	d					
specifically clo	oud computing								
Understand clo	oud service type	s, cloud deployment model	s and technologies						
supporting and	driving the clou	ıd	C						
• Acquire the kr	nowledge of pro	ogramming models for clo	oud and development	of					
software applic	cation that runs	the cloud and various servi	ces available from ma	ior					
cloud providers	cloud providers								
Understand the	security concer	rns and issues in cloud com	puting						
• Acquire the kno	• Acquire the knowledge of advances in cloud computing								
*		Course Contents							
UNIT-I	(Cloud Computing Fundar	nentals	07 Hours					
Computing Paradigms.	. Cloud Comp	uting Fundamentals. Clo	ud Computing Archi	tecture and					
Management									
UNIT-II		Models		08 Hours					
Cloud Deployment Models, Cloud Service Models, Technological Drivers for Cloud									
Computing: SOA and Cloud, Multicore Technology, Web 2.0 and Web 3.0, Pervasive									
Computing, Operating System, Application Environment									
r	,								
UNIT-III		Virtualization		08 Hours					

Programming Models for Cloud Computing: MapReduce, Cloud Haskell, Software Development in Cloud

UNIT-IV Networking for Cloud Computing							
		Hours					
Introduction, Overview of Data Center Environment, Networking Issues in Data Centers,							
Transport Layer Issues in I	Transport Layer Issues in DCNs, Cloud Service Providers						
UNIT-V	Security in Cloud Computing	08					
Hours							
Security in Cloud Computing, and Advanced Concepts in Cloud Computing							

TEXT BOOK:

1. Chandrasekaran, K. Essentials of cloud computing. CRC Press, 2014.

REFERENCE BOOKS:

- Cloud Computing: Principles and Paradigms, Editors: Rajkumar Buyya, James Broberg, Andrzej M. Goscinski, Wiley, 2011
- 2. Enterprise Cloud Computing Technology, Architecture, Applications, Gautam Shroff, Cambridge University Press, 2010
- 3. Cloud Computing Bible, Barrie Sosinsky, Wiley-India, 2010.

INTERNAL ASSESSMENT (IA)

Two internal assessments and an end semester examination to test students' reading and writing skills along with their grammatical and lexical competence. Assessment will include following things:

- Internal Assessment: 25 Marks 1. Attendance
 - 2. Assignments
 - 3. Case Study/Mini Project/Presentation
- Mid Semester Exam: 25 Marks
- End Semester Exam: 50 Marks

CO's-PO's & PSO's MAPPING

Cos	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	3	3	3	2	2	3	3	2
2	-	3	3	1	1	3	3	3
3	-	2	2	2	2	3	2	1
4	-	2	2	2	2	3	2	2
5	-	2	2	3	3	3	3	2
Avg	3	2.4	2.4	2	2	3	2.6	2

BTDS 744PE: GAME THEORY (Professional Elective – IV) B.Tech. IV Year I Sem.

	D .	Tech. Iv Teal I Seni.						
Teaching Sch	eme:	Credit	Examination S	cheme:				
TH: - 4 Hours	/Week	TH: 04	In Sem. Evaluation	: 25 Marks				
			Mid Sem. Exam:	25 Marks				
			End Sem. Exam:	50 Marks				
			Total	: 100 Marks				
Course Prerequisites: N	lone							
Course Objective:								
The course will explain	in depth the sta	ndard equilibrium concepts	(such as Nash equilib	rium,				
Subgame-Perfect Nash	Equilibrium, an	d others) in Game Theory.	· •					
	1 /	· · ·						
Learning Course Outco	me:							
After successful comple	tion of the cour	se, students will able to:						
Understand the	basic concepts	of game theory and solution	18					
Understand diff	ferent types of e	quilibrium interpretations						
Understand and	l analyze knowl	edge and solution concepts						
Analyze extens	ive games with	perfect information						
		Course Contents						
UNIT-I		Introduction		07 Hours				
Game Theory, Games	Game Theory, Games and Solutions, Game Theory and the Theory of Competitive							
Equilibrium, Rational I	Behavior, The S	Steady State and Deductiv	e Interpretations, Bou	inded				
Rationality Terminolog	v and Notation	-	•					
Nash Equilibrium- Str	ategic Games.	Nash Equilibrium, Exam	oles. Existence of a	Nash				
Equilibrium, Strictly Co	ompetitive Gam	es. Bayesian Games: Strat	egic Games with Imp	erfect				
Information	Simperia de Cam							
information								
UNIT-II		Features		08 Hours				
Mixed Correlated an	d Evolutionary	Fauilibrium -Mixed St	rategy Nash Equilib	rium				
Interpretations of Mixe	d Strategy Nas	h Equilibrium Correlated	Equilibrium Evolution	onary				
Equilibrium	d Strategy Mas	n Equilibrium, Conclated	Equinorium, Evolution	Jilal y				
	. 1			. 1				
Rationalizability and It	erated Eliminat	ion of Dominated Actions	- Rationalizability Ite	erated				
Elimination of Strictly Dominated Actions, Iterated Elimination of Weakly Dominated								
Actions	Actions							
UNIT-III	UNIT-IIIKnowledge and Equilibrium08 Hours							
A Model of Knowledge	Common Know	ledge, Can People Agree to	Disagree? Knowledg	e and				
Solution Concepts. The	Electronic Mai	l Game						
······································								

UNIT-IV	UNIT-IV Extensive Games with Perfect Information				
Extensive Games with Per-	fect Information, Subgame Perfect Equilibrium, Two Extensions	of			
the Definition of a Game, T	The Interpretation of a Strategy, Two Notable Finite Horizon Game	s,			
Iterated Elimination of We	akly Dominated Strategies				
Bargaining Games -Bargai	ning and Game Theory, A Bargaining Game of Alternating Offer	s,			
Subgame Perfect Equilibri	um, Variations and Extensions				
UNIT-V	Repeated Games	08 Hours			
The Basic Idea Infinitely I	Repeated Games vs. Finitely Repeated Games, Infinitely Repeated	ed			
Games: Definitions, Stra	tegies as Machines, Trigger Strategies: Nash Folk Theorem	s,			
Punishing for a Limited L	Length of Time: A Perfect Folk Theorem for the Limit of Mean	ıs			
Criterion, Punishing the I	Punisher: A Perfect Folk Theorem for the Overtaking Criterio	n,			
Rewarding Players Who P	unish: A Perfect Folk Theorem for the Discounting Criterion, Th	ne			
Structure of Subgame Perfect Equilibria Under the Discounting Criterion, Finitely Repeated					
Game					
TEXT BOOKS:					

1. A course in Game Theory, M. J. Osborne and A. Rubinstein, MIT Press.

REFERENCE BOOKS:

- 1. Game Theory, Roger Myerson, Harvard University Press.
- 2. Game Theory, D. Fudenberg and J. Tirole, MIT Press.
- 3. Theory of Games and Economic Behavior, J. von Neumann and O. Morgenstern, New York: John Wiley and Sons.
- 4. Games and Decisions, R.D. Luce and H. Raiffa, New York: John Wiley and Sons.
- 5. Game Theory, G. Owen, 2nd Edition, New York: Academic Press.

INTERNAL ASSESSMENT (IA)

Two internal assessments and an end semester examination to test students' reading and writing skills along with their grammatical and lexical competence.

Assessment will include following things:

- Internal Assessment: 25 Marks 1. Attendance
 - 2. Assignments
 - 3. Case Study/Mini Project/Presentation
- Mid Semester Exam: 25 Marks
- End Semester Exam: 50 Marks

CO's-PO's & PSO's MAPPING

Cos	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	3	3	3	2	2	3	3	2
2	(<u>-</u>	3	3	1	1	3	3	3
3	24	2	2	2	2	3	2	1
4	3	2	2	2	2	3	2	2
5	1.51	2	2	3	3	3	3	2
Avg	3	2.4	2.4	2	2	3	2.6	2

1 - low, 2 - medium, 3 - high, '-' - no correlation

न्। कियापान

BTDS 745PE: KNOWLEDGE REPRESENTATION AND REASONING (Professional Elective – IV) B. Tach, IV, Yaon I, Sam

	D.	rech. iv reaf i Sem.					
Teaching Sch	eme:	Credit	Examination S	cheme:			
TH: - 4 Hours/	Week	TH: 04	In Sem. Evaluation	: 25 Marks			
			Mid Sem. Exam:	25 Marks			
			End Sem. Exam:	50 Marks			
Comme December 1 - 14 and 1			Total	: 100 Marks			
Course Prerequisites: V	erbai Commu	nication					
Course Objective:	1 - 1	- f V1 - 1 D		1			
• To investigate t	ne key concept	s of Knowledge Represent	ation (KR) techniques	and			
different notatio	ons.						
• To integrate the	e KR view as	a knowledge engineering	approach to model				
organizational k	mowledge.						
• To introduce the	e study of ontol	ogies as a KR paradigm an	d applications of ontol	ogies.			
• To understand	various KR tec	chniques and process, kno	wledge acquisition an	d			
sharing of onto	logy.						
Learning Course Outco	me:						
After successful complet	tion of the cour	se, students will able to:					
Analyze and dea	sign knowledge	e-based systems intended for	or computer implement	ation.			
Acquire theoret	ical knowledge	about principles for logic-l	based representation an	nd reasoning.			
• Ability to under	stand knowledg	ge-engineering process					
• Ability to impl	ement product	on systems, frames, inher	ritance systems and				
approaches to h	nandle uncertair	n or incomplete knowledge	2.				
		Course Contents					
UNIT-I		The Key Concepts		07 Hours			
Knowledge Representat	tion Reasoning	Why knowledge represe	ntation and reasoning	Role			
of logic	tion, Reasoning	, why knowledge represe	intation and reasoning,	Role			
U logic Logice Historical backs	mound Donnog	unting Importanting in Iogia	Variation of logic N	Iomo			
	round, Represe	enting knowledge in logic	, varieties of logic, r	vanne,			
Type, Measures, Unity A	Amidst diversit	y					
UNIT-II		Ontol	logy	08 Hours			
Ontological categories,	Philosophical b	ackground, Top-level cate	gories, Describing ph	ysical			
entities. Defining abstractions. Sets. Collections. Types and Categories. Space and Time							
	, ,	, JI					
UNIT-III		Knowledge Representa	tions	08 Hours			
		B. Tech Data Science					

Knowledge Engineering, Representing structure in frames, Rules and data, Object-oriented systems, Natural language Semantics, Levels of representation

UNIT-IV	Processes	07
		Hours

Times, Events and Situations, Classification of processes, Procedures, Processes and Histories, Concurrent processes, Computation, Constraint satisfaction, Change Contexts: Syntax of contexts, Semantics of contexts, First-order reasoning in contexts, Modal reasoning in contexts, Encapsulating objects in contexts.

UNIT-V	Knowledge Soup			
		Hours		

Vagueness, Uncertainty, Randomness and Ignorance, Limitations of logic, Fuzzy logic, Nonmonotonic Logic, Theories, Models and the world, Semiotics Knowledge Acquisition and Sharing: Sharing Ontologies, Conceptual schema, Accommodating multiple paradigms, Relating different knowledge representations, Language patterns, Tools for knowledge acquisition

TEXT BOOKS:

- 1. Knowledge Representation logical, Philosophical, and Computational Foundations by John F. Sowa, Thomson Learning.
- 2. Knowledge Representation and Reasoning by Ronald J. Brachman, Hector J. Levesque, Elsevier.

INTERNAL ASSESSMENT (IA)

Two internal assessments and an end semester examination to test students' reading and writing

skills along with their grammatical and lexical competence. Assessment will include following things:

- Internal Assessment: 25 Marks 1. Attendance
 - 2. Assignments
 - 3. Case Study/Mini Project/Presentation
- Mid Semester Exam: 25 Marks
- End Semester Exam: 50 Marks

CO's-PO's & PSO's MAPPING

Cos	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	3	3	3	2	2	3	3	2
2	1.00	3	3	1	1	3	3	3
3	8 1 - 1	2	2	2	2	3	2	1
4	4	2	2	2	2	3	2	2
5	1	2	2	3	3	3	3	2
Avg	3	2.4	2.4	2	2	3	2.6	2

TUNES A

1 - low, 2 - medium, 3 - high, '-' - no correlation

यः क्रियांवान्

BTDS 7210E: INTRODUCTION TO NATURAL LANGUAGE PROCESSING (Open Elective – II) B Tech. IV Year I Sem

			•			
Teaching Scheme:	Credit	Examination S	cheme:			
TH: - 4 Hours/Week	TH: 04	In Sem. Evaluation	: 25 Marks			
		Mid Sem. Exam:	25 Marks			
		End Sem. Exam:	50 Marks			
		Total	: 100 Marks			
Course Prerequisites: Data structure	s and compiler design					
Course Objective:						
• Introduction to some of the pr	oblems and solutions of NL	P and their relation to				
linguistics and statistics.						
Learning Course Outcome						
After successful completion of the cou	rsa students will able to.					
Show consistivity to linguistic	han omen and an ability to	model them with form	1			
• Show sensitivity to inguistic grammars.	phenomena and an ability to	model them with form	nai			
• Understand and carry out pr	oper experimental methodo	ology for training and	l			
evaluating empirical NLP sys	tems					
• Able to manipulate probabili	ties, construct statistical m	odels over strings an	d			
trees and estimate parameter	s using supervised and unsu	nervised training meth	nods			
Able to design implement	and analyza NI P algorithm	pervised training filed	nous.			
Able to design, implement, a	and analyze NLI algorithm	is, and design unrere				
	Course Contents					
	Einding the Structure of V	Wonda	07 Hanna			
	Finding the Structure of		07 Hours			
Words and Their Components, Issues	and Challenges, Morpholog	ical Models				
Finding the Structure of Documents:	Introduction, Methods, Co	mplexity of the Approa	aches,			
Performances of the Approaches, Feat	ures					
UNIT-II	Syntax I		08 Hours			
Parsing Natural Language, Treebanks:	A Data-Driven Approach t	o Syntax, Representati	ion of			
Syntactic Structure, Parsing Algorithms.						

UNIT-III	Syntax II	08 Hours						
Models for Ambiguity l	Iodels for Ambiguity Resolution in Parsing, Multilingual Issues							
Semantic Parsing I: In	troduction, Semantic Interpretation, System Paradigms, Word Sens	se.						
UNIT-IV Semantic Parsing II								
		Hours						
Predicate-Argument Stru	ucture, Meaning Representation Systems.							
UNIT-V	Language Modeling	08						
		Hours						
ntroduction, N-Gram I	Models, Language Model Evaluation, Bayesian parameter estimation	ation,						
Language Model Adap	tation, Language Models- class based, variable length, Bayesian	topic						
ased, Multilingual and	l Cross Lingual Language Modeling							
TEXT BOOKS:								
1. Multilingual na	atural Language Processing Applications: From Theory to Practice	e –						
Daniel M. Bike	el and Imed Zitouni, Pearson Publication							
REFERENCE BOOI	K:							
1. Speech and N	atural Language Processing - Daniel Jurafsky& James H Mart	in,						
Pearson Public	ations.							

2. Natural Language Processing and Information Retrieval: Tanvier Siddiqui, U.S. Tiwary.

INTERNAL ASSESSMENT (IA)

Two internal assessments and an end semester examination to test students' reading and writing skills along with their grammatical and lexical competence. Assessment will include following things:

- Internal Assessment: 25 Marks 1. Attendance
 - 2. Assignments
 - 3. Case Study/Mini Project/Presentation
- Mid Semester Exam: 25 Marks
- End Semester Exam: 50 Marks

CO's-PO's & PSO's MAPPING

Cos	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	3	3	3	2	2	3	3	2
2	-	3	3	1	1	3	3	3
3	-	2	2	2	2	3	2	1
4	-	2	2	2	2	3	2	2
5	-	2	2	3	3	3	3	2
Avg	3	2.4	2.4	2	2	3	2.6	2

BTDS 722OE: AI APPLICATIONS (Open Elective – II) B.Tech. IV Year I Sem.

	D .						
Teaching Schei	ne:	Credit	Examination So	cheme:			
TH: - 4 Hours/W	Veek	TH: 04	In Sem. Evaluation:	25 Marks			
			Mid Sem. Exam:	25 Marks			
			End Sem. Exam:	50 Marks			
			Total	100 Marks			
Course Prorequisites: E	undomontolo	of AI	10000				
Course Objectives	unuamentais	OI AI					
To give deep kno	wledge of AI	and how AI can be applied	l in various fields to ma	ıke life easy.			
Learning Course Outcom	e:						
After successful completion	on of the cour	se, students will able to:					
Correlate AI and	solutions to m	odern problems.					
• Use of AI in busi	ness application	ons					
Application of Al	in manufactu	ring automation					
• Use of AI in strea	ming of data	and Network applications					
	8	Course Contents					
UNIT-I Alibaba 07							
Using Artificial Intelligen	ce To Power	The Retail And Business-T	Co-Business Services C)f			
The Future		The Retain The Dusiness	to Dusiness betvices e	,			
	·						
Amazon: Using Deep Lea	rning To Driv	e Business Performance.		00 TT			
UNIT-II		McDonald's		08 Hours			
Using Robots And Artific	ial Intelligenc	e To Automate Processes	Walmart:				
Using Artificial Intelligen	ce To Keen S	helves Stacked And Custor	ners Hanny				
o sing / intinenal interingen		ierves Stucked 7 ind Custor	ners mappy				
UNIT-III		LinkedIn		08 Hours			
Using Artificial Intelligen	ce To Solve T	he Skills Crisis					
Netfliv: Using Artificial I	ee 10 Solve 1 ntelligence To	Give Us A Better TV Eyn	arianca				
ivenina. Using Artificial fi	interingence re	Olve US A Deller I V Exp					
UNIT-IV		Salesforce		07			
				Hours			
How Artificial Intelligenc	e Helps Busin	esses Understand Their Cu	stomers Uber:				
Using Artificial Intelligen	ce To Do Eve	erything					
UNIT-V		Siemens		08			
Hour							

Using Artificial Intelligence And Analytics To Build The Internet Of Trains Tesla: Using Artificial Intelligence To Build Intelligent Cars

TEXT BOOK:

1. Artificial Intelligence in Practice: How 50 Successful Companies Used AI and Machine Learning to Solve Problems, Bernard Marr, Matt Ward, Wiley.

INTERNAL ASSESSMENT (IA)

Two internal assessments and an end semester examination to test students' reading and writing skills along with their grammatical and lexical competence. Assessment will include following things:

• Internal Assessment: 25 Marks - 1. Attendance

2. Assignments

3. Case Study/Mini Project/Presentation

- Mid Semester Exam: 25 Marks
- End Semester Exam: 50 Marks

CO's-PO's & PSO's MAPPING

			1 1. Con		Sec	Contraction of the second	the second se	
Cos	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	3	3	3	2	2	3	3	2
2	-	3	3	1	1	3	3	3
3	-	2	2	2	2	3	2	1
4	-	2	2	2	2	3	2	2
5	-	2	2	3	3	3	3	2
Avg	3	2.4	2.4	2	2	3	2.6	2

BTDS 711PE: INTERNET of THINGS LAB (Professional Elective – III) B.Tech. IV Year I Sem.

		_	-						
Teaching Scheme:	Credit	Examination So	cheme:						
TH: - 4 Hours/Week	TH: 04	In Sem. Evaluation	25 Marks						
		Mid Sem. Exam:	25 Marks						
		End Sem. Exam:	50 Marks						
Course Prerequisites: Web Browser Basic knowledge									
Course Objective:	sie moneuge								
• To introduce the raspberry PI r	platform, that is widely used	t in IoT applications							
• To introduce the implementation	on of distance sensor on Io	Γ devices.							
Learning Course Outcome:									
After successful completion of the cour	se, students will able to:								
1. Ability to introduce the concep	t of M2M (machine to mac	hine) with necessary							
protocols and get awareness in	implementation of distanc	e sensor							
2. Get the skill to program using	oython scripting language v	which is used in many I	oT devices.						
	Course Contents								
UNIT-I List o	f Experiments		07 Hours						
1. Using Raspberry pi									
a. Calculate the distance using a	a distance sensor.								
b. Interface an LED and switch	with Raspberry pi.								
c. Interface an LDR with Raspt	perrry Pi.								
2. Using Arduino									
a. Calculate the distance using	a distance sensor.								
b. Interface an LED and switch	with Aurdino.								
c. Interface an LDR with Aurdi	no								
d. Calculate temperature using	a temperature sensor.								
3. Using Node MCU									
a. Calculate the distance using	a distance sensor.								
b. Interface an LED and switch	with Raspberry pi.								
c. Interface an LDR with Node	MCU								
d. Calculate temperature using	a temperature sensor.								
t Installing OC or Development'									
4. Installing US on Kaspberry Pi									
a) Installation using Pilmager									

b) Installation using image file

- Downloading an Image
- Writing the image to an SD card
 - using Linux
 - using Windows
- Booting up Follow the instructions given in the URL
 <u>https://www.raspberrypi.com/documentation/computers/getting-</u>
 <u>started.html</u>
- 5. Accessing GPIO pins using Python

a) Installing GPIO Zero library.

update your repositories list:

install the package for Python 3:

b) Blinking an LED connected to one of the GPIO pin

c) Adjusting the brightness of an LED Adjust the brightness of an LED (0 to 100,

where 100 means maximum brightness) using the in-built PWM wavelength.

- 6. Create a DJANGO project and an app.
- 7. Create a DJANGO view for weather station REST API
- 8. Create DJANGO template
- 9. Configure MYSQL with DJANGO framework

TEXT BOOKS:

- 1. Internet of Things A Hands-on Approach, Arshdeep Bahga and Vijay Madisetti, Universities Press, 2015, ISBN: 9788173719547.
- 2. Getting Started with Raspberry Pi, Matt Richardson & Shawn Wallace, O'Reilly (SPD), 2014, ISBN: 9789350239759.

REFERENCE BOOKS:

- 1. Bernd Scholz-Reiter, Florian Michahelles, "Architecting the Internet of Things", ISBN 978-3- 642-19156-5 e-ISBN 978-3-642-19157-2, Springer, 2016
- 2. N. Ida, Sensors, Actuators and Their Interfaces, Scitech Publishers, 2014.

INTERNAL ASSESSMENT (IA)

Two internal assessments and an end semester examination to test students' reading and writing

skills along with their grammatical and lexical competence. Assessment will include following things:

- Internal Assessment: 25 Marks 1. Attendance
 - 2. Assignments
 - 3. Case Study/Mini Project/Presentation
- Mid Semester Exam: 25 Marks
- End Semester Exam: 50 Marks

CO's-PO's & PSO's MAPPING

Cos	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	3	3	3	2	2	3	3	2
2	3	3	3	1	1	3	3	3
3	1.51	2	2	2	2	3	2	6
4	4	2	2	2	2	3	2	2
5	11-2	2	2	3	3	3	3	2
Avg	3	2.4	2.4	2	2	3	2.6	2

या कियाचान् स धनिद्धरा

BTDS 712PE: DATA MINING LAB (Professional Elective – III) B.Tech. IV Year I Sem.

	Teaching Sch	eme:	Credit	Examination S	cheme:						
	TH: - 4 Hours	/Week	TH: 04	In Sem. Evaluation	: 25 Marks						
				Mid Sem. Exam:	25 Marks						
				End Sem. Exam:	50 Marks						
				Total	: 100 Marks						
•	Course Prerequisites: A course on "Database Management System										
Course	e Objective:										
•	The course is in	ntended to obtai	n hands-on experience usin	g data mining software	e.						
•	Intended to pro	vide practical e	xposure of the concepts in c	lata mining algorithms							
Learni	ing Course Outco	ome:									
After s	successful comple	tion of the cour	se, students will able to:								
1.	Apply preproce	essing statistical	methods for any given raw	data.							
2.	Gain practical e	experience of co	onstructing a data warehous	e.							
3.	Implement vari	ous algorithms	for data mining in order to	discover interesting							
	patterns from la	arge amounts of	data.								
4.	Apply OLAP o	perations on dat	ta cube construction.								
			Course Contents								
	UNIT-I		LIST OF EXPERIMEN	NTS	07 Hours						
Experi	ments using Wek	a/ Pentaho/Pyth	on								
1.	Data Processing	g Techniques:									
	(i) Data cleanin	ng (ii) Data tran	sformation – Normalization	(iii) Data integration							
2.	Partitioning - H	lorizontal, Verti	cal, Round Robin, Hash bas	sed							
3.	Data Warehous	e schemas – sta	r, snowflake, fact constellat	ion							
4.	Data cube cons	truction – OLA	P operations								
5.	Data Extraction	n, Transformatio	ons & Loading operations								
6.	Implementation	of Attribute or	iented induction algorithm								
7.	Implementation	n of apriori algo	rithm								
8.	Implementation	of FP - Growt	h algorithm								
9.	Implementation	n of Decision Tr	ee Induction								
10	D. Calculating Info	ormation gain m	easures								
1.	11. Classification of data using Bayesian approach										
12	2. Classification o	f data using K -	- nearest neighbour approac	h							
13	3. Implementation	of K – means	algorithm								
14	4. Implementation	n of BIRCH algo	orithm								

B. Tech Data Science

- 15. Implementation of PAM algorithm
- 16. Implementation of DBSCAN algorithm

TEXT BOOKS:

- 1. Data Mining Concepts and Techniques JIAWEI HAN & MICHELINE KAMBER, Elsevier.
- 2. Data Warehousing, Data Mining &OLAP- Alex Berson and Stephen J. Smith- Tata McGraw-Hill Edition, Tenth reprint 2007

REFERENCE BOOK:

1. Pang-Ning Tan, Michael Steinbach, Vipin Kumar, Anuj Karpatne, Introduction to Data Mining, Pearson Education.

INTERNAL ASSESSMENT (IA)

Two internal assessments and an end semester examination to test students' reading and writing skills along with their grammatical and lexical competence. Assessment will include following things:

• Internal Assessment: 25 Marks - 1. Attendance

2. Assignments

गावान् मा पनिडला

3. Case Study/Mini Project/Presentation

- Mid Semester Exam: 25 Marks
- End Semester Exam: 50 Marks

CO's-PO's & PSO's MAPPING

Cos	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	3	3	3	2	2	3	3	2
2	-	3	3	1	1	3	3	3
3	-	2	2	2	2	3	2	1
4	-	2	2	2	2	3	2	2
5	-	2	2	3	3	3	3	2
Avg	3	2.4	2.4	2	2	3	2.6	2

BTDS 713PE: SCRIPTING LANGUAGES LAB (Professional Elective – III) B.Tech. IV Year I Sem.

D ,	Tech. IV Teal I Selli.								
Teaching Scheme:	Credit	Examination S	cheme:						
TH: - 4 Hours/Week	TH: 04	In Sem. Evaluation	: 25 Marks						
		Mid Sem. Exam:	25 Marks						
		End Sem. Exam:	50 Marks						
Total : 100 Marks									
Course Prerequisites: Any High leve	l programming language	$(\mathbf{C},\mathbf{C}^{++})$							
Course Objective:									
• To Understand the concepts of	scripting languages for dev	veloping web based pro	ojects						
• To understand the applications	the of Ruby, TCL, Perl scr	ipting languages							
Learning Course Outcome:									
After successful completion of the cour	se, students will able to:								
1. Ability to understand the different	ences between Scripting lan	guages and programming	ng languages						
2. Gain some fluency programmi	ng in Ruby, Perl, TCL.								
	Course Contents								
	Course Contents		07 Hours						
			07 110015						
1. Write a Ruby script to create a new s	string which is n copies of a	given string where n is	s a						
non-negative integer									
2. Write a Ruby script which accept th	e radius of a circle from the	e user and compute the							
parameter and area.									
3. Write a Ruby script which accept th	e users first and last name	and print them in reven	rse						
order with a space between them									
4. Write a Ruby script to accept a filer	ame from the user print the	e extension of that							
5. Write a Ruby script to find the grea	test of three numbers								
6. Write a Ruby script to print odd nur	nbers from 10 to 1								
7. Write a Ruby script to check two in	tegers and return true if on	e of them is 20 otherw	vise						
return their sum									
8. Write a Ruby script to check two te	mperatures and return true	if one is less than 0 ar	nd						
the other is greater than 100	1								
9. Write a Ruby script to print the eler	nents of a given array								
10. Write a Ruby program to retrieve t	he total marks where subject	t name and marks of a							
student stored in a hash	5								
11. Write a TCL script to find the factor	orial of a number								
12. Write a TCL script that multiplies	the numbers from 1 to 10								

B. Tech Data Science

13. Write a TCL script for sorting a list using a comparison function

14. Write a TCL script to (i) create a list (ii) append elements to the list (iii) Traverse

the list (iv) Concatenate the list

15. Write a TCL script to comparing the file modified times.

16. Write a TCL script to Copy a file and translate to native format.

- a) Write a Perl script to find the largest number among three numbers.
 - b) Write a Perl script to print the multiplication tables from 1-10 using subroutines.

18. Write a Perl program to implement the following list of manipulating functions

- a) Shift
- b) Unshift
- c) Push

19. a) Write a Perl script to substitute a word, with another word in a string.

- b) Write a Perl script to validate IP address and email address.
- 20. Write a Perl script to print the file in reverse order using command line arguments

TEXT BOOKS:

- 1. The World of Scripting Languages, David Barron, Wiley Publications.
- 2. Ruby Programming language by David Flanagan and Yukihiro Matsumoto O'Reilly
- 3. "Programming Ruby" The Pramatic Programmers guide by Dabve Thomas Second edition

REFERENCE BOOKS:

- 1. Open Source Web Development with LAMP using Linux Apache, MySQL, Perl and PHP, J.Lee and B. Ware (Addison Wesley) Pearson Education.
- 2. Perl by Example, E. Quigley, Pearson Education.
- 3. Programming Perl, Larry Wall, T. Christiansen and J. Orwant, O'Reilly, SPD.
- 4. Tcl and the Tk Tool kit, Ousterhout, Pearson Education.
- 5. Perl Power, J. P. Flynt, Cengage Learning.

INTERNAL ASSESSMENT (IA)

Two internal assessments and an end semester examination to test students' reading and writing skills along with their grammatical and lexical competence. Assessment will include following things:

- Internal Assessment: 25 Marks 1. Attendance
 - 2. Assignments
 - 3. Case Study/Mini Project/Presentation
- Mid Semester Exam: 25 Marks
- End Semester Exam: 50 Marks

CO's-PO's & PSO's MAPPING

- AL								
Cos	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	3	3	3	2	2	3	3	2
2	1	3	3	1	1	3	3	3
3	1	2	2	2	2	3	2	
4	1	2	2	2	2	3	2	2
5	-	2	2	3	3	3	3	2
Avg	3	2.4	2.4	2	2	3	2.6	2

-STERIST

BTDS 714PE: MOBILE APPLICATION DEVELOPMENT LAB (Professional Elective – III)

B.Tech. IV Year I Sem.

Teaching Scheme:	Credit	Examination S	cheme:							
TH: - 4 Hours/ week	111: 04	Mid Sem. Exam:	25 Marks 25 Marks							
		End Sem. Exam:	50 Marks							
		Total	: 100 Marks							
Course Prerequisites: None										
To learn how to develop Appli	actions in an android anyir	onmont								
 To learn how to develop Apple To learn how to develop user i 	nterface applications	omnent.								
 To learn how to develop USEI To learn how to develop URI 	related applications									
Learning Course Outcome:	related applications.									
After successful completion of the cour	se, students will able to:									
1. Understand the working of And	droid OS Practically.									
2. Develop user interfaces.										
3. Develop, deploy and maintain	3. Develop, deploy and maintain the Android Applications.									
Course Contents										
UNIT-I LIST OF EX	XPERIMENTS		07 Hours							
1. Create an Android application that	shows Hello + name of the	e user and run it on an	emulator.							
(b) Create an application that takes the	e name from a text box and	shows hello message	along							
with the name entered in the text b	oox, when the user clicks th	e OK button.								
2. Create a screen that has input box	es for User Name, Passwo	ord, Address, Gender (radio							
buttons for male and female), Age	(numeric), Date of Birth (Datepicker), State (Spi	nner)							
and a Submit button. On clicking	the submit button, print al	the data below the Su	ubmit							
Button. Use (a) Linear Layout (b)	Relative Layout and (c) G	rid Layout or Table La	yout.							
3. Develop an application that shows	names as a list and on sele	cting a name it should	show							
the details of the candidate on the r	ext screen with a "Back" b	utton. If the screen is ro	otated							
to landscape mode (width greater	than height), then the scree	en should show list o	n left							
fragment and details on the right	fragment instead of the se	econd screen with the	back							
button. Use Fragment transactions	and Rotation event listene	rs.								
4. Develop an application that uses a	a menu with 3 options for a	lialing a number, open	ning a							
website and to send an SMS. On	selecting an option, the a	ppropriate action shou	ıld be							
invoked using intents.										

- 5. Develop an application that inserts some notifications into Notification area and whenever a notification is inserted, it should show a toast with details of the notification.
- 6. Create an application that uses a text file to store usernames and passwords (tab separated fields and one record per line). When the user submits a login name and password through a screen, the details should be verified with the text file data and if they match, show a dialog saying that login is successful. Otherwise, show the dialog with a Login Failed message.
- 7. Create a user registration application that stores the user details in a database table.
- 8. Create a database and a user table where the details of login names and passwords are stored. Insert some names and passwords initially. Now the login details entered by the user should be verified with the database and an appropriate dialog should be shown to the user.
- 9. Create an admin application for the user table, which shows all records as a list and the admin can select any record for edit or modify. The results should be reflected in the table.
- 10. Develop an application that shows all contacts of the phone along with details like name, phone number, mobile number etc.
- 11. Create an application that saves user information like name, age, gender etc. in shared preference and retrieves them when the program restarts.
- 12. Create an alarm that rings every Sunday at 8:00 AM. Modify it to use a time picker to set alarm time.

TEXT BOOKS:

- 1. Professional Android 4 Application Development, Reto Meier, Wiley India, (Wrox), 2012.
- 2. Android Application Development for Java Programmers, James C Sheusi, Cengage, 2013.

REFERENCE BOOK:

1. Beginning Android 4 Application Development, Wei-Meng Lee, Wiley India (Wrox), 2013.

INTERNAL ASSESSMENT (IA)

Two internal assessments and an end semester examination to test students' reading and writing skills along with their grammatical and lexical competence. Assessment will include following things:

- Internal Assessment: 25 Marks 1. Attendance
 - 2. Assignments
 - 3. Case Study/Mini Project/Presentation
- Mid Semester Exam: 25 Marks
- End Semester Exam: 50 Marks

CO's-PO's & PSO's MAPPING

- AL								
Cos	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	3	3	3	2	2	3	3	2
2	1	3	3	1	1	3	3	3
3	1	2	2	2	2	3	2	2 1
4	1	2	2	2	2	3	2	2
5	-	2	2	3	3	3	3	2
Avg	3	2.4	2.4	2	2	3	2.6	2

-STERIST

BTDS 715PE: CRYPTOGRAPHY AND NETWORK SECURITY LAB (Professional Elective – III)

B.Tech. IV Year I Sem.

Teaching Scheme: TH: - 4 Hours/Week	Credit TH: 04	Examination S In Sem. Evaluation Mid Sem. Exam: End Sem. Exam:	cheme: 25 Marks 25 Marks 50 Marks					
		Total	: 100 Marks					
Course Prerequisites: None								
Course Objective:	,· ·,							
• Explain the objectives of inform	nation security	atiolity into anity						
• Explain the importance and ap	plication of each of confide	entianty, integrity,						
authentication and availability								
Onderstand various cryptograph	ne algorithms.							
After successful completion of the cour	se. students will able to:							
• Understand basic cryptograph	ic algorithms, message an	d web authentication	and					
security issues.								
• Identify information system red	 Identify information system requirements for both of them such as client and server 							
• Understand the current legal is	sues towards information se	ecurity.						
	Course Contents	¥						
UNIT-I List of	Experiments		07 Hours					
1. Write a C program that contains a st	ring (char pointer) with a v	alue 'Hello world'. Th	ie					
program should XOR each character	in this string with 0 and dis	play the result.						
2. Write a C program that contains a st	ring (char pointer) with a v	alue 'Hello world'. Th	ie					
program should AND or and XOR ea	ch character in this string v	vith 127 and display th	he					
result.								
3. Write a Java program to perform en	cryption and decryption us	ing the following algor	rithms					
a. Ceaser cipher b. Substitution	cipher c. Hill Cipher							
4. Write a C/JAVA program to implement	nent the DES algorithm log	ic.						
5. Write a C/JAVA program to implement	nent the Blowfish algorithm	n logic.						
6. Write a C/JAVA program to implem	nent the Rijndael algorithm	logic.						
7. Write the RC4 logic in Java Using	Java cryptography; encrypt	the text "Hello world	"					
using Blowfish. Create your own key	using Java key tool.							
8. Write a Java program to implement	the RSA algorithm.							
9. Implement the Diffie-Hellman Key	Exchange mechanism usin	g HTML and JavaScri	pt.					

- 10. Calculate the message digest of a text using the SHA-1 algorithm in JAVA.
- 11. Calculate the message digest of a text using the MD5 algorithm in JAVA

TEXT BOOKS:

- Cryptography and Network Security Principles and Practice: William Stallings, Pearson Education, 6th Edition
- 2. Cryptography and Network Security: Atul Kahate, McGraw Hill, 3rd Edition

REFERENCE BOOKS:

- 1. Cryptography and Network Security: C K Shyamala, N Harini, Dr T R Padmanabhan, Wiley India, 1st Edition.
- 2. Cryptography and Network Security: Forouzan Mukhopadhyay, McGraw Hill, 3rd Edition
- 3. Information Security, Principles, and Practice: Mark Stamp, Wiley India.
- 4. Principles of Computer Security: WM. Arthur Conklin, Greg White, TMH
- 5. Introduction to Network Security: Neal Krawetz, CENGAGE Learning
- 6. Network Security and Cryptography: Bernard Menezes, CENGAGE Learning

INTERNAL ASSESSMENT (IA)

Two internal assessments and an end semester examination to test students' reading and writing skills along with their grammatical and lexical competence. Assessment will include following things:

• Internal Assessment: 25 Marks - 1. Attendance

41.00

2. Assignments

3. Case Study/Mini Project/Presentation

- Mid Semester Exam: 25 Marks
- End Semester Exam: 50 Marks

CO's-PO's & PSO's MAPPING

Cos	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	3	3	3	2	2	3	3	2
2	-	3	3	1	1	3	3	3
3	-	2	2	2	2	3	2	1
4	-	2	2	2	2	3	2	2
5	-	2	2	3	3	3	3	2
Avg	3	2.4	2.4	2	2	3	2.6	2

BTDS 851PE: SOCIAL NETWORK ANALYSIS (Professional Elective - V)

B.Tech. IV Year II Sem.

Teaching Scheme: TH: - 4 Hours/Weel	Σ.	Credit TH: 04	Examination Sch In Sem. Evaluation: Mid Sem. Exam: 2 End Sem. Exam: 5	eme: 25 Marks 25 Marks 50 Marks						
Comme Decementation			Total : 1	100 Marks						
Vab Tashralagias										
Web Technologies										
Computer Networks Data Warehousing as	nd Data M	ining								
• Data watehousing an	IU Data M	lining								
• Understand the conce	ents of soc	rial media								
Learn the mechanism	ns for soci	al network analysis								
Analysis of widely up	sed servic	es such as email. Wikis. Tw	vitter, flickr, YouTube, e	tc.						
Learning Course Outcome:										
After successful completion o	After successful completion of the course, students will able to:									
Ability to construct s	Ability to construct social network maps easily									
Gain skills in trackin	g the cont	ent flow through the social	media							
Understand NodeXL	use to per	form social network analys	sis							
		Course Contents								
UNIT-I		Introduction		07 Hours						
Social Media and Social Netw	/orks									
Social Media: New Technolo	ogies of Co	ollaboration								
Social Network Analysis: M	easuring, I	Mapping, and Modelling co	ollections of Connections	5.						
UNIT-II		Preparing Data		08 Hours						
NodeXL, Layout, Visual De	esign, and	Labelling, Calculating and	Visualising Network							
Metrics, Preparing Data and	l Filtering	, Clustering and Grouping.	C .							
UNIT-III		CASE STUDIES		08 Hours						
Email: The lifeblood of Mo	dern Com	munication.	ł							
Thread Networks: Mapping Message Boards and Email Lists										
Twitter: Conversation, Entertainment and Information										
UNIT-IV		CASE STUDIES		07						
				Hours						

B. Tech Data Science

Visualizing and Interpreting Facebook Networks, WWW Hyperlink Networks

UNIT-V

CASE STUDIES

08 Hours

You Tube: Contrasting Patterns of Content Interaction, and Prominence. Wiki Networks: Connections of Creativity and Collaboration

TEXT BOOK:

1. Hansen, Derek, Ben Sheiderman, Marc Smith, Analyzing Social Media Networks with NodeXL: Insights from a Connected World, Morgan Kaufmann, 2011.

REFERENCE BOOKS:

- 1. Avinash Kaushik, Web Analytics 2.0: The Art of Online Accountability, Sybex, 2009.
- Marshall Sponder, Social Media Analytics: Effective Tools for Building, Interpreting and Using Metrics, 1st Edition, MGH, 2011.

INTERNAL ASSESSMENT (IA)

Two internal assessments and an end semester examination to test students' reading and writing skills along with their grammatical and lexical competence. Assessment will include following things:

• Internal Assessment: 25 Marks - 1. Attendance

2. Assignments

यान् स पण्डि

3. Case Study/Mini Project/Presentation

- Mid Semester Exam: 25 Marks
- End Semester Exam: 50 Marks

CO's-PO's & PSO's MAPPING

Cos	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	3	3	3	2	2	3	3	2
2	-	3	3	1	1	3	3	3
3	-	2	2	2	2	3	2	1
4	-	2	2	2	2	3	2	2
5	-	2	2	3	3	3	3	2
Avg	3	2.4	2.4	2	2	3	2.6	2

BTDS 852PE: FEDERATED MACHINE LEARNING (Professional Elective – V)

B.Tech. IV Year II Sem.

Teaching Sche TH: - 4 Hours/V	eme: Week	Credit TH: 04	Examination S In Sem. Evaluation Mid Sem. Exam: End Sem. Exam:	cheme: : 25 Marks 25 Marks 50 Marks					
			Total	: 100 Marks					
Course Prerequisites:									
The prerequisite	knowledge lo	r unis course includes mach	ine learning, basic						
computer system	ns and basic pr	ogramming skills.							
Course Objective:		1, 11, 15, 1, 1	т ·						
• Understand the R	key concepts a	id issues benind Federated	Learning						
Get familiar with	n key theoretic	al results of Federated Lear	ning						
 Learning Course Outcome: After successful completion of the course, students will able to: Understand the basics on privacy-preserving ML Analyze the key concepts of Distributed ML and FL Understand the key concepts and applications of Horizontal FL and Vertical FL Motivates the intensive mechanism design for FL Analyze the concepts of federated reinforcement learning 									
UNIT-I		Introduction		07 Hours					
Motivation, Federated L	earning as a S	Solution, The Definition o	f Federated Learning,						
Categories of Federated Learning, Current Development in Federated Learning, Research									
Issues in Federated Learning, Open-Source Projects, Standardization Efforts, The Federated									
AI Ecosystem Background: Privacy-Preserving Machine Learning, PPML and Secure									
ML, Threat and Security Models, Privacy Threat Models, Adversary and Security Models,									
Privacy Preservation Techniques, Secure Multi-Party Computation, Homomorphic									
Encryption, Differential	Privacy.								
UNIT-II		Distributed Machine I	Learning	08 Hours					

 Introduction to DML, The Definition of DML, DML Platforms, Scalability- Motivated DML,

 Large-Scale Machine Learning, Scalability-Oriented DML Schemes, Privacy-Motivated DML,

 Privacy-Preserving Decision Trees, Privacy-Preserving Techniques, Privacy-Preserving DML

 Schemes, Privacy-Preserving Gradient Descent, Vanilla Federated Learning, Privacy

 Preserving Methods

 UNIT-III
 Horizontal Federated Learning

 08 Hours

The Definition of HFL, Architecture of HFL, The Client- Server Architecture, The Peer-to-Peer Architecture, Global Model Evaluation, The Federated Averaging Algorithm, Federated Optimization, The FedAvg Algorithm, The Secured FedAvg Algorithm, Improvement of the FedAvg Algorithm, Communication Efficiency, Client Selection Vertical Federated Learning: The Definition of VFL, Architecture of VFL, Algorithms of VFL, Secure Federated Linear Regression, Secure Federated Tree-Boosting

UNIT-IV	Federated Transfer Learning	07
		Hours
Heterogeneous Federated	Learning Federated Transfer Learning The FTL Framewor	k

Heterogeneous Federated Learning, Federated Transfer Learning, The FTL Framework, Additively Homomorphic Encryption, The FTL Training Process, The FTL Prediction Process, Security Analysis, Secret Sharing-Based FTL Incentive Mechanism Design for Federated Learning: Paying for Contributions, Profit- Sharing Games, Reverse Auctions, A Fairness-Aware Profit Sharing Framework, Modeling Contribution, Modeling Cost, Modeling Regret, Modeling Temporal Regret, The Policy Orchestrator, Computing Payoff Weightage

-		 		=	-	-	 	
	UNIT-V		Federated L	earning				08
				_				Hours

for Vision, Language, and Recommendation: Federated Learning for Computer Vision, Federated CV, Federated Learning for NLP, Federated NLP, Federated Learning for Recommendation Systems, Recommendation Model, Federated Recommendation System Federated Reinforcement Learning:

Introduction to Reinforcement Learning, Policy, Reward, Value Function, Model of the Environment, RL Background Example, Reinforcement Learning Algorithms, Distributed Reinforcement Learning, Asynchronous Distributed Reinforcement Learning, Synchronous Distributed Reinforcement Learning, Federated Reinforcement Learning, Background and Categorization

TEXT BOOK:

 Federated Learning, Qiang Yang, Yang Liu, Yong Cheng, Yan Kang, Tianjian Chen, and Han Yu Synthesis Lectures on Artificial Intelligence and Machine Learning 2019.

INTERNAL ASSESSMENT (IA)

Two internal assessments and an end semester examination to test students' reading and writing skills along with their grammatical and lexical competence. Assessment will include following things:

• Internal Assessment: 25 Marks - 1. Attendance

2. Assignments

3. Case Study/Mini Project/Presentation

- Mid Semester Exam: 25 Marks
- End Semester Exam: 50 Marks

CO's-PO's & PSO's MAPPING

Cos	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	3	3	3	2	2	3	3	2
2	1.50	3	3	1	1	3	3	3
3	1	2	2	2	2	3	2	2.1
4		2	2	2	2	3	2	\bigcirc
5	10	2	2	3	3	3	3	2
Avg	3	2.4	2.4	2	2	3	2.6	

BTDS 853PE: AUGMENTED REALITY & VIRTUAL REALITY

(Professional Elective –V) B.Tech. IV Year II Sem.

Teaching Scheme: TH: - 4 Hours/Week	Credit TH: 04	Examination Sem. Evaluation Mid Sem. Exam: End Sem. Exam: Total	cheme: : 25 Marks 25 Marks 50 Marks : 100 Marks							
Course Prerequisites: None										
Course Objective:										
• Provide a foundation to the fast	-growing field of AR and ma	the students aware	of the							
various AR concepts.										
• To give historical and moder	rn overviews and perspec	tives on virtual reali	ty. It							
describes the fundamentals of s	ensation, perception, techn	ical and engineering as	pects							
of virtual reality systems.										
Learning Course Outcome:										
After successful completion of the course, students will able to:										
Describe how AR systems work and list the applications of AR.										
• Understand the software archite	Understand the software architectures of AR.									
Understand the Visual percepti	on and rendering in VR									
Understand the interaction, auc	litory perception and render	ring in VR								
	Course Contents									
UNIT-I Int	troduction to Augmented	l Reality	07 Hours							
Augmented Reality - Defining augment	nted reality, history of aug	mented reality, Examp	ples, Related							
fields										
Displays: Multimodal Displays, Visu	al Perception, Requiremen	ts and Characteristics,								
Spatial Display Model, Visual Displa	ys									
Tracking: Tracking, Calibration, and	d Registration, Coordinate	Systems, Characterist	tics of							
Tracking Technology, Stationary Tra-	cking Systems, Mobile Sen	sors								
UNIT-II Com	puter Vision for Augme	nted Reality	08 Hours							
Marker Tracking, Multiple-Camera In	frared Tracking, Natural F	eature Tracking by								
Detection, Outdoor Tracking. Interaction: Output Modalities, Input Modalities, Tangible										
Interfaces, Virtual User Interfaces on Real Surfaces, Augmented Paper, Multi-view										
Interfaces, Haptic Interaction Software Architectures: AR Application Requirements,										
Software Engineering Requirements,	Distributed Object Systems	s, Dataflow, Scene Gra	Software Engineering Requirements, Distributed Object Systems, Dataflow, Scene Graphs							

UNIT-III	Introduction to Virtual Reality	08 Hours
Defining Virtual Reali	ty, History of VR, Human Physiology and Perception	
The Geometry of Virtu	al Worlds: Geometric Models, Axis-Angle Representations of Rotati	on,
Viewing Transformatio	ns	
Light and Optics: Bas	ic Behavior of Light, Lenses, Optical Aberrations, The Human Eye	e,
Cameras, Displays		
UNIT-IV	The Physiology of Human Vision	07 Hours
From the Cornea to	Photoreceptors, From Photoreceptors to the Visual Cortex,	Eye
Movements, Implicatio	ins for VR	
Visual Perception: Vis	sual Perception - Perception of Depth, Perception of Motion, Percept	tion
of Color Visual Ren	ndering: Visual Rendering -Ray Tracing and Shading Mod	lels,
Rasterization, Correctir	ng Optical Distortions, Improving Latency and Frame Rates, Immers	sive
Photos and Videos.		
UNIT-V	Motion in Real and Virtual Worlds	08
		Hours
Mismatched Motion an Interaction: Motor Pro Audio: The Physics o	d Vection grams and Remapping, Locomotion, Social Interaction f Sound, The Physiology of Human Hearing, Auditory Perceptio	n,
Auditory Rendering		
TEXT BOOKS:		
 Augmented R Education Indi Virtual Reality 	eality: Principles & Practice by Schmalstieg / Hollerer, Pear a;First edition (12 October 2016),ISBN-10: 9332578494 , Steven M. LaValle, Cambridge University Press, 2016	son
REFERENCE BOO	KS:	
1. Allan Fowler-A 978- 14842361	AR Game Development∥, 1st Edition, A press Publications, 2018, IS 178	BN
2. Understanding and Alan B C Kaufmann Publ	Virtual Reality: Interface, Application and Design, William R Sherr raig, (The Morgan Kaufmann Series in Computer Graphics)". Mor lishers, San Francisco, CA, 2002	nan gan
3. Developing Vi Craig, William	rtual Reality Applications: Foundations of Effective Design, Ala R Sherman and Jeffrey D Will, Morgan Kaufmann, 2009	n B
4. Designing for 2016, ISBN: 9	Mixed Reality, Kharis O'Connell Published by O'Reilly Media, I 781491962381	nc.,

- Sanni Siltanen- Theory and applications of marker-based augmented reality. Julkaisija — Utgivare Publisher. 2012. ISBN 978-951-38-7449-0
- 6. Gerard Jounghyun Kim, "Designing Virtual Systems: The Structured Approach", 2005.

INTERNAL ASSESSMENT (IA)

Two internal assessments and an end semester examination to test students' reading and writing skills along with their grammatical and lexical competence. Assessment will include following things:

• Internal Assessment: 25 Marks - 1. Attendance

2. Assignments

3. Case Study/Mini Project/Presentation

- Mid Semester Exam: 25 Marks
- End Semester Exam: 50 Marks

CO's-PO's & PSO's MAPPING

Cos	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	3	3	3	2	2	3	3	2

B. Tech Data Science

2	-	3	3	1	1	3	3	3
3	-	2	2	2	2	3	2	1
4	-	2	2	2	2	3	2	2
5	-	2	2	3	3	3	3	2
Avg	3	2.4	2.4	2	2	3	2.6	2

BTDS 854PE: WEB SECURITY (Professional Elective -V)

B.Tech. IV Year II Sem.

Teaching Schen TH: - 4 Hours/W	ne: /eek	Credit TH: 04	Examination S In Sem. Evaluatior Mid Sem. Exam: End Sem. Exam:	icheme: a: 25 Marks 25 Marks 50 Marks					
			Total	: 100 Marks					
Course Prerequisites: Nor	Course Prerequisites: None								
Course Objective:									
1. Give an Overview	w of information	ion security							
2. Give an overview	of Access co	ontrol of relational database	es						
Learning Course Outcome	e:								
After successful completio	on of the cour	se, students will able to:							
1. Understand the W	Veb architectu	re and applications							
2. Understand client	t side and serv	vice side programming							
3. Understand how	common mist	akes can be bypassed and e	exploit the application						
4. Identify common	application v	Course Contonta							
		Course Contents		07.11					
	D'1 4 1	ine web Security		07 Hours					
The Web Security Problem	n, Risk Analy	sis and Best Practices	1. 0 / 1.						
Cryptography and the wet	b: Cryptograp	ny and web Security, wor	king Cryptographic						
Systems and Protocols, Le	egal Restrictio	ons on Cryptography, Digit	al Identification.						
UNIT-II		The Web's War on Yo	ur Privacy	08 Hours					
Privacy-Protecting Techni	ques, Backup	s and Antitheft, Web Serve	er Security, Physical						
Security for Servers, Host	Security for	Servers, Securing Web Ap	plications.						
UNIT-III		Database Security		08 Hours					
Recent Advances in Acces	ss Control, A	ccess Control Models for X	KML, Database Issues	in					
Trust Management and Trust Negotiation, Security in Data Warehouses and OLAP Systems									
UNIT-IV	curity Re-engineering for	-engineering for Databases 07 Hour							
Concepts and Techniques, Retention, Damage Quara Current Capabilities.	Concepts and Techniques, Database Watermarking for Copyright Protection, Trustworthy Records Retention, Damage Quarantine and Recovery in Data Processing Systems, Hippocratic Databases: Current Capabilities								
UNIT-V	Future	Trends Privacy in Datab	ase Publishing	08 Hours					

A Bayesian Perspective, Privacy-enhanced Location Based Access Control, Efficiently Enforcing the Security and Privacy Policies in a Mobile Environment.

TEXT BOOKS:

1. Web Security, Privacy and Commerce Simson G Arfinkel, Gene Spafford, O'Reilly. Handbook on Database security applications and trends Michael Gertz, Sushil Jajodia

INTERNAL ASSESSMENT (IA)

Two internal assessments and an end semester examination to test students' reading and writing skills along with their grammatical and lexical competence. Assessment will include following things:

- Internal Assessment: 25 Marks 1. Attendance
 - 2. Assignments
 - 3. Case Study/Mini Project/Presentation

的包括合

37

- Mid Semester Exam: 25 Marks
- End Semester Exam: 50 Marks

कियाचान

CO's-PO's & PSO's MAPPING

Cos	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	3	3	3	2	2	3	3	2
2	-	3	3	1	1	3	3	3
3	-	2	2	2	2	3	2	1
4	-	2	2	2	2	3	2	2
5	-	2	2	3	3	3	3	2
Avg	3	2.4	2.4	2	2	3	2.6	2

BTDS 855PE: AD-HOC & SENSOR NETWORKS (Professional Elective –

V)

B.Tech. IV Year II Sem.

Teaching Sch	Teaching Scheme:CreditExamination Scheme:						
TH: - 4 Hours/	Week	TH: 04	In Sem. Evaluati	on: 25 Marks			
			Mid Sem. Exan	1: 25 Marks			
			End Sem. Exan	1: 50 Marks			
			Total	: 100 Marks			
Course Prerequ	iisites: Comput	er Networks, Distributed	Systems, Mobile Co	mputing			
Course Objective:							
• To understand t	he challenges o	f routing in ad-hoc and sen	sor networks				
• To understand v	various broadca	st, mutlicast and geocastin	g protocols in ad ho	c and			
sensor networks	5						
• To understand b	basics of Wirele	ss sensors, and Lower Lav	er Issues and Upper	Layer Issues of			
WSN		, , , , , , , , , , , , , , , , , , , ,	11	5			
Learning Course Outcon	me:						
After successful complet	tion of the cour	se, students will able to:					
Understand the	concepts of sen	sor networks and application	ons				
Understand and	compare the M	IAC and routing protocols	for adhoc networks				
Understand the	transport protoc	cols of sensor networks					
		Course Contents					
UNIT-I	I	ntroduction to Ad Hoc Ne	etworks	07 Hours			
Characteristics of MAI	NETs, Applicat	ions of MANETs and Chal	llenges of MANETs.				
Routing in MANETs			_				
Criteria for classificat	ion, Taxonomy	of MANET routing algo	orithms, <i>Topology-b</i>	pased routing			
algorithms- Proactive: DSDV, WRP: Reactive: DSR, AODV, TORA: Hybrid: ZRP: Position-							
based routing algorithms- Location Services-DREAM. Ouorum-based. GLS: Forwarding							
Strategies, Greedy Packet, Restricted Directional Flooding-DREAM, LAR: Other routing							
algorithms-OoS Routing, CEDAR.							
	0,						
UNIT-II		Data Transmission		08 Hours			
0111-11							

Broadcast Storm Problem, Rebroadcasting Schemes-Simple-flooding, Probability-based Methods, Area- based Methods, Neighbour Knowledge-based: SBA, Multipoint Relaying, AHBP. Multicasting: Tree-based: AMRIS, MAODV; Mesh-based: ODMRP, CAMP; Hybrid: AMRoute, MCEDAR.

UNIT-III Geocasting 08	Hours
------------------------	-------

Data-transmission Oriented-LBM; Route Creation Oriented-GeoTORA, MGR. TCP over Ad Hoc TCP protocol overview, TCP and MANETs, Solutions for TCP over Ad hoc

UNIT-IV	Basics of Wireless Sensors and Lower Layer Issues	07 Hours					
Applications, Classification of sensor networks, Architecture of sensor network, Physical layer,							
MAC layer, Link layer, I	Routing Layer.						

UNIT-V	Upper Layer Issues of WSN	08 Hours

Transport layer, High-level application layer support, Adapting to the inherent dynamic nature of WSNs.

TEXT BOOKS

- 1. Ad Hoc and Sensor Networks Theory and Applications, *Carlos Corderio Dharma P.Aggarwal,* World Scientific Publications, March 2006, ISBN 981-256-681-3
- 2. Wireless Sensor Networks: An Information Processing Approach, Feng Zhao, Leonidas Guibas, Elsevier Science, ISBN 978-1-55860-914-3 (Morgan Kauffman)

REFERENCE BOOKS:

- 1. C. Siva Ram Murthy, B.S. Manoj Ad Hoc Wireless Networks: Architectures and Protocols.
- 2. Taieb Znati Kazem Sohraby, Daniel Minoli, Wireless Sensor Networks: Technology, Protocols and Applications, Wiley.

INTERNAL ASSESSMENT (IA)

Two internal assessments and an end semester examination to test students' reading and writing skills along with their grammatical and lexical competence. Assessment will include following things:

• Internal Assessment: 25 Marks - 1. Attendance

110

2. Assignments

3. Case Study/Mini Project/Presentation

- Mid Semester Exam: 25 Marks
- End Semester Exam: 50 Marks

CO's-PO's & PSO's MAPPING

Cos	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	3	3	3	2	2	3	3	2
2	15	3	3	1	1	3	3	3
3	1	2	2	2	2	3	2	1/1
4	1	2	2	2	2	3	2	2
5	-	2	2	3	3	3	3	2
Avg	3	2.4	2.4	2	2	3	2.6	2

BTDS 861PE: SPEECH AND VIDEO PROCESSING (Professional Elective – VI) B.Tech. IV Year II Sem.

Teaching Sch TH: - 4 Hours	neme: s/Week	Credit TH: 04	Examination Solution In Sem. Evaluation Mid Sem. Exam: End Sem. Exam:	cheme: 25 Marks 25 Marks 50 Marks		
			Total	: 100 Marks		
Course Prerequisites: N	None					
Course Objective:						
• To make stude	nts understand s	peech and video processing	g techniques			
Learning Course Outco	ome:					
After successful comple	e <mark>tion of the cour</mark>	se, students will able to:				
• Describe the n	nechanisms of	human speech production	systems and			
methods for sp	beech feature ext	traction.				
Understand bas	sic algorithms of	speech analysis and speec	h recognition.			
• Explain basic t	echniques in dig	gital video processing, inclu	uding imaging			
characteristics	and sensors.					
Apply motion e	estimation and o	bject tracking algorithms o	on video.			
		Course Contents				
UNIT-I	SI	eech processing concepts		07 Hours		
The speech productio	n mechanism, D	biscrete time speech signals	s, Pole-Zero modeling			
of speech, relevant p	properties of the	fast Fourier transform for	or speech recognition,			
convolution, linear an	d nonlinear filte	r banks, spectral estimation	of speech using DFT.			
Linear Prediction analysis of speech.						
UNIT-II	UNIT-II Speech recognition					
Feature extraction for	or speech, static	e and dynamic feature fo	r speech recognition,			
MFCC, LPCC, Distance measures, vector quantization models, Gaussian Mixture						
model, HMM.						
UNIT-III	Mı	Ilti-Dimensional Signals a	nd Systems	08 Hours		

Multi-Dimensional Signals, Multi-Dimensional Transforms, Multi-Dimensional Systems, Multi- Dimensional Sampling Theory, Sampling Structure Conversion **Digital Images and Video:** Human Visual System and Color, Digital Video

UNIT-IV	UNIT-IV Motion Estimation					
Image Formation, Motion Models, 2D Apparent-Motion Estimation, Differential Methods,						
Matching Methods, Nonlinear Optimization Methods, Transform-Domain Methods, 3D						
Motion and Structure	Estimation					

UNIT-V	Video Segmentation and Tracking	08 Hours

Image Segmentation, Change Detection, Motion Segmentation, Motion Tracking, Image and Video Matting, Performance Evaluation

TEXT BOOKS:

- 1. Fundamentals of Speech recognition L. Rabiner and B. Juang, Prentice Hall signal processing series
- 2. Digital Video processing, A Murat Tekalp, 2nd edition, Prentice Hall.

REFERENCE BOOKS:

- 1. Discrete-time speech signal processing: principles and practice, Thomas F. Quatieri, Coth.
- 2. Video Processing and Communications, Yao Wang, J. Osternann and Qin Zhang, Pearson Education.
- 3. "Speech and Audio Signal Processing", B.Gold and N. Morgan, Wiley.
- 4. "Digital image sequence processing, Compression, and analysis", Todd R. Reed, CRC Press.
- 5. "Handbook of Image and Video processing", Al Bovik, Academic press, second Edition.

INTERNAL ASSESSMENT (IA)

Two internal assessments and an end semester examination to test students' reading and writing skills along with their grammatical and lexical competence. Assessment will include following things:

- Internal Assessment: 25 Marks 1. Attendance
 - 2. Assignments

3. Case Study/Mini Project/Presentation

11773201

37

- Mid Semester Exam: 25 Marks
- End Semester Exam: 50 Marks

CO's-PO's & PSO's MAPPING

Cos	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	3	3	3	2	2	3	3	2
2		3	3	1	1	3	3	3
3		2	2	2	2	3	2	2 1
4	1-	2	2	2	2	3	2	2
5	-	2	2	3	3	3	3	1 5 2
Avg	3	2.4	2.4	2	2	3	2.6	2

1 - low, 2 - medium, 3 - high, '-' - no correlation

CONTRACTOR OF A

BTDS 862PE: ROBOTIC PROCESS AUTOMATION (Professional Elective – VI) B.Tech. IV Year II Sem.

Teaching Sche	me:	Credit	Examination S	cheme:				
TH: - 4 Hours/V	Neek	TH: 04	In Sem. Evaluation	: 25 Marks				
			End Sem. Exam:	25 Marks 50 Marks				
			Total	: 100 Marks				
Course Prerequisites: No	Course Prerequisites: None							
Course Objective:								
Introduce robotic	e process autor	nation, techniques of auton	nation using UIPath RI	PA tool.				
Learning Course Outcom	ne:							
After successful completi	i <mark>on of the cour</mark>	se, students will able to:						
• Understand the c	oncepts of Rol	botic Process Automation.						
• Apply the flow c	hart mechanis	m in various calculations.						
Applying UIPath	tool for debug	gging process.						
• Design system m	hanaging techn	iques.						
Create applicatio	on for process a	utomation using UIPath to	ol.					
		Course Contents						
UNIT-I		Robotic Process Automa	ation	07 Hours				
UNIT - I								
Introduction, Scope and t	echniques of a	utomation, Robotic proces	s automation, Compor	nents of				
RPA, RPA platforms, Ab	out UiPath							
UIPath Stack Uipath Stu	idio, Uipath Ro	obot, Types of Robots, UiP	ath Orchestrator					
UIPath Studio Projects,	User interface							
The User Interface: Task	k recorder, Adv	vanced UI interactions: Inp	out methods, Output me	ethods.				
UNIT-II	Sequen	ce, Flowchart, and Contr	ol Flow	08 Hours				
Sequencing the workflow	v, Activities, C	ontrol Flow, various types	of loops and decision					
making								
Data Manipulation: Variables and scope, Collections, Arguments – Purpose and use, Data table								
usage with examples, File operation with step-by-step example, CSV/Excel to data table and								
vice versa.								
UNIT-III		Taking Control of the Co	ontrols	08 Hours				

Finding and attaching windows, Finding the control, Techniques for waiting for a control, Act on controls — mouse and keyboard activities, Handling events, revisit recorder, When to use OCR, Types of OCR available, How to use OCR Plugins and Extensions: Terminal Plugin, SAP Automation, Citrix automation and Credential management. **UNIT-IV** Handling User Events and Assistant Bots 07 Hours Assistant bots, Monitoring system event triggers, Monitoring image and element triggers, Launching an assistant bot on a keyboard event Exception Handling, Debugging, and Logging: Exception handling, Common exceptions and ways to handle them, Logging and taking screenshots, Debugging techniques, Collecting crash dumps, Error reporting. UNIT-V Managing and Maintaining the Code **08 Hours** Project organization, nesting workflows, Reusability of workflows, Commenting techniques, State Machine, When to use Flowcharts, State Machines, or Sequences, Using config files **Deploying and Maintaining the Bot:** Publishing using publish utility, using Orchestration Server to control bots, deploy bots, License Management, Publishing and Managing updates **TEXT BOOKS:** 1. Learning Robotic Process Automation: Create Software robots and automate business processes with the leading RPA tool - UiPath: Create Software robots. with

the leading RPA tool - UiPath Kindle Edition

REFERENCE BOOKS:

1. Robotic Process Automation A Complete Guide - 2020 Edition Kindle Edition.

INTERNAL ASSESSMENT (IA)

Two internal assessments and an end semester examination to test students' reading and writing skills along with their grammatical and lexical competence. Assessment will include following things:

- Internal Assessment: 25 Marks 1. Attendance
 - 2. Assignments
 - 3. Case Study/Mini Project/Presentation
- Mid Semester Exam: 25 Marks
- End Semester Exam: 50 Marks

CO's-PO's & PSO's MAPPING

Cos	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	3	3	3	2	2	3	3	~ 2
2	1	3	3	1	1	3	3	
3		2	2	2	2	3	2	2
4	1	2	2	2	- 2	3	2	2
- 5	<u> </u>	2	2	3	3	3	3	6
Avg	3	2.4	2.4	2	2	3	2.6	

1 - low, 2 - medium, 3 - high, '-' - no correlation

Sections

BTDS 863PE: RANDOMIZED ALGORITHMS (Professional Elective – VI) B.Tech. IV Year II Sem.

Teaching Scheme: TH: - 4 Hours/Week	Credit TH: 04	Examination Solution In Sem. Evaluation Mid Sem. Exam: End Sem. Exam:	cheme: : 25 Marks 25 Marks 50 Marks				
		Total	: 100 Marks				
Course Prerequisites: None							
Course Objective:							
To introduce the power of rand	lomization in the design of	algorithms.					
Learning Course Outcome: After successful completion of the cour	se students will able to.						
Appreciate the fundamentals of	f randomized algorithm des	ion					
 Understand the fundamentals of 	of Markov chains and the M	onte Carlo method.					
• Apply high probability analysis	s to selected randomized al	gorithms.					
• Understand the Fingerprint and	Pattern Matching techniqu	ies					
	C 1						
Course Contents							
UNIT-I	Introduction, A Mi	n	07 Hours				
Recurrence Game-Theoretic Techniques: Game Tree	e Evaluation, The Minimax	Principle					
UNIT-II	Moments and Deviation	IS	08 Hours				
Occupancy Problems, The Markov and	Chebyshev Inequalities, R	andomized Selection,	Two				
Point sampling, The Coupon Collector'	s problem.						
Markov Chains and Random Walks: A	2-SAT example, Markov	Chains, Random Wal	ks on				
Graphs, Graph Connectivity							
UNIT-III	Algebraic Technique	es	08 Hours				
Fingerprinting and Freivald's Techniqu	e, Verifying Polynomial Ide	entities, Perfect Matchi	ing in				
Graphs, Verifying Equality of Strings,	A Comparison of Fingerp	rinting Techniques, Pa	attern				
Matching							
UNIT-IV	Data Structures		07 Hours				
B. Tech Data Science							

The Fundamental of Data-structures, Random Treaps, Skip Lists, Hash Tables Graph Algorithms: All Pairs Shortest Path, The Min- Cut Problem, Minimum Spanning Trees

UNIT-V	Geometric Algorithms	08 Hours

Randomized Incremental Construction, Convex Hulls in the Plane, Duality, Half- Space Intersections, Dalaunay Triangulations, Trapezoidal Decompositions, Parallel and Distributed Algorithms: The PRAM Model, Sorting on a PRAM, Maximal Independent Sets, Perfect Matchings

TEXT BOOKS:

- 1. Randomized Algorithms: Rajeev Motwani, Prabhakar Raghavan, cambridge University Press
- 2. Probability and Computing: Randomization and Probabilistic Techniques in Algorithms and Data Analysis by Eli Upfal and Michael Mitzenmacher.

INTERNAL ASSESSMENT (IA)

Two internal assessments and an end semester examination to test students' reading and writing skills along with their grammatical and lexical competence. Assessment will include following things:

• Internal Assessment: 25 Marks - 1. Attendance

2. Assignments

तावान् स पचिछनाः

3. Case Study/Mini Project/Presentation

- Mid Semester Exam: 25 Marks
- End Semester Exam: 50 Marks

CO's-PO's & PSO's MAPPING

Cos	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	3	3	3	2	2	3	3	2
2	-	3	3	1	1	3	3	3
3	-	2	2	2	2	3	2	1
4	-	2	2	2	2	3	2	2
5	-	2	2	3	3	3	3	2
Avg	3	2.4	2.4	2	2	3	2.6	2

BTDS 864PE: COGNITIVE COMPUTING (Professional Elective – VI) B.Tech. IV Year II Sem.

Teaching Scheme: TH: - 4 Hours/Week	Credit TH: 04	Examination So In Sem. Evaluation Mid Sem. Exam: End Sem. Exam: Total	cheme: : 25 Marks 25 Marks 50 Marks : 100 Marks		
Course Prerequisites: Probability theo	ry				
Course Objective:					
• To provide an understanding	of the central challenges i	n realizing			
aspects of human cognition.					
• To provide a basic exposition t	o the goals and methods of	human cognition.			
• To develop algorithms that use	AI and machine learning	along with human			
interaction and feedback to hel	p humans make choices/de	ecisions.			
• To support human reasoning	by evaluating data in con-	text and presenting			
relevant findings along with th	e evidence that justifies the	e answers.			
 After successful completion of the cour Understand cognitive computing Plan and use the primary tools Plan and execute a project that Understand and develop the bu 	se, students will able to: g associated with cognitive c leverages cognitive compu siness implications of cogn	omputing. ting. itive computing.			
	Course Contents				
UNIT-I I	ntroduction to Cognitive	Science	07 Hours		
Understanding Cognition, IBM's W	atson, Design for Humar	Cognition, Augment	ted		
Intelligence, Cognition Modeling P	aradigms: Declarative/ lo	gic-based computation	nal		
cognitive modeling, connectionist mo	odels of cognition, Bayesia	in models of cognition	, a		
dynamical systems approach to cogni	tion.				
UNIT-II	Cognitive Models		08 Hours		
Cognitive Models of memory and language, computational models of episodic and semantic memory, modeling psycholinguistics. Cognitive Modeling: modeling the interaction of language, memory and learning, Modeling select aspects of cognition classical models of rationality, symbolic reasoning and decision making.					

UNIT-III	Formal models	08 Hours
Formal models of inc role of analogy in pro Cognition and Artifi CopyCat, Memory No	luctive generalization, causality, categorization and similarity, oblem solving, Cognitive Development Child concept acquisition cial cognitive architectures such as ACT-R, SOAR, OpenCo etworks.	the on. og,
UNIT-IV	Deep QA Architecture	07 Hours
Business Implications Computing and System	Building Cognitive Applications, Application of Cognit	ive
TEXT BOOK:		
1. The Cambridg	e Handbook of Computational Psychology by Ron Sun (ed.),	
Cambridge Un	iversity Press.	
REFERENCE BOOI	18: Namia Kasfaran Adrian Daraha Caasiting Community at	. 1
1. Judiin S. Hurv Dia Data Anal	Atz, Marcia Kauiman, Adrian Bowles Cognitive Computing a	na
Dig Data Anal	yucs, whey	ing
2. vijay v Kagna	van, venkat N. Gudivada, venu Govindaraju, Cognitive Comput	ing:
Theory and Ap	pheauons. volume 55 (nanubook of Stausues), North Hollan.	
1		2
	with the experimental functional and	

INTERNAL ASSESSMENT (IA)

Two internal assessments and an end semester examination to test students' reading and writing skills along with their grammatical and lexical competence. Assessment will include following things:

- Internal Assessment: 25 Marks 1. Attendance
 - 2. Assignments
 - 3. Case Study/Mini Project/Presentation
- Mid Semester Exam: 25 Marks
- End Semester Exam: 50 Marks

CO's-PO's & PSO's MAPPING

Cos	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	3	3	3	2	2	3	3	2
2	1	3	3	1	1	3	3	3
3	/ G	2	2	2	2	3	2	1
4	1	2	2	2	2	3	2	2
5	1	2	2	3	3	3	3	2
Avg	3	2.4	2.4	2	2	3	2.6	2

1 - low, 2 - medium, 3 - high, '-' - no correlation

कियांचान्

BTDS 865PE: SEMANTIC WEB (Professional Elective – VI) B.Tech. IV Year II Sem.

Teaching Scheme:	Credit	Examination Scheme:				
TH: - 4 Hours/Week	TH: 04	In Sem. Evaluation: 25 Mar	rks			
		Mid Sem. Exam: 25 Mar	rks			
		End Sem. Exam: 50 Mar	rks			
		Total : 100 Mar	rks			
Course Prerequisites: None						
Course Objective:						
Introduce Semantic Web Visio	n and learn Web intelligend	e				
• Understanding about XML, RI	DF, RDFS, OWL					
Querying Ontology and Ontology	ogy Reasoning					
To learn Semantic Web Applic	ations, Services and Techne	ology				
To learn Knowledge Represent	tation for the Semantic Web)				
Learning Course Outcome:						
After successful completion of the cour	se, students will able to:					
• Understand the characteristics	of the semantic web techno	logy				
• Understand the concepts of We	eb Science, semantics of kn	owledge resource and ontolog				
 Describe logic semantics and in 	nference with OWL.					
Use ontology engineering appr	oaches in semantic applicat	ions				
Learn about web graph process	sing for various application	s such as search engine,				
community detection						
	Course Contents					
UNIT-I	Introduction	07 Hou	rs			
Introduction to Semantic Web, the Bu	siness Case for the Semanti	c Web, XML and Its Impact				
on the Enterprise.						
UNIT-II	Web Services	08 Hou	rs			
Uses Basics of Web Services SOA	P LIDDL Orchestrating W	eh Services, Securing Web				
Services Grid Enabled and Semantic	Web of Web Services	eo Services, Securing Web				
Services, One Enabled and Semantic Web of Web Services.						
UNIT-III I	Resource Description Fran	nework 08 Hou	rs			
Features, Capturing Knowledge with RDF.						
XML Technologies: XPath, The Style Sheet Family: XSL, XSLT, and XSL FO, XQuery,						
XLink, XPointer, XInclude, XMLBas	se, XHTML, XForms, SVC	j.				

UNIT-IV	Taxonomies and Ontologies	07 Hours				
Overview of Taxonomies, Defining the Ontology Spectrum, Topic Maps, Overview of						
Ontologies, Syntax, St	tructure, Semantics, and Pragmatics, Expressing Ontologies Logic	cally,				
Knowledge Represent	ation.					
UNIT-V	Semantic Web Application	08 Hours				
Semantic Web Servi	ices, e-Learning, Semantic Bioinformatics, Enterprise Applic	ation				
Integration, Knowledg	ge Base.					
Semantic Search T	echnology: Search Engines, Semantic Search, Semantic Se	earch				
Technology, Web Sea	arch Agents, Semantic Methods, Latent Semantic Index Search,	ГАР,				
Swoogle.						
TEXT BOOKS:						
1. The Semantic V	Veb: A Guide to the Future of XML, Web Services, and Knowledg	;e				
Management by	y Michael C. Daconta, Leo J. Obrst, Kevin T. Smith, Wiley					
Publishing, Inc						
2. Peter Mika, Soc	cial Networks and the Semantic Web, Springer					
REFERENCE BOOK	ζδ:					
1. Thinking on the	e Web - Berners Lee, Godel and Turing, Wiley Interscience					
2. The Semantic	Web: A Guide to the Future of XML, Web Services, and					
Knowledge Ma	nagement by Michael C. Daconta, Leo J. Obrst, Kevin T. Smith,					
Wiley Publishin	ng, Inc.					
3. Semantic Web	Technologies, Trends and Research in Ontology Based					
Systems, J. Da	vies, R. Studer, P. Warren, John Wiley & Sons.					
4. Semantic Web	and Semantic Web Services - Liyang Lu Chapman and					
Hall/CRC Publ	ishers, (Taylor & Francis Group)					
5. Information Sha	aring on the semantic Web - Heiner Stuckenschmidt; Frank Van					
Harmelen, Spri	nger Publications.					
6. Programming t	he Semantic Web, T. Segaran, C. Evans, J. Taylor, O'Reilly, SPD.					

INTERNAL ASSESSMENT (IA)

Two internal assessments and an end semester examination to test students' reading and writing skills along with their grammatical and lexical competence. Assessment will include following things:

- Internal Assessment: 25 Marks 1. Attendance
 - 2. Assignments
 - 3. Case Study/Mini Project/Presentation
- Mid Semester Exam: 25 Marks
- End Semester Exam: 50 Marks

CO's-PO's & PSO's MAPPING

Cos	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	3	3	3	2	2	3	3	2
2	5	3	3	1	1	3	3	3
3	1.	2	2	2	2	3	2	1
4	100	2	2	2	2	3	2	2
5	3	2	2	3	3	3	3	2
Avg	3	2.4	2.4	2	2	3	2.6	2

1 - low, 2 - medium, 3 - high, '-' - no correlation

कियापान

BTDS 8310E: CHATBOTS (Open Elective – III) B.Tech. IV Year II Sem.

Course Prerequisites: None Course Objective: • Knowledge on concepts of chatbots and understanding the developer environment bot framework. Learning Course Outcome: After successful completion of the course, students will able to: • Understand basic concepts of chatbots • Analyze different entities in building bots • Understand the concepts of advanced bot building • Discuss different types of chatbot use cases Course Contents UNIT-I Introduction to Chatbots, Messaging Platforms	Teaching Scheme:CreditExamination Scheme:TH: - 4 Hours/WeekTH: 04In Sem. Evaluation: 25 MaMid Sem. Exam: 25 MaMid Sem. Exam: 25 MaEnd Sem. Exam: 50 MaTotal: 100 Ma								
Course Objective: • Knowledge on concepts of chatbots and understanding the developer environment bot framework. Learning Course Outcome: • Intersection of the course, students will able to: • Understand basic concepts of chatbots • Analyze different entities in building bots • Understand the concepts of advanced bot building • Discuss different types of chatbot use cases Course Contents • O7 Hour Definition of chatbots, Journey of Chatbots, Rise of Chatbots, Messaging Platforms	Course Prerequisites: None								
Learning Course Outcome: After successful completion of the course, students will able to: • Understand basic concepts of chatbots • Analyze different entities in building bots • Understand the concepts of advanced bot building • Discuss different types of chatbot use cases Course Contents UNIT-I Introduction to Chatbots 07 Hour Definition of chatbots, Journey of Chatbots, Rise of Chatbots, Messaging Platforms	 Course Objective: Knowledge on concepts of c bot framework. 	hatbots and understanding th	e developer environme	ent					
Course ContentsUNIT-IIntroduction to Chatbots07 HourDefinition of chatbots, Journey of Chatbots, Rise of Chatbots, Messaging Platforms	 Learning Course Outcome: After successful completion of the constant basic concepts of a Analyze different entities in Understand the concepts of a Discuss different types of characteristics 	Purse, students will able to: If chatbots building bots advanced bot building aatbot use cases							
UNIT-IIntroduction to Chatbots07 HourDefinition of chatbots, Journey of Chatbots, Rise of Chatbots, Messaging Platforms	Course Contents								
Definition of chatbots, Journey of Chatbots, Rise of Chatbots, Messaging Platforms	UNIT-I Introduction to Chatbots 07 Hours								
	Definition of chatbots, Journey of	Chatbots, Rise of Chatbots, M	lessaging Platforms						
UNIT-II Setting Up the Developer Environment Botframework 08 Hour	UNIT-II Setting Up	UNIT-II Setting Up the Developer Environment Botframework 08 Ho							
Local Installation, Installing NodeJS, Following the Development Pipeline, Storing Messages in Database.	Local Installation, Installing No Messages in Database.	deJS, Following the Deve	lopment Pipeline, St	oring					
UNIT-III Basics of Bot Building 08 Hour	UNIT-III	08 Hours							
Basics of Bot Building- Intents, Entities	Basics of Bot Building- Intents, En	tities							
UNIT-IV Advanced Bot Building 07 Hour	07 Hours								
Design Principles, Showing Product Results, Saving Messages, Building Your Own Intent Classic	Design Principles, Showing Produc	et Results, Saving Messages, I	Building Your Own Int	ent Classifier					
UNIT-V Business and Monetization 07 Hour	UNIT-V	Business and Moneti	zation	07 Hours					

Analytics, Chatbot Use Cases- Modes of Communication- Business-to-Business (B2B), ChapBusiness- to-Consumer (B2C) Consumer-to-Consumer (C2C) Business-to-Employee (B2E), Employee-to- Employee (E2E), Chatbots by Industry Vertical

TEXT BOOK:

1. Rashid Khan, Anik Das, Build Better Chatbots: A Complete Guide to Getting Started with Chatbots, Apress

REFERENCE BOOKS:

- Drexen Braxley, Chat GPT #1 Bible 10 Books in 1: A Comprehensive Guide to AI: Elevate Your Daily Life, Increase Work Output, Secure Financial Gains, Foster Career Growth, and Cultivate Modern Talents Paperback
- 2. D. Nardo Publications, ChatGPT Made Simple How Anyone Can Harness AI To Streamline Their Work, Study & Everyday Tasks To Boost Productivity & Maintain Competitive Edge By Mastering Prompt Engineering
- 3. Robert E. Miller, Prompt Engineering Bible Join and Master the AI RevolutionsProfit Online with GPT-4 & Plugins for Effortless Money Making!
- 4. Lucas Foster, Chat GPT Bible Developer and Coder Special Edition: Enhancing Coding Productivity with AI-Assisted Conversations.

INTERNAL ASSESSMENT (IA)

Two internal assessments and an end semester examination to test students' reading and writing skills along with their grammatical and lexical competence. Assessment will include following things:

- Internal Assessment: 25 Marks 1. Attendance
 - 2. Assignments
 - 3. Case Study/Mini Project/Presentation
- Mid Semester Exam: 25 Marks
- End Semester Exam: 50 Marks

CO's-PO's & PSO's MAPPING

Cos	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	3	3	3	2	2	3	3	2
2	-	3	3	1	1	3	3	3
3	-	2	2	2	2	3	2	1
4	-	2	2	2	2	3	2	2
5	-	2	2	3	3	3	3	2
Avg	3	2.4	2.4	2	2	3	2.6	2

BTDS 832OE: EVOLUTIONARY COMPUTING (Open Elective – III) B.Tech. IV Year II Sem.

Teaching Scheme:CreditExamination Scheme:TH: - 4 Hours/WeekTH: 04In Sem. Evaluation: 25 MaMid Sem. Exam:25 MaEnd Sem. Exam:50 MaTotal: 100 Ma							
Course Prerequisites: k	Knowledge on a	lgorithms					
Introduce the concepts of	of evolutionary of	computing and various evo	lution algorithms				
Learning Course Outco After successful comple • Appraise the sig • Apply genetic o • Hybridization o • Understand mul	me: tion of the cour gnificance of ev operators and ge of genetic algori lti objective, int	se, students will able to: olutionary computing enetic programming for class thms with other techniques eractive evolutionary algori	ssification problems				
Course Contents							
UNIT-I Optimization, Modelling, and Simulation Problems 07 Hours							
Search Problems, Opt Evolutionary Comp Brief History, The Ins Evolutionary Algor Evolutionary Cycle b Algorithm, Natural Optimization, and Oth	timization Vers uting: The Ori spiration from F ithm: Definiti by Hand, Exam Versus Artifi her Search Algo	us Constraint Satisfaction, agins: The Main Evolution Biology, Evolutionary Com on, Components of Evo ple Applications, The Op cial Evolution, Evolution rithms	The Famous NP Prob nary Computing Meta puting lutionary Algorithms eration of an Evolutionary Computing, Compu	olems uphor, , An onary Blobal			
UNIT-II	Repre	sentation, Mutation, and	Recombination	08 Hours			
Representation and the Representation, Real- Representation, Tree I Population Managem Pressure, Multimodal Popular Evolutionar	e Roles of Varia Valued or Float Representation ient Models, F Problems, Sele- ry Algorithm	ation Operators, Binary Re ing-Point Representation, I Fitness, Selection, and Parent Selection, Survivor S ction, and the Need for Div Variants: Genetic Algori	presentation, Integer Permutation Population Manager Selection, Selection versity thms, Evolution Strate	nent: egies,			
		B. Tech Data Science					

Evolutionary Programming, Genetic Programming, Learning Classifier Systems, Differential Evolution, Particle Swarm Optimization, Estimation of Distribution Algorithms.

UNIT-III	Parameters and Parameter Tuning	08 Hours							
Evolutionary Algorithm Parameters EAs and EA Instances Designing Evolutionary									
Evolutionary Algorithm Parameters, EAs and EA Instances, Designing Evolutionary									
Algorithms, The Tuning Problem, Algorithm Quality: Performance and Robustness, Tuning									
Methods.									
Parameter Control: Introduction, Examples of Changing Parameters, Classification of									
Control Techniques, I	Control Techniques, Examples of Varying EA Parameters.								
UNIT-IV Working with Evolutionary Algorithms 07 Hours									
Working of EA, Performance Measures, Test Problems for Experimental Comparisons,									
Example Applications									
Hybridization with Other Techniques: Memetic Algorithms: Motivation for Hybridizing									
EAs, A Brief Introduction to Local Search, Structure of a Memetic Algorithm, Adaptive									
Memetic Algorithms, Design Issues for Memetic Algorithms, Example Application:									
Multistage Memetic Timetabling									
UNIT-V	Multi Objective Evolutionary Algorithms08 Hours								
Multiobjective Optimization Problems, Dominance and Pareto Optimality, EA									
Approaches to Multiobiective Optimization Example Application: Distributed									
Coevolution of Job S	hop Schedules Constraint Handling: Two Main Types of Const	raint							
Handling Approaches to Handling Constraints Example Application: Graph Three-									
Colouring									
Interactive Evolutionary Algorithms: Characteristics of Interactive Evolution Algorithmic									
Approaches to the Challenges of IEAs Interactive Evolution as Design vs. Optimization									
Example Application: Automatic Elicitation of User Preferences									
Example Application: Automatic Encitation of User Preferences.									
TEXT BOOK:									
1. A. E. Eiben, J. E. Smith, Introduction to Evolutionary Computing, Second Edition, Springer,									
,									
REFERENCE BOOI	KS:								
1. David E. Gold	berg, "Genetic Algorithms in search, Optimization & Machine Lea	arning".							
2. Neural Networ	2. Neural Networks and Fuzzy Logic System by Bart Kosko, PHI Publications.								

CO's-PO's & PSO's MAPPING

INTERNAL ASSESSMENT (IA)

Two internal assessments and an end semester examination to test students' reading and writing skills along with their grammatical and lexical competence. Assessment will include following things:

- Internal Assessment: 25 Marks 1. Attendance
 - 2. Assignments

3. Case Study/Mini Project/Presentation

- Mid Semester Exam: 25 Marks
- End Semester Exam: 50 Marks

Cos	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
1	3	3	3	2	2	3	3	2
2) - Jij	3	3	1	1	3	3	
3	69	2	2	2	2	3	2	1
4	12	2	2	2	2	3	2	2
5	- 1	2	2	3	3	3	3	2
Avg	3	2.4	2.4	2	2	3	2.6	2

(1) या कितावाम् म पण्डिगः)