

DEPARTMENT OF BOTANY SAVITRIBAI PHULE PUNE UNIVERSITY, PUNE

M.Sc. Botany Syllabus

Based on National Education Policy 2020 (NEP)

(To be implemented from Academic Year 2023-24)

Title of the Course: M.Sc. Botany
 Faculty: Science and Technology

3. Implementation period: For M.Sc. Part-I: August 2023 onwards

For M.Sc., Part-II: August 2024 onwards

4. Preamble:

Plants have been significant throughout the history of human evolution. Botany, a branch of science, helps us understand the plant kingdom. The human population has been projected to reach 9 billion in the year 2045. The study of plants has therefore become paramount with reference to their utilization as food and medicine. 'Botany with a twist' would be the new *mantra*. Climate change and urbanization has influenced fisheries, animal husbandry, agriculture, and forest produce. Water shortages, pollution, and irregular monsoons added, make the future implications appear bleak. Currently, only 12 plants under cultivation account for 75% of all the human calories. However, there are about 5,500 different varieties of edible plants. Botanists need to study these plants and use them to their utmost potential by gaining theoretical and applied knowledge. Integrating classical and modern botany to solve problems faced by the real world is a new challenge.

The M.Sc. (Botany) syllabi has been redesigned under the aegis of the National Education Policy (2020). Major emphasis has been laid on skill development through hands-on training. Industry and entrepreneurship-oriented skills have been emphasized. The teaching-learning process has been enhanced in a wholesome manner and novel examination and evaluation parameters have been included. On-Job-Training (OJT) has been made mandatory. This will allow students to be aware of on-ground realities and requisites from their first semester of the master's program. For example, during this training, students can directly interact with businessmen/technocrats. It is also envisaged that through these meaningful interactions, many students will develop interest to pursue their Ph.D. degrees.

The curriculum has a judicious mix of 'core' courses essential to understand the 'essence' of botany and a number of 'elective' courses. The 'core' courses involve taxonomy of lower and higher forms, plant biochemistry and physiology, plant genetics, plant development, plant ecology, plant cell and molecular biology and a number of 'electives' spanning across botany and its interfaces with various disciplines as outlined in the structure to cover skill-based and applied aspects of botany.

This structure would help students align to the latest trends in research and technology at the interphase of agriculture, environmental sciences, pharmaceutical sciences and genetic engineering. This would attract students towards pure science disciplines and further help enhance their employability skills. The NEP structure envisages that a student can select 'elective' courses across any discipline and we feel that this would help break the silos and invigorate 'botany' as a whole, fostering many inter-disciplinary collaborations. It will also give an impetus to study the vast biodiversity in India.

We believe that such a course design would make the study of botany, a joyful and vibrant experience.

COURSE STRUCTURE FOR M. Sc. BOTANY PART I (SEMESTER I AND II)

Course Code	Course Name	Credits (44)
	Credit Framework for Semester-I	
	Major Core [10 (T) + 4 (P)]	
BOT 501 MJ	Taxonomy-I (Algae and Fungi)	2
BOT 502 MJ	Taxonomy-II (Bryophytes, Pteridophytes and	3
	Gymnosperms)	
BOT 503 MJ	Plant Biochemistry and Physiology	3
BOT 504 MJ	Plant Genetics	2
BOT 505 MJP	Practicals based on BOT MJ501/502	2
BOT 506 MJP	Practicals based on BOT MJ503/504	2
	Total Major Core Credits	14
	Major Elective (any one)	
	,	
BOT 510 MJ	Algal Bioprospecting	
BOT 511 MJ	Plant Pathology	
BOT 512 MJ	Medicinal Mushroom Cultivation	
BOT 513 MJ	Post-harvest Technology	
BOT 514 MJ	Plant Breeding	
BOT 515 MJ	Industrial Botany	2
BOT 516 MJ	Cultivation and Utilization of Medicinal Plants	2
BOT 517 MJP	Practical Based on BOT 510 MJ	2
BOT 518 MJP	Practical Based on BOT 511 MJ	
BOT 519 MJP	Practical Based on BOT 512 MJ	
BOT 520 MJP	Practical Based on BOT 513 MJ	
BOT 521 MJP	Practical Based on BOT 514 MJ	
BOT 522 MJP	Practical Based on BOT 515 MJ	
BOT 523 MJP	Practical Based on BOT 516 MJ	
	Total Major Elective Credits	4
BOT 541 MN	Research Methodology	2
BOT 542 MNP	Practicals Based on BOT 541 MN	2
	Total Research Methodology Credits	4
	Total Credits Semester-I	22
	Credit Framework for Semester-II	
	Major Core [10 (T) + 4 (P)]	
BOT 551 MJ	Taxonomy-III (Angiosperms)	2
BOT 552 MJ	Plant Development-I	2
BOT 553 MJ	Plant Ecology	2
BOT 554 MJ	Cell Biology	2
BOT 555 MJ	Molecular Biology-I	2

BOT 556 MJP	Practicals based on BOT 551, 552 and 553 MJ	2
BOT 557 MJP	Practicals based on BOT 554 and 555 MJ	2
	Total Major Core Credits	14
BOT 560 MJ	Plant Tissue Culture	2
BOT 561 MJ	Plant Organism Interaction	
BOT 562 MJ	Plant Immunity	
BOT 563 MJ	Organic Farming	
BOT 564 MJ	Carbon Credit and Environment Impact Assessment	
BOT 565 MJ	Millet-based Nutraceuticals	
BOT 566 MJ	Aromatic Plants	
BOT 567 MJP	Practicals based on BOT 560 MJ	2
BOT 568 MJP	Practicals based on BOT 561 MJ	
BOT 569 MJP	Practicals based on BOT 562 MJ	
BOT 570 MJP	Practicals based on BOT 563 MJ	
BOT 571 MJP	Practicals based on BOT 564 MJ	
BOT 572 MJP	Practicals based on BOT 565 MJ	
BOT 573 MJP	Practicals based on BOT 566 MJ	
	Total Major Elective Credits	4
BOT 581 OJT/FP	On Job Training (OJT)/Field Project (FP)	4
	Total OJT/FP Credits	4
	Total Credits Semester-II	22

Course Code	Course Name	Credits
	Credit Framework for Semester-III	
	Major Core $[10 (T) + 4 (P)]$	
BOT-601-MJ	Molecular Biology-II	2
BOT-602-MJ	Tools and Techniques in Botany-I	2
BOT-603-MJ	Climate change and plants	2
BOT-604-MJ	Plant genetic engineering	2
BOT-605-MJ	Plant Development-II	2
BOT-606-MJP	Practicals based on MB-II & TTB-I	2
BOT-607-MJP	Practicals based on climate change and plants, plant	2
DO1-00/-WIJF	genetic engineering & plant development - II	2
	Total Major Core Credits	14
	Major Elective (any one)	
BOT-610-MJ(A)	Advanced Phycology- I	
BOT-610-MJ(B)	Advanced Mycology-I	
BOT-610-MJ(C)	Angiosperms systematics - I	
BOT-610-MJ(D)	Plant Ecology-I	_
BOT-610-MJ(E)	Advanced Plant Physiology-I	2
BOT-610-MJ(F)	Pharmacognosy – I	
BOT-610-MJ(G)	Advanced Plant Genetics and Breeding-I	
BOT-610-MJ(H)	Plant Biotechnology- I	
BOT-611-MJP(A)	Practicals based on BOT-610-MJ(A) Advanced Phycology - I	2

BOT-611-MJP(B)	Practicals based on BOT-610-MJ(B) Advanced Mycology-I	
BOT-611-MJP(C)	Practicals based on BOT-610-MJ(C) Angiosperms systematics -I	
BOT-611-MJP(D)	Practicals based on BOT-610-MJ(D) Plant Ecology-I	
BOT-611-MJP(E)	Practicals based on BOT-610-MJ(E) Advanced Plant Physiology -I	
BOT-611-MJP(F)	Practicals based on BOT-610-MJ(F) Pharmacognosy-I	
BOT-611-MJP(G)	Practicals based on BOT-610-MJ(G) Advanced Plant Genetics and Breeding- I	
BOT-611-MJP(H)	Practicals based on BOT-610-MJ(H) Plant Biotechnology- I	
	Total Major Elective Credits	4
BOT-631-RP	Research Project	4
	Total Credits for Semester-III	22

COURSE STRUCTURE FOR M. Sc. BOTANY PART II (SEMESTER III AND IV)

Course Code	Course Name	Credits
Credit Framework for Semester-IV		
	Major Core [8 (T) + 4 (P)]	
BOT-651-MJ	Bioinformatics and Biostatistics	2
BOT-652-MJ	Plant Evolution	2
BOT-653-MJ	Tools and Techniques in Botany-II	2
BOT-654-MJ	Biodiversity, conservation & utilization	2
BOT-655-MJP	Practicals based on Bioinformatics and Biostatistics and Plant Evolution	2
ВОТ-656-МЈР	Practicals based on TTB-II and Biodiversity, conservation & utilization	2
	Total Major Core Credits	12
	Major Elective (any one)	
BOT-660-MJ(A)	Advanced Phycology- II	
BOT-660-MJ(B)	Advanced Mycology-II	
BOT-660-MJ(C)	Angiosperms systematics - II	
BOT-660-MJ(D)	Plant Ecology-II	
BOT-660-MJ(E)	Advanced Plant Physiology-II	2
BOT-660-MJ(F)	Pharmacognosy – II	
BOT-660-MJ(G)	Advanced Plant Genetics and Breeding-II	
BOT-660-MJ(H)	Plant Biotechnology- II	
BOT-661- MJP(A)	Practicals based on BOT-610-MJ(A) Advanced phycology - II	2
BOT-661-MJP(B)	Practicals based on BOT-610-MJ(B) Advanced Mycology-II	<i>L</i>

BOT-661-MJP(C)	Practicals based on BOT-610-MJ(C) Angiosperms systematics -II	
BOT-661- MJP(D)	Practicals based on BOT-610-MJ(D) Plant Ecology-II	
BOT-661-MJP(E)	Practicals based on BOT-610-MJ(E) Advanced Plant Physiology -II	
BOT-661-MJP(F)	Practicals based on BOT-610-MJ(F) Pharmacognosy-II	
BOT-661-	Practicals based on BOT-610-MJ(G) Advanced Plant	
MJP(G)	Genetics and Breeding -II	
BOT-661-	Practicals based on BOT-610-MJ(H) Plant	
MJP(H)	Biotechnology- II	
	Total Major Elective Credits	4
BOT-681-RP	Research Project	6
	Total Credits for Semester-IV	22

SEMESTER I: CORE COURSES (Mandatory)

BOT 501 MJ Taxonomy-I (Algae and Fungi) (2 Credits: 30 Lectures)

Credi	t 1:Algae	15L
1.	Botanical nomenclature: International code of nomenclature for algae, fungi, and plants (ICN), classification system in algae	2L
2.	Cyanophyta: Introduction, thallus organization, cell ultrastructure, heterocyst development and function	2L
3.	Endosymbiosis and origin of eukaryotic algae	1L
4.	Chlorophyta: Structure and evolution of thallus, reproduction and life cycle with reference to orders of green algae	3L
5.	Charophyta: Thallus structure, reproduction and life cycle	1L
6.	Ochrophyta (Phaeophyceae): Thallus structure, reproduction and life cycle	2L
7.	Rhodophyta: Thallus structure, reproduction and life cycle	2 L
8.	Bacillariophyta: Thallus structure, reproduction and life cycle	1L
9.	Euglenophyta: Thallus structure, reproduction and life cycle	1L
Credi	t 2: Fungi	15L
1.	Characters of fungi used for classification, system of classification by Ainsworth	2L
2.	Myxomycotina: Structure, Life cycle patterns of major classes	2 L
3.	Mastigomycotina: Structure, Life cycle patterns of major classes	2L
4.	Zygomycotina: Structure, Thallus organization, and Evolution of sexual reproductive structures	2 L
5.	Ascomycotina: Thallus organization, Centrum development, and Different types of ascocarps	2 L
6.	Basidiomycotina: Tissue differentiation, Development of basidia and basidiospore	2 L
7.	Deuteromycotina: Types of conidial ontogeny and fruiting body organization	1L
8.	Heterothallism, Heterokaryosis and parasexual cycle	1L
9.	D	1L
7.	Recent concept of origin and molecular phylogeny in fungi	1L

Algae:

- 1. Archibald, J. M., Simpson, A. G. B. and Slamovits, C. H. (eds.) (2017). *Handbook of the protists* (2nd ed.). Springer International Publishing AG, pp. 1657.
- 2. Barsanti, L. and Gualtieri, P. (2014). *Algae-anatomy, biochemistry, and biotechnology* (2nd ed.). CRC Press, Boca Raton, pp. 326.
- 3. Bellinger, E. G. and Sigee, D. C. (2015). *Freshwater algae: Identification, enumeration, and use as bioindicators* (2nd ed). John Wiley & Sons, Ltd., UK, pp. 275.
- 4. BrodieJ. and Lewis, J. (eds.) (2007). Unravelling the algae: the past, present, and future of algal systematics(The Systematics Association Special Volume Series 75). CRC Press, Boca Raton, pp. 376.
- 5. Cole, K. M. and Sheath, R. G. (1990). *Biology of the red algae*. Cambridge University Press, USA, pp. 503.
- 6. Desikachary, T. V. (1959). Cyanophyta. ICAR, New Delhi, pp. 686.
- 7. Graham, L. E. and Wilcox, L. W. (2000). Algae. Prentice Hall, Inc., NJ, pp. 640.
- 8. Jha, B., Reddy, C. R. K., Thakur, M. C. and Rao, M. U. (2009). Seaweeds of India-The diversity, and distribution of seaweeds of Gujarat coast(Development in applied phycology 3). Springer, Dordrecht, pp. 215.
- 9. Krishnamurthy, V. (2000). *Algae of India &neighbouring countries: I. Chlorophycota*. Oxford & IBH, New Delhi, pp. 222.
- 10. Lee, R. E. (2008). *Phycology* (4th ed.). Cambridge University Press, NY, pp. 547.
- 11. Misra, J. N. (1966). *Phaeophyceae in India*. ICAR, New Delhi, pp. 203.
- 12. Pereira, L. and Neto, J. M. (eds.) (2014). *Marine algae: Biodiversity, taxonomy, environmental assessment, and biotechnology*. CRC Press, Boca Raton, pp. 390.
- 13. Rai, A. N. (ed.) (2018). *Handbook of symbiotic cyanobacteria*. CRC Press, Boca Raton, pp. 253.
- 14. Sahoo, D. and Seckbach, J. (2015). *The algae world(Cellular origin, life in extreme habitats and astrobiology 26)*. Springer Science, Dordrecht, pp. 598.
- 15. Sarma, T. A. (2013). *Handbook of cyanobacteria*. CRC Press, Boca Raton, pp. 802.
- 16. Simpson, M. G. (2010). *Plant systematics* (2nd ed.). Elsevier Inc., NY, pp. 740.
- 17. Singh, P. K., Kumar, A., Singh, V. K. and Shrivastava, A. K. (eds.) (2020). *Advances in cyanobacterial biology*. Elsevier Inc., UK, pp. 403.
- 18. Turland, N. (2013). *The code decoded: A user's guide to the International Code of Nomenclature for algae, fungi, and plants* (Regnum Vegetabile 155). Koeltz Scientific Books, Germany, pp. 169.
- 19. Wehr, J. D., Sheath, R. G. and Kociolek, J. P. (eds.) (2015). *Freshwater algae of North America: Ecology and classification* (2nd ed.). Elsevier Inc., USA, pp. 1050.

Fungi:

- **1.** Alexopoulus, C. J., Minms, C. W. and Blackwell, M. (1999). (4th Ed.) *Introductory Mycology*. Wiley, New York. Alford, R. A.
- 2. Deacon, J. W. (2006). Fungal Biology (4th Ed.) Blackwell Publishing, ISBN. 1405130660.
- **3.** Kendrick, B. (1994). *The fifth kingdom* (paperback), North America, New York, Publisher: 3rd Ed., ISBN-10: 1585100226.
- **4.** Kirk et al., (2001). Dictionary of the fungi, 9th Ed., published Wallingford: CABI, ISBN: 085199377X.

- **5.** Mehrotra, R. S. and Aneja, K.R. (1990). *An Introduction to Mycology*. New age Publishers, ISBN 8122400892.
- **6.** Miguel U., Richard, H. and Samuel, A. (2000). Illustrated dictionary of the Mycology, Elvira Aguirre Acosta, Publisher: St. Paul, Minn: APS press, ISBN 0890542570.
- **7.** Webster, J. and Rpland W. (2007). *Introduction to Fungi* (3rd Ed.), CambridgeUniversity Press, 978-0-521-80739-5.

BOT 502 MJ Taxonomy-II (Bryophytes, Pteridophytes and Gymnosperms) (3 Credits: 45 Lectures)

Credit 1:	Bryophytes	15L
1	Introduction, general characteristics, distribution, diversity and economic	3L
	importance of bryophytes	
2	Classification of bryophytes	1L
3	Distribution, morphology, anatomy and reproductive studies, interrelationships and evolutionary trends in the following groups- (a) Hepaticae: Sphaerocarpales, Calobryales, Takkakiales, Marchantiales, Jungermanniales (b) Anthocerotae: Anthocerotales	4L
	(c) Musci: Sphagnales, Andraeales, Polytrichales, Buxbaumiales, Funariales	1L 5L
4	Fossil bryophytes, recent additions of bryophytes in the Indian flora	1L
Credit 2:	Pteridophytes	15L
1	Introduction, diversity, affinities with gymnosperms and importance	2L
2	Systems of classification	1L
3	Evolution: telome, steles, sori, gametophytes	2L
4	Origin and evolution	2L
5	Distribution, morphology, anatomy, reproduction and interrelationship of following orders— Psilotales, Lycopodiales, Isoetales, Equisetales, Ophioglossales, Marratiales, Osmundales, Filicales, Marsileales, Salviniales	7L
6	Alternation of generations, apogamy, apospory and heterospory	1L
Credit 3: 0	Gymnosperms	15L
1	Characters, diversity, classification systems and affinities with other groups	2L
2	Distinguishing featuresofProgymnosperms, Pteridospermales, Cycadeoidales, Cycadales, Caytoniales, Glossopteridales, Pentoxylales, Cordiatales and Voltziales	2L
3	Morphology, anatomy, sporogenesis, gametogenesis, embryology, interrelationship betweenCycadales and Ginkgoales	2L
4	Morphology, anatomy, reproduction and interrelationship of Pinales/Coniferales, Taxales, Gnetales, Ephedrales and Welwitschiales	6L
5	Seed development in Gymnosperms	2L
6	Economic importance and taxonomic updates	1L

Bryophytes

- 1. Cavers, F. (1976). *The inter relationships of the bryophyte*. S.R. Technic, Ashok Rajpath, Patna.
- 2. Chopra, R. N. and Kumar, P. K. (1988). *Biology of bryophytes*. John Wiley & Sons, New York, NY.
- 3. Kashyap, S. R. (1929). *Liverworts of The Western Himalayas And ThePanjab Plain Part 1* Chronica Botanica New Delhi.
- 4. Kashyap, S. R. (1932). *Liverworts of the Western Himalayas and the Panjab plain* (illusterated): Part 2 The ChronicaBoanica New Delhi. Bryophya central Book Depot.
- 5. Prem puri (1981). *Bryophytes: Morphology, Growth and Differentiation*, Atmaram and Sons, New Delhi.
- 6. Udar, R. (1975). Bryology in India: Chronica Botanica Co., [c], New Delhi.
- 7. Udar, R. (1970). Introduction to bryphytaShashidhar MalaviyaPrakashan Lucknow
- 8. Watson, E. V. (1971). *Structure and life of bryophytes 3rd*, Hutchinson University Library London.
- 9. Smith, G. M. (1955) Cryptogamic Botany Bol. II
- 10. Watson, E.V. (1963): British Mosses and Liverworts
- 11. Watson, E.V. (1964): The Structure and life of Bryopytes
- 12. Goffinet, B. (2008). *Bryophyte biology*. Cambridge University Press.
- 13. Shaw, A. J., &Goffinet, B. (Eds.). (2000). Bryophyte biology. Cambridge University Press.
- 14. Tuba, Z., Slack, N. G., & Stark, L. R. (Eds.). (2011). *Bryophyte ecology and climate change*. Cambridge University Press.

Pteridophytes

- 1. Rashid A. (1999) An Introduction to Pteridophyta. Vikas Publishing house Pvt.Ltd. New Delhi.
- 2. Sharma O.P. (1990) Textbook of Pteridophyta. Mac Millan India Ltd., Delhi.
- 3. Smith G.M. (1955) Cryptogamic Botany, Vol. II Mc Grew Hill Book Company Inc.
- 4. Sporne K.R. (1986) The morphology of Pteridophytes. Hutchinson University Press, London.
- 5. Stewart W.N. and Rothwell G.W. (2005) Paleobotany and the Evolution of plants, 2ndEdn. Cambridge University Press.
- 6. SundaraRajan S. (1999) Introduction to Pteridophyta. New Age International Publishers, New Delhi.
- 7. Parihar N.S. (1977) Biology and morphology of the Pteridophytes. Central Book Depot.

Gymnosperms

- 1. Agashe S.N. (1995) Paleobotany, Oxford and IBH Publ. Co.Pvt. Ltd., New Delhi.
- 2. Arnold A.C. (2005 Repr.) An Introduction to Paleobotany, Agrobios (India), Jodhpur.
- 3. Bhatnagar S.P. and Motia A. (1996) Gymnosperms. New Age International, New Delhi.
- 4. Biswas C. and Johri B.M. (1997) Gymnosperms. Narsa Publishing House, New Nelhi.
- 5. Chamberlain C.J. (1986) Structure and Evolution. CBS Publishers, New Delhi.
- 6. Eames E.J. (1983) Morphology of Vascular Plants. Standard University Press.
- 7. Johari M., Sneh Lata and Kavita Tyagi (2012) A Textbook of Gymnosperms. Dominant Publishers and Distributors, New Delhi
- 8. Rashid A. (1999) An Introduction to Pteridophyta. Vikas Publishing house Pvt.Ltd. New Delhi.
- 9. Sharma O.P. (1990) Textbook of Pteridophyta. Mac Millan India Ltd. Delhi.
- 10. Singh V.P. (2006) Gymnosperms (Naked seed plants): Structure and Development, Sarup and Sons, New Delhi.

- 11. Smith G.M. (1955) Cryptogamic Botany Vol. II Mc Grew Hill.
- 12. Sporne K.R. (1986) The morphology of Pteridophytes. Hutchinson University Press. London.
- 13. Stewart W.N. and Rothwell G.W. (2005) Paleobotany and the Evolution of plants, 2ndEdn. Cambridge University Press.
- 14. SundaraRajan S. (1999) Introduction to Pteridophyta. New Age International Publishers, New Delhi.
- 15. Surange K.R. (1966) Indian fossil Pteridophytes. Council of Scientific and Industrial research.
- 16. Parihar N.S. (1976) Biology and morphology of the Pteridophytes. Central Book Depot.

BOT 503 MJ Plant Biochemistry and Physiology (3 Credits: 45 Lectures)

Credit 1	Enzymology, biomolecules and mineral nutrition	15L
1	Structure and properties of water, ionization of water, pH, buffers	13L
2	Bioenergetics: Free energy, changes in free energy during chemical reactions,	1L
	entropy and enthalpy, high energy compounds	
3	Enzymology: Classification and properties of enzymes, Isoenzymes,	3L
	coenzymes and cofactors, coupled reactions. Enzyme kinetics-substrate	
	concentration and rate, competitive and non-competitive inhibitors. Covalent and allosteric regulation	
4	Biosynthesis and metabolism of amino acids, carbohydrates, fatty acids and	3L
	lipids	
5	Mineral nutrition of plants: Cation-anion exchange capacity of soil, types of	3L
	ion transporters, role of membrane potential in ion transport, passive and	
	active transport, high and low affinity transporters	
6	Nitrogen: Uptake, assimilation and remobilization in plants, biological	2L
	nitrogen fixation	
7	Phloem structure and function: Source and sink relationship, translocation of	2L
	photoassimilates, phloem loading and unloading, composition of phloem sap	
Credit 2:	Water uptake, photosynthesis and respiration	15L
1	Water uptake, transport and transpiration, stomatal physiology	2L
2	Photosynthesis: Photosynthetic pigments, organization of photosynthetic	4L
	electron transport system, fluorescence and photochemistry, oxygen	
	evolution, NADP Reduction, photophosphorylation	
3	Reduction of carbon dioxide: RuBPcase and Calvin cycle, photorespiration.	4L
	CO ₂ concentrating mechanisms in C4 and CAM plants	
4	Respiration: Glycolysis, citric acid cycle, pentose phosphate pathway,	5L
	organization of mitochondrial electron transport system, ATP synthesis,	
	respiratory control, anaerobic respiration	
Credit 3:	Plant hormones and secondary metabolites	15L
1	Plant growth hormones: Structure, biosynthesis and metabolism of auxins,	8L
	cytokinins, gibberellins, abscisic acid and ethylene, physiological role of	
	hormones	
2	Photoperiodism and vernalization	3L
3	Secondary metabolite biosynthetic pathways: Terpenoids, phenolics, alkaloids	4L
		L

- 1. Berg J.M., Tymoczko J.L., Stryrer L. (2002) Biochemistry. 5th Ed. Wlt. Freeman and Company, New York.
- 2. Buchanan B.B., Gruissem W., Jones R.L. (2000) Biochemistry and Molecular Biology of Plants. IK International, Mumbai.
- 3. Davis P. J. (Eds.) (2004) Plant Hormones. Kluwer Academic Publishers, Dordrecht, Netherlands.
- 4. Goodwin T.W., Mercer E.I. (1998) Introduction to Biochemistry. CBS Publishers, New Delhi.
- 4. Heldt H. W. (2004) Plant Biochemistry. Academic Press, California.
- 5. Lawlor D.W. (2001) Photosynthesis in C3 and C4 Pathway.3rd Ed. Viva. New Delhi.
- 6. Nelson David and Cox Michael. (2007) Lehninger Principles of Biochemistry.W.H.Freeman and Company. New York.
- 7. Lincoln Taiz and Eduardo Zeiger (2010) Plant Physiology, 5th edition. Sinauer Associates, Inc. Publishers. Sunder land, USA.

BOT 504 MJ Plan	t Genetics
(2 Credits: 30 L	ectures)

Credit 1: Qu	alitative and quantitative genetics	15L
1	Mendelian principles and extensions: Co-dominance, incomplete	3L
	dominance, pleiotropy, genomic imprinting, penetrance, expressivity	
	and phenocopy, sex-limited and sex-influenced characters	
2	Inheritance of complex traits: Polygenic inheritance, heritability and its measurement	3L
3	Karyotype analysis, evolution and applications	2L
4	Structural alterations of chromosomes, complex translocation	3L
	heterozygotes, Robertsonian translocations and their genetic	
	implications	
5	Population genetics: Allele frequencies and genotype frequencies,	4 L
	random mating and Hardy-Weinberg principle and its implications, rate	
	of change in gene frequency through natural selection, mutation,	
	migration and random genetic drift	
Credit 2: Mi	crobial genetics and linkage mapping	15L
1	Mutant phenotypes, methods of genetic transfers in bacteria:	3L
	transformation, conjugation and transduction, mapping of bacterial	
	genome by interrupted mating	
2	Phage genetics: Phage mutants, Lytic and lysogenic cycles in phages,	4L
	genetic recombination in phages, mapping bacteriophage genome, fine	
	structure analysis of <i>rII</i> gene in T4 bacteriophage	
3	Linkage and mapping in eukaryotes: Linkage and crossing over,	8L
	recombination, Linkage maps, LOD score for linkage testing, mapping	
	by 3-point test cross, tetrad analysis in yeast and <i>Neurospora</i>	

- 1. Atherly, A.G., Girton, J.R. and Mcdonald, J. F. (1999) The science of genetics. Sauders College Pub., Fort Worth, USA.
- 2. Hartl, D.L., Jones E.W. (2001). Genetics: Principle and analysis (4thedn) Jones and Barlett Pub., USA.

- 3. Khush, G S (1973) Cytogenetics of Aneuploids. Academic press New York, London.
- 4. Lewin, B. Genes VIII. Oxford, University press. New York, USA.
- 5. Russel, P.J. 1998. Genetics (5thedn) The Benjamin/Cummins Pub. Co., Inc. USA.
- 6. Snustad, D.P. and Simmons, M.J. 2000. Principles of genetics (4thedn). John Wiley and Sons, Inc., USA.
- 7. Cronan J., Freifelder, D. and Maloy S. R. (2008) Microbial Genetics. Narosa Publ., India
- 8. Strickberger, M.W: Genetics (4thedn). Mcmillan Publishing company, New York, USA.
- **9.** Griffiths, A.J.F and Gilbert, W.M (2ndedn). Modern genetic analysis. W.H. Freeman and Company, New York, USA.

BOT 505 MJP Practicals Based on: BOT MJ 501 and BOT MJ 502 (2 Credits: 15 Practicals)

	Practicals based on Algae	3P
1	Morphology and classification of Cyanophyta	1P
2	Morphology and classification of Chlorophyta	1P
3	Morphology and classification of Ochrophyta (Phaeophyceae) and Rhodophyta	1P
	Practicals based on Fungi	3P
1	Comparative morphological and anatomical characters in Myxomycota, Zygomycotina and Mastigomycotina	1P
2	Comparative morphological and anatomical characters in Ascomycotina, Basidiomycotina and Deuteromycotina	1P
3	ConstrMJion of Phylogenetic tree using MEGA software	1P
	Practicals based on Bryophytes	3P
1	Taxonomic studies in Marchantiales: <i>Asterella, Plagiochasma, Targionia and Cyathodium</i> (any two)	1P
2	Taxonomic studies in Musci: <i>Sphagnum, Polytrichum, Pogonatum, Bryum</i> (any two)	1P
3	Invivo/ in vitro culture of Bryophytes	1P
	Practicals based on Pteridophytes	3P
1	Taxonomic studies in Psilotales: <i>Psilotum, Tmesipteris</i> and Lycopodiales: <i>Lycopodium</i> (any two)	1P
2	Taxonomic studies in Filicales: Anemia, Lygodium, Gleichenia, Ceratomium, Goniopteris, Phymotodes, Pteris, Acrostichum, Blechnum, Platycerum, Pteridum, Pleopeltis, Cheilanthus, Ceratopteris, Athyrium, Adiantum (any two)	1P
3	Demonstration of Azolla cultivation	1P
	Practicals based on Gymnosperms	3P
1	Taxonomic studies inCycadales and Ginkgoales	1P
2	Taxonomic studies in Coniferales	1P
3	Taxonomic studies inGnetales and Ephedrales	1P

BOT 506 MJP Practicals based on BOT MJ 503and BOT MJ 504 (2 Credits: 15 Practicals) Practicals based on BOT MJ 503 Plant Biochemistry and Plant Physiology Estimation of soluble proteins in germinating and non-germinating 1 1P seeds by Lowry/Bradford method 2 Estimation of total amino acids in seeds 1P 3 Estimation of ascorbic acid in ripe and unripe fruits 1P Estimation of cytokinins using test system of greening of cotyledons 4 2P Transduction of alpha-amylase activity by GA₃ in cereal grains 5 2P Assay of nitrate reductase activity in plant tissues 2P 6 7 Effect of substrate concentration on K_m and V_{max} of invertase 2P 8 Effect of pH on enzyme activity 1P 9 Estimation of reducing sugars in developing fruits 2P 10 2P Estimation of starch in storage tissue 11 Estimation of alpha-amylase activity in germinating seeds 2P 12 Estimation of invertase activity in plant tissues 2P Practicals based on BOT 504 MJ Plant Genetics Preparation of somatic C- metaphase chromosomes and karyotype 2P 1 analysis in *Allium cepa/Aloe* sp. Study of meiotic configurations in Zea mays/Allium cepa, Rhoeo 2P 2 sp./Aloe sp., Tradescantia ssp. (prophase I, chiasma analysis) Study of chromosomal aberrations in irradiated plant material 3 1P 4 Study of polygenic inheritance 1P Problems based on Mendelian inheritance and population genetics and 2**P** 5 linkage, estimation of gene and allele frequencies Tetrad analysis in Neurospora crassa 1P 6 Handling of Drosophila melanogaster for study of monohybrid, 7 1P dihybrid, and sex-linked inheritance Study of monohybrid and dihybrid crosses and genetic interactions 8 1P 9 Linear differentiation of chromosomes through banding techniques: 2P

	C-Banding/G-Banding/Q-Banding	
10	PTC testing ability/tongue rollers-non rollers in humans	1P

SEMESTER I: ELECTIVE COURSES		
Sr. No.	Topics Covered	Number of Lectures/ Practicals
	BOT 510 MJ Algal Bioprospecting (2 Credits: 30 Lectures)	
Credit 1: Cu	ltivation of Micro-and Macroalgae	15L
1	Isolation methods, purification and maintenance of microalgae	2L
2	Growth curve studies, measurement of algal growth	2L
3	Continuous culture system, scaling-up at laboratory and open pond system	3L
4	Photobioreactors and biomass production in closed system	1L
5	Harvesting and drying of algal biomass	2L
6	Economics of microalgal production	1L
7	Cultivation of commercially important algae: Spirulina, Chlorella,	4L
	Porphyra, Kappaphycus, Gracilaria, Laminaria	
Credit 2: Bio	oprospecting of Micro-and-Macroalgae	15L
1	Algae as food and nutritional supplements (SCP, PUFA, etc.), animal feed	2L
2	Blue green algal biofertilizer, seaweed liquid fertilizer (SLF) and their applications in agriculture	2L
3	Algal pigments of commercial value	1L
4	Sources of phlorotannins and their commercial applications	1L
5	Biofuel (biodiesel, hydrogen and bioethanol)production from algae	2L
6	Algal polysaccharides: Agar, alginates, carrageenan and their commercial applications	3L
7	Diatomite and its commercial applications	1L
8	Carbon sequestration by algae	1L
9	Algae in waste water treatment (Phycoremediation)	1L
10	Intellectual property rights associated with algal bioprospecting	1L

- 1. Andersen, R. A. (ed.) (2005). Algal culturing techniques. Elsevier Academic Press, pp. 578.
- 2. Barsanti, L. and Gualtieri, P. (2006). Algae: anatomy, biochemistry and biotechnology. CRC Press, pp. 301.
- 3. Benson, E. E. (ed.) (1999). Plant conservation biotechnology. Taylor & Francis, pp. 309.
- 4. Bhattacharya, D (ed). (1997). Origin of algae and their plastids. Springer-Verlag, New York, pp. 287. 5.
- 5. Bux, F. (ed.) (2013). Biotechnological applications of microalgae- biodiesel and value added products. CRC Press, pp. 227.

- 6. Caldwell, M. M., Heldmaier, G., Jackson, R. B., Lange, O. L., Mooney, H. A., Schulze, E. D. and Sommer, U. (eds.) (2012). Seaweeds biology-Novel insights into ecophysiology, ecology and utilization. Springer-Verlag, pp. 510.
- 7. Dominguez, H. (ed.) (2013). Functional ingredients from algae for foods and nutraceuticals. Woodhead Publishing Ltd., UK., pp. 734.
- 8. Evangelista, V., Barsanti, L., Frassanito, A. M., Passarelli, V. and Gualtieri, P. (eds.) (2008). Algal toxins: nature, occurrence, effect and detection. Springer, pp. 399.
- 9. Gonzalez-Fernandez, C. and Munoz, R. (eds.) (2017). Microalgae-based biofuels and bioproducts. Woodhead Publishing, UK. Pp. 540.
- 10. Gouveia, L. (2011). Microalgae as a feedstock for biofuels. Springer, New York, pp. 69.
- 11. Gupta, R. K. and Pandey, V. D. (eds.) (2007). Advances in applied Phycology. Daya Publishing House, Delhi, pp. 299.
- 12. Kim, S. K. (ed) (2011). Marine medicinal foods: Implications and applications macro and microalgae. Elsevier Inc., pp. 466.
- 13. Kim, S. K. (ed.) (2012). Handbook of marine macroalgae-biotechnology and applied Phycology. Wiley Blackwell, pp. 567.
- 14. Kristiansen, J. (ed.) (1996). Biogeography of freshwater algae. Springer Science+Business Media, pp. 161.
- 15. Leon, R., Galvan, A. and Fernandez, E. (eds.) (2007). Transgenic microalgae as green cell factories. Landes Biosciences and Springer Science+Business Media, LLC, U.S.A., pp. 128.
- 16. Lobban, C. S. and Harrison, P. J. (1997). Seaweed ecology and physiology. Cambridge University Press, pp. 366.
- 17. Pandey, A., Lee, D. J., Chisti, Y. and Soccol, C. R. (eds.) (2014). Biofuels from algae. Elsevier, pp. 338.
- 18. Richmond, A. and Hu, Q. (eds.) (2013). Handbook of microalgal culture-applied Phycology and biotechnology. Wiley Blackwell, pp. 719.
- 19. Sarma, T. A. (2013). Handbook of cyanobacteria. CRC Press, pp. 802.
- 20. Seckbach, J. and Kociolek, J. P. (2011). The diatom world. Springer, pp. 534.
- 21. Stoermer, E. F. and Smol, J. P. (eds.) (2004). The diatoms: applications for the environmental and earth sciences. Cambridge University Press, 469.
- 22. Upadhyay, S. K. and Singh, S. P.(eds). (2021). Bioprospecting of plant biodiversity for industrial molecules. John Wiley & Sons Ltd., UK. Pp. 431.
- 23. Whitton, B. A. (ed.) (2012). Ecology of cyanobacteria II-Their diversity in space and time. Springer, pp. 760. 22. Zajic, J. E. (ed.) (1970). Properties and products of algae. Plenus Press, New York, London, pp. 154.

	BOT 517 MJP Practicals based on BOT 510 MJ (2 Credits: 15 Practicals)	
1.	Culturing of microalgae: Isolation, purification and maintenance of algal strains	4P
2.	Qualitative and quantitative analysis of algal lipids	2P
3.	Estimation of carotenoids from commercially important algae	1P
4.	Extraction and purification of phycocyanin/phycoerythrin from algae	3P

5.	Extraction of UV protective scytonemin from cyanobacteria	2P
6.	Extraction of phlorotannins from algal sample	2P
7.	Enrichment of algal cultures for mass production	2P
8.	Immobilization of algae for bioprospecting	2P
9.	Method for production of Single Cell Protein (SCP)	2P
10.	Preparation of Seaweed Liquid Fertilizer (SLF)	2P
11.	Survey of commercially available algal products	1P
12.	Algal growth measurements and growth curve studies	2P
13.	Lyophilization of algal samples and testing for viability	2P
14.	Preparation of BGA biofertilizer	2P
15.	Extraction and purification of agar-agar and alginates	3P
16.	Biphasic culturing of algae from soil samples	2P
17.	Isolation and identification of algae from oil-spills	2P
18.	Visit to algal cultivation pond/institute/industry	2P
	BOT 511 MJ Plant Pathology (2 Credits: 30 Lectures)	
Credit 1: P	lant diseases and pathogens	15L
1.	Concept of disease, classification	1L
2.	Rusts, smuts, mildews, wilt, blight, rot-causing fungi, symptoms, life cycles	5L
3.	Leaf spot, blight, wilt scabs, cankers, soft rot caused by bacteria, mosaic and ring spot causing viruses andyellowing, stunting and wilt causing nematodes	3L
4.	Plant disease epidemiology: Elements of an epidemic, patterns and comparison of epidemic development and forecasting plant disease epidemics	2L
5.	Pathogenesis: Infection, reproduction and dissemination	2L
6.	Pathogen effects on plant processes and growth	1L
7.	Emerging pathogens and effect on sustainable agriculture	1 <u>L</u>
	ost resistance, disease management and control of diseases	15L
1	Plant defenses: Non-host and host resistance	1L
2	Pre-existing and induceddefenses: Structural and chemical	1L
3	Defense signaling network: Immunity, Effectors, MAPK cascadeand PRPs	3L
4	Pathogenicity genes: effector molecules, role of enzymes and toxins in pathogenicity	3L
	in pathogementy	

5	Diagnostic methods for detecting pathogens	1L
6	Control of disease using fungicides and other chemicals	2L
7	Biocontrol agents for controlling disease	2L
8	Disease control using biological and chemical activators of	2L
	resistance	

- Suggested References

 1. Agrios Plant Pathology, 6th Edition, EditorRichard Oliver

 2. Plant Pathology and Plant Pathogens, John A. Lucas, WILEY

 3. Fundamentals of Plant Pathology, R S Mehrotra, Ashok Aggarwal

	BOT 518 MJP Practicals based on BOT 511 MJ (2 Credits: 15 Practicals)	
1	Study of different types of diseases in commercially important crops	4P
2	Isolation and culture of fungal pathogen from diseased plants	2P
3	Counting fungal spores using haemocytometer and artificial inoculation method	2P
4	Study of symptoms and disease scoring for any two fungal pathogens	2P
5	Observation of colonization pattern using fluorescent tagged vascular pathogen	2P
6	Isolation of DNA from infected plant tissue and assessment of pathogen load	3P
7	Molecular diagnostics of plant pathogen using PCR	3P
8	Control of pathogens using biological agents (<i>Pseudomonas</i> sp. /PGPRs/ <i>Trichoderma</i> sp./ <i>Serendipita indica</i>) and plant-based	4P
	formulations	
	BOT 512 MJ Medicinal mushroom cultivation (2 Credits: 30 Lectures)	
Credit 1: 1	BOT 512 MJ Medicinal mushroom cultivation (2 Credits: 30 Lectures) ntroduction to medicinal mushrooms	15L
C redit 1: 1	BOT 512 MJ Medicinal mushroom cultivation (2 Credits: 30 Lectures) ntroduction to medicinal mushrooms Medicinal mushrooms:Introduction, importance and health benefits Global scenario of trade and demand of medicinal mushrooms	15L 5L
2	BOT 512 MJ Medicinal mushroom cultivation (2 Credits: 30 Lectures) ntroduction to medicinal mushrooms Medicinal mushrooms:Introduction, importance and health benefits Global scenario of trade and demand of medicinal mushrooms Overview of active principles in medicinal mushrooms	5L 3L
1	BOT 512 MJ Medicinal mushroom cultivation (2 Credits: 30 Lectures) ntroduction to medicinal mushrooms Medicinal mushrooms:Introduction, importance and health benefits Global scenario of trade and demand of medicinal mushrooms	5L
2	BOT 512 MJ Medicinal mushroom cultivation (2 Credits: 30 Lectures) Introduction to medicinal mushrooms Medicinal mushrooms:Introduction, importance and health benefits Global scenario of trade and demand of medicinal mushrooms Overview of active principles in medicinal mushrooms Bioactive metabolites from Cordyceps, solid and liquid	5L 3L
1 2 3	BOT 512 MJ Medicinal mushroom cultivation (2 Credits: 30 Lectures) ntroduction to medicinal mushrooms Medicinal mushrooms:Introduction, importance and health benefits Global scenario of trade and demand of medicinal mushrooms Overview of active principles in medicinal mushrooms Bioactive metabolites from Cordyceps, solid and liquid state fermentation and quality control of Cordycepmilitaris	5L 3L 3L
1 2 3	BOT 512 MJ Medicinal mushroom cultivation (2 Credits: 30 Lectures) Introduction to medicinal mushrooms Medicinal mushrooms:Introduction, importance and health benefits Global scenario of trade and demand of medicinal mushrooms Overview of active principles in medicinal mushrooms Bioactive metabolites from Cordyceps, solid and liquid state fermentation and quality control of Cordycepmilitaris Isolation, identification and utilization of mushroom metabolites	5L 3L 3L
1 2 3 4 Credit 2: (BOT 512 MJ Medicinal mushroom cultivation (2 Credits: 30 Lectures) Introduction to medicinal mushrooms Medicinal mushrooms:Introduction, importance and health benefits Global scenario of trade and demand of medicinal mushrooms Overview of active principles in medicinal mushrooms Bioactive metabolites from Cordyceps, solid and liquid state fermentation and quality control of Cordycepmilitaris Isolation, identification and utilization of mushroom metabolites Cultivation of medicinal mushrooms Cultivation of Shiitake mushroom (Lentinusedodes), Lion's mane	5L 3L 3L 4L
1 2 3 4 Credit 2: (BOT 512 MJ Medicinal mushroom cultivation (2 Credits: 30 Lectures) Introduction to medicinal mushrooms Medicinal mushrooms:Introduction, importance and health benefits Global scenario of trade and demand of medicinal mushrooms Overview of active principles in medicinal mushrooms Bioactive metabolites from Cordyceps, solid and liquid state fermentation and quality control of Cordycepmilitaris Isolation, identification and utilization of mushroom metabolites Cultivation of Medicinal mushrooms Cultivation of Shiitake mushroom (Lentinusedodes), Lion's mane (Hericiumerinaceus) Cultivation, nutritional value and bioactive compounds inMorchella	5L 3L 3L 4L 2L

5	Development of a mushroom cultivation unit, cost-benefit analysis,	3L
	institutions involved in research and development of medicin	
	mushrooms	

- 1. Chang, S. T. and J. A. Buswell. 2003. Medicinal mushrooms—a prominent source of nutraceuticals for the 21st century. Current Topics in Nutraceutical Res,1:257-280.
- 2. Shu Fing Chang, Philip G. Miles and Chang, S.T. 2004. Mushrooms Cultivation, nutritional value, medicinal effect and environmental impact. 2nd ed., CRC press.
- 3. Pathak, V.N. and Yadav, N. (1998). Mushroom Production and Processing Technology. Agrobios, Jodhpur.
- 4. Wang H. X., T. B. Ng, V. E. C. Ooi, W. K. Liu and S. T. Chang. 1996a. A polysaccharide peptide complex from cultured mycelia of the mushroom *Tricholomamongolicum* with immune-enhancing and antitumor activities. Biochem. and Cell Bio. 74: 95-100.
- 5. Wang H. X., T. B. Ng, W. K. Liu, V. E. C. Ooi and S. T. Chang. 1996b. Polysaccharide-peptide complexes from the cultured mycelia of the mushroom Coriolus versicolor and their culture medium activate mouse lymphocytes and macrophages. Int. J. Biochem. Cell Bio. 28: 601-607.
- 6. Wasser S. P. 2002a. Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Appl Microbiol Biotechnol 60, 256-274.
- 7. Hsu Z. C. 1994. New technology for cultivation of *Ganoderma lucidum* (in Chinese). Chaoyang Edible Fungi Research Institute, Liaoning, China. 54p.
- 8. Chang, S. T. and J. A. Buswell. 1996. Mushroom nutriceuticals. World J. Microb. and Biotech. 12:473-476.

	BOT 519 MJP Practicals based on BOT 512 MJ (2 Credits: 15 Practicals)	
1	Identification of commercial medicinal mushrooms	1P
2	Isolation and <i>invitro</i> culture of medicinal mushrooms	1P
3	Cultivation practice for medicinal mushrooms (<i>Cordycep militaris</i> , Morchella/Truffles/ <i>Trametesversicolor</i>)	5P
4	Cultivation of Ganoderma lucidum/Lentinus edodes/ Hericium erinaceus	5P
5	Study of various by-products of medicinal mushrooms available in the market	3P
6	Analysis of nutritional compounds in medicinal mushrooms	3P
7	Extraction and estimation of polysaccharides and terpenoids fro medicinal mushrooms	2P
8	Antioxidant activity (DPPH assay) of crude metabolites from mushroom extracts	2P
9	Study visit to a mushroom industry/fungal research laboratory	2P

BOT 513 MJ Post Harvest Technology (2 Credits: 30 Lectures)

Credit 1: Po	ost-harvest management of crops, fruits and vegetables	15L
1	Importance and scope of post-harvest management of commercially important crop plants	3L
2	Maturity indices and harvesting techniques for commercially importa crop plants, ornamentals, fruits and vegetables	3L
3	Pre-harvest practices, importance and their influence on post-harve losses	2L
4	Post-harvest biology: ripening, fruit softening, flavor, fragrance and senescence	2L
5	Post-harvest treatments to prevent losses during storage, increasir shelf-life: high and low temperature, chemicals, irradiation etc.	3L
6	Packaging methods and transportation	1L
7	Storage facilities and techniques	1L
Credit 2:	Value addition to crop, fruits and vegetables	15L
1	Post-harvest Processing and preservation: Cleaning, sorting, and grading o produce, drying, dehydration of plant-based food	3L
2	Nutritive value of fresh and processed fruits	2L
3	Value addition in cereals, pulses, vegetables and fruits	3L
4	Post-harvest practices for spices and condiments	2 L
5	Quality and safety standards of processed food products	3L
6	Marketing and trade	2 L

- 1. Kader, A. A. (2013). Postharvest technology of horticultural crops-An overview from farm to fork. *Ethiopian Journal of Applied Science and Technology*, (1), 1-8.
- 2. Chakraverty, A., Mujumdar, A. S., & Ramaswamy, H. S. (Eds.). (2003). *Handbook of postharvest technology: cereals, fruits, vegetables, tea, and spices* (Vol. 93). CRC press.
- 3. McFarlane, J. A. (1988). Storage methods in relation to post-harvest losses in cereals. *International Journal of Tropical Insect Science*, *9*(6), 747-754.
- 4. Ikegwu, T. M., Ezegbe, C. C., Okolo, C. A., &Ofoedu, C. E. (2022). Postharvest preservation technology of cereals and legumes. In *Postharvest Technology-Recent Advances, New Perspectives and Applications*. IntechOpen.
- 5. Chakraverty, A., & Singh, R. P. (2014). *Postharvest technology and food process engineering*. CRC Press.
- 6. Raghavan, A. S. M. G. V., & Ramaswamy, H. S. (2003). Handbook of Postharvest Technology Cereals, Fruits, Vegetables, Tea, and Spices.
- 7. Narayanasamy, P. (2005). Postharvest pathogens and disease management. John Wiley & Sons.
- 8. Ikegwu, T. M., Ezegbe, C. C., Okolo, C. A., &Ofoedu, C. E. (2022). Postharvest preservation technology of cereals and legumes. In *Postharvest Technology-Recent Advances, New Perspectives and Applications*. IntechOpen.
- 9. Studman, C. J. (2001). Computers and electronics in postharvest technology—a review. *Computers and electronics in Agriculture*, 30(1-3), 109-124.
- 10. Kudra, T., & Raghavan, G. S. V. (1991). POST HARVEST TECHNOLOGY OF CEREALS PULSES AND OILSEEDS: OXFORD IBH PUBLISHING CO. PVT LTD. New Delhi, 1988. *Drying Technology*, 9(2), 527-528.

- 11. Bourne, M. (1977). Post harvest food losses—the neglected dimension in increasing the world food supply.
- 12. Verma, L. R., & Joshi, V. K. (2000). Post-harvest technology of fruits and vegetables. *Post harvest technology of fruits and vegetables*, *1*, 1-76.
- 13. Palumbo, M., Attolico, G., Capozzi, V., Cozzolino, R., Corvino, A., de Chiara, M. L. V., ... &Cefola, M. (2022). Emerging postharvest technologies to enhance the shelf-life of fruit and vegetables: an overview. *Foods*, 11(23), 3925.
- 14. Ribeiro, C., & Alvarenga, B. (2012). Prospects of UV radiation for application in postharvest technology. *Emirates Journal of Food and Agriculture*, 586-597.
- 15. Bartz, J. A., & Brecht, J. K. (Eds.). (2002). *Postharvest physiology and pathology of vegetables* (Vol. 123). Crc Press.
- 16. Barman, K., Sharma, S., & Siddiqui, M. W. (Eds.). (2018). *Emerging postharvest treatment of fruits and vegetables*. CRC Press.
- 17. Singh, B., & Singh, S. (Eds.). (2018). *Advances in postharvest technologies of vegetable crops*. CRC Press.
- 18. Taylor, S. (2012). Postharvest handling: a systems approach. Academic Press.
- 19. Mizrach, A. (2008). Ultrasonic technology for quality evaluation of fresh fruit and vegetables in pre-and postharvest processes. *Postharvest biology and technology*, 48(3), 315-330.
- 20. Flores-López, M. L., Cerqueira, M. A., de Rodríguez, D. J., & Vicente, A. A. (2016). Perspectives on utilization of edible coatings and nano-laminate coatings for extension of postharvest storage of fruits and vegetables. *Food Engineering Reviews*, 8, 292-305.
- 21. Chen, Y., Zhang, Z., Tian, S., & Li, B. (2022). Application of-omic technologies in postharvest pathology: recent advances and perspectives. *Current Opinion in Food Science*, 45, 100820.
- 22. Yadollahi, A., Arzani, K., &Khoshghalb, H. (2009, August). The role of nanotechnology in horticultural crops postharvest management. In *Southeast Asia Symposium on Quality and Safety of Fresh and Fresh-Cut Produce* 875 (pp. 49-56).
- 23. https://www.fda.gov/files/food/published/Food-Labeling-Guide-28PDF

BOT 520 MJP Practicals based on BOT 513 MJ (2 Credits: 15 Practicals)		
1	Effect of packaging containers on shelf life of fruits, vegetables and flowers	2P
2	Effect of low and high temperature on biochemical parameters determining shelf life and quality of fruits, vegetables and flowers	4P
3	Preparation of jam/jelly/ketchup	2P
4	Preparation of dried and dehydrated products	2P
5	Value added vegetables products	2P
6	Determination of pH, degree brix, nutritional parameters, TSS in fruit juice	4P
7	Visit to a food processing industry/institute	2P

BOT 514 MJ Plant Breeding (2 Credits: 30 Lectures) **Credit 1: Principles of plant breeding** 15L Pre-and post-Mendelian concepts, plant breeding in India - major 2L achievements and limitations, past, progress and future needs, green revolution, evergreen revolution Breeding objectives, genetic diversity in plants, centers of origin of 2 3Lcrop plants, distribution and areas of diversity. Primary, secondary and tertiary gene pools. Importance of genetic diversity in crop improvement and its erosion Hybridization technique: Objectives, types, procedure, raising F1 3 4L generation, selfing, difficulties in hybridization Genetic basis of breeding cross pollinated crops: Genetic basis of 4 3L self- incompatibility and male sterility and their use in hybrid seed production, genetic basis of inbreeding depression Crop varieties: Identification, release and notification of crop 5 3Lvarieties, institutions involved in release of varieties **Credit 2: Breeding Methods** Breeding methods for self-pollinated crops: Mass selection, pure-5L 1 line selection, pedigree selection, bulk method, backcross method Breeding methods for cross pollinated crops: Mass selection, 2 5L progeny selection, recurrent selection Breeding methods for clonally propagated crops: Clonal selection, 3 2Lhybridization breeding for heterosis Mutations and polyploidy breeding: Mutagens: Physical and 4 3L chemical mutagens, Mutant types, mutation breeding, mutant variety data (MVD)-IAEA, distant hybridization and polyploid breeding

- 1. Allard, R.W. (1960). Principles of Plant Breeding. John Wiley, New York
- 2. Chopra, V.L. (2000). Plant Breeding: Theory and Practice 2nd Ed. Oxford & IBH, New Delhi.
- 3. Frey, K. J. (1966). Plant Breeding. The Iowa State University Press, Ames.
- 4. Frey, K. J. (1982). Plant Breeding II. Kalyani Publishers, New Delhi.
- 5. Welsh, J. R. (1981). Fundamentals of Plant Genetics and Breeding. John Wiley and Sons, New York.
- 6. Poehlman, J.M. (1987). Breeding Field Crops, 3rd Ed. AVI Publishing Co. Inc., Westport, Connecticut
- 7. Poehlman J. M. and Sleper D. A. (1995). Breeding Field Crops, 4th Ed. Panima Publishing Corporation, New Delhi
- 8. Roy D. Analysis and Exploitation of Variation. Narosa Publishing, New Delhi
- 9. Simmonds, N.W. (1979). Principles of Crop Improvement. Longman Groups Ltd. London.
- 10. Singh B. D. (2007). Plant Breeding. Kalyani Publishers. Ludhiana.

	BOT 521 MJP Practicals based on BOT 514 MJ Plant Breeding (2 Credits: 15 Practicals)	
1	Self and cross hybridization in selected crop species (rice, maize, mustard, etc.)	5P
2	Floral biology in self and cross-pollinated species, pollen viability detection	2P
3	Study of quality traits in rice/cotton/wheat/soybean/mustard (any three)	3P
4	Use of colchicine for transduction of polyploidy in appropriate plant material	3P
5	Demonstration of hybrid variety, heterosis, and inbreeding depression	2P
6	Induction of mutations by physical/chemical mutagens and characterization of mutants	4P
7	Visits to plant breeding institutes within/nearby Pune	2P
Credit 1: 1	BOT 515 MJ Industrial Botany (2 Credits: 30 Lectures) Plant-based industries	15L
1	Introduction, various plant resources, demand and supply	2L
2	Paper industry: Plant resources, pulp, paper manufacturing	1L
3	Plant fiber industry: Sources, commercial fibers, floss, cultivation, processing and utilization	2L
4	Rubber industry: Plant sources, cultivation, processing and utilization	1L
5	Natural dyes: Sources, cultivation, processing and utilization	1L
6	Gums and resins: Sources, cultivation, processing and utilization	1L
7	Timber industry: Commercial sources, silvicultural techniques, utilization	1L
8	Wood-based industry: Sources for musical instruments, toys, pencils, sports goods, etc., manufacturing methods and utilization	2L
9	Bamboo industry: Diversity, cultivation, harvesting, utilization and value addition	2L
10	Rattan: Sources, manufacturing of different products and uses	1L
11	Tannin industry: Commercial sources, manufacturing and utilization	1L
Credit 2: 0	Commercial botany	15L
1	Edible oils: Sources, cultivation, processing and utilization	2 L
2	Tree-borne oil-seeds (TBOs): Wild sources, Good Field Collection Practices (GFCPs), processing, value addition and uses	2L
3	Aromatic oils: Sources, commercially important oils, cultivation, processing and utilization	2L

4	Nutraceuticals and food supplements: Wild fruits and vegetables,	2L
	tubers, millets: sources and commercial utilization	
5	Herbal medicine: Commercially important herbs, utilization and processing, industrial applications	2L
6	Botanical pesticides: Sources, processing and value addition	1L
7	Landscape gardening: Plant resources, availability, propagation and cultivation	1L
8	Exotic fruits: Sources, cultivation, processing and utilization	1L
9	Spices and condiments: Bioprospecting and cultivation	1L
10	Plant-based tourism: Agro, Eco, Health, Forest, etc.	1L

- 1. Açıkyıldız; Metin; Güneş; Kübra; and Gürses, M.; 2016, "Colorants in Health and Environmental Aspects," 10.1007/978-3-319-33892-7_5.
- 2. Akin, D. E. (2010). "Chemistry of plant fibres," in *Industrial Applications of Natural Fibres: Structure, Properties and Technical Applications*, ed J. Müssing (West Sussex: John Wiley & Sons Ltd.), 13–22.
- 3. Alcorn, J. B. 1995. Economic botany, conservation, and development: what's the connection? Ann. Missouri Bot. Gard. 82(1): 34-36.
- 4. Baker, H. G. 1978. Plants and civilization. Third edition. Fundamentals of Botany Series. Wadsworth Publ. Co. Belmont, CA. 198 pp.
- 5. Banik, R.L., 2016. Silviculture of South Asian Priority Bamboos. Springer. Germany.
- 6. Belcher, B.M. (2005) Forest product markets, forests and poverty Reduction, Int. For. Rev., 7 (2) pp. 82-89.
- 7. Bhatnagar, P. 2014. Gums and Resins Yielding Plants. Pointer Publishers, Jaipur, Rajasthan.
- 8. Biermann C J 1996 Hand book of pulping and papermaking (California, USA: Academic Press).
- 9. Book Distributors, Dehradun, India, 498.
- 10. Boot RGA. 1997. Extraction of non- timber forest products from tropical rain forests. Does diversity come at a price? Netherland Journal of Agricul-tural Science, 45(4): 439–450.
- 11. Brandis, D., 1906. Indian Trees. Periodical experts. Book Agency, Delhi, 767.
- 12. Brandis, D., 1899. Biological notes on Indian bamboos. Indian Forester 25(1), 125.
- 13. Chauhan, A., and Chauhan, P. (2015). Natural fibers and biopolymer. *J. Chem. Eng. Process Technol.* 6, 1–4.
- 14. compendium. BIC India, Kerala Forest Research Ins ☐ tute,
- 15. Coon, N. 1974. The dictionary of useful plants. Rodale Press. Emmaus, PA. 290 pp.
- 16. Deshpande, A. P., Bhaskar Rao, M., and Lakshmana Rao, C. (2000). Extraction of bamboo fibers and their use as reinforcement in polymeric composites. *J. Appl. Polym. Sci.* 76, 83–92.
- 17. Farm%20Occupation%20in%20Rural%20India.html.
- 18. Gill, N. T. & K. C. Vear. 1980. Agricultural botany. Third edition revised by K. C. Vear& D. J. Barnard. Duckworth Publ. Two volumes.
- 19. Gums Statistics 2016: At a Glance. ICAR-Indian Institute of
- 20. Harshberger, J. W. 1896. Purpose of ethno-botany. Bot. Gaz. 21(3): 46-154.
- 21. Heiser, C. B., Jr. 1990. Seeds to civilization: the story of food. New edition. Harvard Univ. Press. Cambridge, MA. 228 pp.
- 22. Indigenous method of tapping gum-butea and its impact on
- 23. Jain, S. K. 1986. A manual of ethnobotany. Scientific Publ. Jodhpur, India. 528 pp.

- 24. Joshi, S. 2003. Super market, secretive. Exploitative, is the market in the minor forest produce unmanageable? Down to Earth, 28: 27-34.
- 25. Kokate, C.K., Purohit, A.P. and Gokhale, S.B. 2002. Pharmacognosy (19th Edition). NiraliPrakashan, Pune, India, pp. 524-525.
- 26. Kurz, S., 1876. Bamboo and its use. Indian Forester 1(3),
- 27. Kurz, S., 1876. Bamboo and its use. Indian Forester 1(3), 219–269.
- 28. Leepica K, Siva R (2021) Strategies to meet the global demand for natural food colorant bixin: a multidisciplinary approach. J Biotechnol 338:40–51.
- 29. livelihood ofsaharia tribe in Central India. Indian Forester,
- 30. Mahale S, Goswami-Giri AS. Environmental friendly approach in paper making using natural organic waste. Chem Sci Rev Lett. 2015;4:489–93.
- 31. Martins N, Roriz LC, Morales P, Barros L et al (2016) Food colorants: challenges, opportunities and current desires of agro-industries to ensure consumer expectations and regulatory practices. Trends Food Sci Technol 52:1–5.
- 32. Mukhopadhyay, A. K; D. Gangopadhyay, D; and Nayak, S; "India, Science and Technology: 2008, S&T for Rural India and Inclusive Growth" https://www.nistads.res.in/all-html/Non-
- 33. Nair, K. P. P. (ed.). (2010). "The coconut palm (Cocos nucifera L.)," in *The Agronomy and Economy of Important Tree Crops of the Developing World* (Elsevier Ltd.), 67–109.
- 34. Natural Resins and Gums, Ranchi (Jharkhand), India. Bulletin
- 35. Okoro M. Environmental impact analysis of pulp and paper production. Munich: GRIN Verlag; 2012.
- 36. Ramamoorthy S (2010) Plant dyes. In: Industrial crop and uses. CAB Publications, pp 349–357.
- 37. Ra □ an, New Delhi, India, 342
- 38. Reddy, K. O., Maheswari, C. U., Shukla, M., and Rajulu, A. V. (2012). Chemical composition and Structural characterization of Napier grass fibers. *Mater. Lett.* 67, 35–38.
- 39. Saini RK, Keum Y, Daglia M, Rengasamy KR (2020) Dietary carotenoids in cancer chemoprevention and chemotherapy: a review of emerging evidence. Pharmacol Res. https://doi.org/10.1016/j.phrs.2020.104830.
- 40. Seethalakshmi, K.K., Kumar, M., 1998. Bamboos of India- a
- 41. Seethalakshmi, K.K., Kumar, M., 1998. Bamboos of India- a compendium. BIC India, Kerala Forest Research Ins ☐tute, Peechi and International Network for Bamboo and Ra ☐an, New Delhi, India, 342.
- 42. Tewari, D.N., 1992. A monograph on bamboo. Interna□onal
- 43. Tewari, D.N., 1992. A monograph on bamboo. Interna□onal Book Distributors, Dehradun, India, 498.
- 44. The Wealth of India Series, CSIR, New Delhi.
- 45. Wadhwani., A.M. and B.M. Johri (1958) Dictionary of economic plants in India. ICAR, New Delhi.
- 46. Wayman M. Part II: technical information on raw materials and pulp and paper manufacture. In: Wayman M, editor. Guide for planning pulp and paper enterprises. Rome: Food and Agriculture Organisation of United Nations; 1973. p. 219–310.
- 47. Yogi, R.K., Kumar, A. and Singh, A.K. 2018. Lac, Plant Resins and
- 48. Yogi, R.K., Kumar, A. and Singh, A.K. 2018. Lac, Plant Resins and Gums Statistics 2016: At a Glance. ICAR-Indian Institute of Natural Resins and Gums, Ranchi (Jharkhand), India. Bulletin (Technical) No. 19/2018, pp. 1-80.

	BOT 522 MJP Practicals based on BOT 515 MJ Industrial Bota (2 Credits: 15 Practicals)	ny
1	Identification and characterization of industrially important medicinal plants	2P
2	Pulp preparation technique for paper industry	1P
3	Identification of fibre-yielding plants and extraction of fibres	2P
4	Identification of dye-yielding plants and their extraction methods	2P
5	Types of gums and resins, extraction and storage methods	1P
6	Bamboo propagation and cultivation	2P
7	Pharmacognostic studies of locally available medicinal plants in trade	2P
8	Distillation of essential oils from commercial aromatic plants	2P
9	Primary processing, packaging techniques and marketing of medicinal plants	2P
10	Identification of spices and condiments, their processing and storage techniques	2P
11	Establishment of concept garden by landscape technique	4P
12	Identification of plant sources as food supplements and nutraceuticals	1P
13	Methods for extraction of tannins	1P
14	Identification of woods and manufacturing of wood articles	2P
15	Preparation method for plant-based pesticide and testing	2P
16	Project proposal writing for financial assistance to establish plant-based unit for submission to bank/various organizations/NGOs, etc.	2P
17	Demonstration of accounting and marketing of plant-based products	2P
18	Industrial visit for demonstration of equipment, instruments and infrastructure required for plant-based industry	2P
	BOT 516 MJ Cultivation and Utilization of Medicinal Plants (2 Credits: 30 Lectures)	
	Cultivation and conservation	15L
1	Medicinal plants: aspects and prospects	1L
2	Medicinal plants used in various systems of traditional medicines, medicinal plants in demand, supply and sources	3L
3	Good Agricultural Practices (GAPs) of selected commercially important medicinal plants	6L
4	Good Field and Collection Practices (GFCP), primary processing	2L
5	Conservation and utilization of medicinal plant resources	2 L
6	Markets in India, major traders, processers/pharma associations	1L
Credit 2: Start-up requirements		15L

1	Value addition: processing and product development (oils, powder, granules, herbal tea, nutraceuticals, cosmeceuticals, cosmetics, medicated water, tablets, health drinks, <i>Chyavanprash</i> , candy, etc.), innovative products	4L
2	Requirement for start-ups: infrastructure, machinery, manpower, testing laboratory, legal permissions	2L
3	Rules and regulations: GOI Ministries, FDA, FSSAI, Pollution Control Board, etc.	2L
4	Government Schemes and organizations involved in promotion of medicinal plants, Skill India Program, campaigns on medicinal plants, Ayush and MSME ministry	2L
5	Organic certification: Procedure and documentation	2L
6	Quality control: Various norms and tests	2L
7	Intellectual property right (IPR) issues	2L

- 1. AkosMathe (2015) Medicinal & Aromatic Plants of the World: Scientific, Production, Commercial and Utilisation Aspect. Springer Publication. ISBN: 2352-6831.
- 2. Alice Kurian & M. Asha sankar (2021) Horticulture Science Series II: Medicinal plants. New Indian Publishing Agency. ISBN: 81-89422-42-1
- 3. Amujoyegbe, B.J., Agbedahunsi, J.M. and Amujoyegbe, O. (2012). Cultivation of medicinal plants in developing nations: Means of conservation and poverty alleviation. Intl. J. Med. Arom. Pl 2: 345-353.
- 4. Anonymous (2001). Technology Information Forecasting and Assessment Council (TIFAC), Herbal Products Current Status, Vision and Action Plan (New Delhi: Technology Information Forecasting and Assessment Council.
- 5. Beinckmann, J. (2004). The medicinal plants supply chain: Creating social and environmental sustainability. HerbalGram 64: 56-60.
- 6. Bodeker, G. (2002). Medicinal plants: Towards sustainability and security. Demand Study for Selected Medicinal Plants: Volume I & II. Center for Research, Planning and Action (CRPA) for Ministry of Health and Family Welfare, Department of ISM&H and WHO, New Delhi, India.
- 7. Bogers, R.J., Craker, L.E. and Lange, D. (2006). Medicinal and Aromatic Plants Agricultural, Commercial, Ecological, Legal, Pharmacological and Social Aspects (Eds.). Wageningen UR FrontisSries Vol 17. Springer, Netherlands.
- 8. Charis M. Galanakis (2021) Aromatic Herbs in Foods: Bioactive Compounds, Processing and its applications. Academic Press is an Imprint of Elsevier. ISBN: 9789-0-12-822716-9.
- 9. Chatterjee SK. Cultivation of medicinal and aromatic plants in India A commercial approach, Acta Hortic. 2001; 576:191-202.
- 10. Chopra A. K., Khanna D. R., Prasad G., Mallik D.S & Bhutiani R. (2007) Medicinal Plants: Conservation, Cultivation & Utilisation. Daya Publishing House, New Delhi. ISBN: 81-7035-486-2.
- 11. Chowdhery, H.J. and S.K. Murthi (1999). Plant Diversity and Conservation in India: An Overview, Vedam Books, New Delhi.

- 12. Craker, L.E. (2007). Medicinal and aromatic plants Future opportunities. In: J. Janick and A. Whipkey (Eds) Issues in New Crops and New Uses. ASHA Press, Alexandeia, VA.
- 13. Craker, L.E. and Gardner, Z. (2005). Sustaining the harvest: Challenges in MAP production and markets. Acta Hort. 676: 25–30.
- 14. Cullet P. (2002) 'Amended Patents Act and Access to Medicines after Doha', 37(24) Economic and Political Weekly 2278.
- 15. Dagmar, L. (2004). Medicinal and aromatic plants: Trade, production and management of botanical resources. In: Cracker LE et al (Eds.) Future of Medicinal and Aromatic Plants; Proc.XXVIHC, Acta Hort, ISHS, pp. 177-197. http://www.himcca.org
- 16. De Silva, T. 1997. Industrial utilisation of medicinal plants in developing countries. In: Medicinal plants for forest conservation and healthcare, Non-Wood Forest Products. Food and Agriculture Organization of the United Nations, Rome. p34.
- 17. Deepak Kumar Semwal (2021). Medicinal Plants; Properties, Uses and production. Nova Science Publisher. ISBN: 9781685072902.
- 18. Dinesh Kumar Tyagi(2005) Pharma Forestry: Field Guide to Medicinal Plants. Atlantic Publication. ISBN: 81-269-0407-0.
- 19. Haridasan, K., Shukla, G.P. and Deori, M.L. (2002). Cultivation prospects of medicinal plants of Arunachal Pradesh. A review. In: Samant, S.S., Dhar, U. and Palni, L.M.S. Editors. Himalayan Medicinal Plants. Potential and Prospects. Almora, India Gyanodaya Prakashan, Nainital. pp. 329–344.
- 20. Heftmann F. *Chromatography: Fundamentals and application of chromatographic and electrophoretic techniques.* 5th ed. Amsterdam, The Netherlands: Elsevier; 1992. pp. 281–5.
- 21. Husain, A., Sharma, J.R., Puri, H.S. and Tyagi, B.R. (1984). Genetic Resources of Important Medicinal and Aromatic Plants in South Asia: A Status Report, IBPGR, Rome.
- 22. Ingle KP, Deshmukh AG, Padole DA, Dudhare MS, Moharil MP, Khelurkar VC. Phytochemicals: Extraction methods, identification, and detection of bioactive compounds from plant extracts. *J PharmacognPhytochem.* 2017;6:32–6.
- 23. Kala CP: Status and conservation of rare and endangered medicinal plants in the Indian Trans Himalaya. Biol Conserv. 2000, 93: 371-379. 10.1016/S0006-3207(99)00128-7.
- 24. Kala, C.P. (2005). Current status of medicinal plants used by traditional Baidhya in Uttaranchal state of India. J. Ethnobot. Res. & Appl. 3: 267-278.
- 25. Kala, C.P., Dhyani, P.P. and Sajwan, B.S. (2006). Developing the medicinal plants sector in northern India: challenges and opportunities. J. Ethnobiol. Ethnomed. 2: 32. doi: 10.1186/1746-4269-2-32; PMCID: PMC1562365. National Academy of Agricultural Sciences 25
- 26. Karki, M. (2005). The organic production of medicinal and aromatic plants: a strategy for improved value-addition and marketing of products from the Himalayas. In: Thomas YA, Karki M, Gurung K, Parajuli D (EDs.) Proceeding of wise practices and experimental learning in conservation and management of Himalayan medicinal plants; pp 56-69. Ministry of Forests and Soil Conservation.
- 27. Khare C.P. Indian herbal remedies. Rational western therapy, Ayurvedic and other traditional usage, Botany. Springer; Berlin: 2004.
- 28. Kirtikar K.R., Basu B.D. *Indian medicinal plants*. Mahendrapal Singh; Dehradun: 1985.
- 29. Kokate, C.K., Purohit, A.P., Gokhale, S.B., 2005. Pharmacognosy, 24th Edition, NiraliPrakashan, Pune, India.

- 30. Kuipers, S.E. 1997. Trade in Medicinal Plants. In FAO, 1997. Medicinal plants for forest conservation and healthcare, Non-Wood Forest Products 11, Food and Agriculture Organization of the United Nations, Rome. P. 45.
- 31. Kumar, R. (2004). Medicinal, aromatic and herbal crops. Financing Agric. 36: 3-5. Kumari, S., Shukla, G. and Rao, A.S. (2011). The Present Status of Medicinal Plants Aspects and Prospects. International Journal of Research in Pharmaceutical and Biomedical Sciences. 2: 19-22.
- 32. Kunwar, R.M., Katuwal, Y., Shrestha, R.D., Karki, J., Shrestha, K. and Bussmann, R.W. (2010). Climate change, medicinal plants and ethnobotany: Observations and review. In: Proceeding of first national youth conference on environment. Kathmandu, Nepal: Himalayan Alliance for Climate Change; pp 180-189.
- 33. Kunwar, R.M., Mahat, L., Acharya, R.P. and Bussmann, R.W. (2013). Medicinal plants, traditional medicine, markets and management in far-west Nepal. J. Ethnobiol. Ethnomed. 9: 24. doi:10.1186/1746-4269-9-24.
- 34. Lange, D. 2006. International Trade in Medicinal and Aromatic Plants. In. Medicinal and Aromatic Plants, (eds.) R.J. Bogers, L.E. Craker and D. Lange (eds.), Springer. The Netherlands.155-170.
- 35. Lawrence, B.M. (2013). Mint: The Genus Mentha In: Medicinal and Aromatic Plants Industrial Profiles, 1st Edition. CRC Presss, London. Marichamy, K., Kumar, N.Y. and Ganesan, A. (2014). Sustainable development in exports of herbals and Ayurveda, Siddha, Unani and Homoeopathy (AYUSH). In: India. Sci. Park Res. J. 1: 1-6.
- 36. Lohar, D.R. and Ravindra Singh (2008). Quality control manual for Ayurvedic, Siddha and Unani Medicines, Publisher: Department of AYUSH.
- 37. Máthé, A. (2015). Medicinal and Aromatic Plants of the World: Scientific, Production, Commercial and Utilization Aspects. Springer, Netherlands.
- 38. Naik.V.N. (2012). Identification of Common Indian Medicinal Plants. Scientific Publisher, ISBN: 81-7233-373-0(10).
- 39. OlayiwalaAkerele, Vernon Heywood, Hugh Synge (1991). Conservation Of Medicinal Plants. Cambridge University Press. ISBN: 0521-39206.
- 40. Olsen, C.S. and Larsen, H.O. (2003). Alpine medicinal plant trade and Himalayan mountain livelihood strategies. Geographic J. 169: 243-254.
- 41. Patwardhan B. Ayurveda: The designer medicine. *Indian Drugs*. 2000;**37**:213–217.
- 42. Patwardhan B., Vaidya A.D.B., Chorghade M. Ayurveda and natural products drug discovery. *Curr. Sci.* 2004;**86**:789–799.
- 43. Planning Commission, 2000. Report of the Task Force on Conservation and Sustainable Use of Medicinal Plants, New Delhi. Available from http://planningcommission.nic.in/aboutus/taskforce/tsk_medi.pdf.
- 44. Poduri, C.D. (2013). Medicinal And Aromatic Plants (maps): A Mini-review. WebmedCentral plus Biotechnology. 4(11): WMCPLS00292; doi: 10.9754/journal.wplus.2013.00292.
- 45. Prahalathan, S. (2004). Export potential of Indian medicinal plants and products. Financing Agric. 36: 33–36.
- 46. Prajapati ND, Purohit SS, Sharma AK, Kumar T: A handbook of medicinal plants. 2003, Jodhpur: Agrobios.
- 47. Prajapati, N.D. and Prajapati, T. (2005). A Marketing Directory of Medicinal and Aromatic Plants. Asian Medicinal Plants and Health Care Trust.
- 48. Prakasa Rao, E.V.S. (2009a). Medicinal and aromatic plants for crop diversification and their agronomic implications. Indian J. Agron. 54(2): 215-220.

- 49. Prakasa Rao, E.V.S. (2009b). Medicinal and aromatic plants in India: Potentials and Opportunities. NAAS News, 8(3): 5-9.
- 50. Puranik, A. (1999). 'Opportunities and Constraints for the Production and Development of Medicinal Plants in India', in Madhav Karki and Radhika Johari eds., The Role of Medicinal Plants Industry in Fostering Biodiversity Conservation and Rural Development (New Delhi: The International Development Research Centre).
- 51. Rajeswara Rao BR, Rajput DK, Nagaraju G, Adinarayana G. Scope and potential of medicinal and aromatic plants products for small and medium enterprises. Journal of Pharmacognosy. 2012; 3(2):112-114.
- 52. Rajeswara Rao BR. Cultivation of Indian Medicinal and Aromatic Plants Present Status and Future Prospects, National symposium on conservation, cultivation and biotechnology of medicinal plants. 2010; 1:11-15.
- 53. Roy Chaudhary R. Preface, in *Traditional Medicine in Asia*. In: Roy Chaudhary R., Rafei U.M., editors. *World Health Organization*. Regional Officer for South-East Asia; New Delhi: 2002. pp. iii–iv.
- 54. Rungsung W, Ratha KK, Dutta S, Dixit AK, Hazra J. Secondary metabolites of plants in drugs discovery. *World J Pharm Res.* 2015;4:604–13.
- 55. Sasidharan S, Chen Y, Saravanan D, Sundram KM, Yoga Latha L. Extraction, isolation and characterization of bioactive compounds from plants' extracts. *Afr J Tradit Complement Altern Med.* 2011;8:1–10.
- 56. Sharma, J.R. (1999) 'PGR Issues: National Concern and Global Conflicts with Special Reference to Medicinal and Aromatic Plants', 21 Journal of Medicinal and Aromatic Plant Sciences 1111.
- 57. Singh Harbir (2006) Prospects and challenges for harnessing opportunities in medicinal plants sector in india. In LEAD journal, Switzerland.
- 58. Singh MP, Dey S: Indian medicinal plants. 2005, India: Satish Serial Publishing House, Delhi.
- 59. SriyanieMiththapala (2006) Conserving Medicinal Species Securing a healthy future. Ecosystem and Livelihood Group. Asia, Asian Regional Office. ISBN: 955-8177-41-5.
- 60. The Ayurvedic Pharmacopoeia of India. A monograph published by Government of India. New Delhi: 1987.
- 61. Trease GE, Evans WC. *Textbook of pharmacognosy*. 13th ed. London, UK; Toronto, Canada; Tokyo, Japan: Bailiere Tindall; 1989. pp. 200–1.
- 62. Uniyal, R.C., M.R. Uniyal, and P. Jain. 2000. Cultivation of Medicinal Plants in India: A Reference Book. New Delhi: TRAFFIC India and WWF India.
- 63. Ved DK, Mudappa A, Shanker D: Regulating export of endangered medicinal plant species-need for scientific vigour. Curr Sci. 1998, 75: 341-344.
- 64. Wallis TE. *Text book of pharmacognosy*. Delhi, India: CBS Publishers and Distributors; 1989. pp. 356–549.
- 65. www.nhb.gov.in
- 66. www.nmpb.nic.in

BOT 523 MJP Practicals based on BOT 516 MJ Cultivation and Utilization of Medicinal		
Plants		
	Identification of major medicinal plants	2P

2	Identification of fresh and dried raw materials of medicinal plants in trade	3P
3	Nursery techniques for production of QPMs of medicinal plants, seed production	2P
4	GAPs for medicinal plants: Ashwagandha, Senna, Pippali	3P
5	Preparation of value-added products from amla, giloy, adulsa	3P
6	Post-harvest techniques for medicinal plants, processing and packaging: drying, grading, sorting and storage	3P
7	Extraction and identification of phytochemicals by Thin Layer Chromatography (TLC)	2P
	BOT 541 MN Research Methodology (2 Credits: 30 Lectures)	
Credit 1: Fou	indation of research and execution	15L
	Types of research, characteristics of scientific methods, understandin the language of research - concept, construct, definition, variables	3L
2	Importance of literature survey, sources of information, assessment of quality of journals and articles, effective literature studies approaches	3L
	Formulation of research questions and hypothesis, hypothesis testing design of experiments	3L
	Data analysis and application of statistical methods: sampling, data collection and documentation; analysis of qualitative and quantitative data- univariate, bivariate, and multivariate analysis. Outliers in the data. Statistical software	5L
Credit 2: Res	earch ethics, safety measures, writing, and presentation skills	15L
1	Acts and biodiversity laws, permissions for plant collection, authentication of plant specimens, ethical issues, ethical and biosafet committees. Safely levels and permissions, plagiarism and self-plagiarism Intellectual property rights- patent, designs, trade and copyright, ar patent law	
	Lab safety measures: handling of chemicals, radioactive materials, instruments, disposals of chemicals and biological waste	2L
3	Dissertation: Different steps in the preparation - Layout, structure ar language of typical reports. Illustrations and tables, bibliograph footnotes, and acknowledgement. Preparation of effective presentation	
4	Software for paper formatting, grammar checking, referencing, ar plagiarism detection	
Suggested Re	ferences	

- 1. The Craft of Research, Fourth Edition. Wayne C. Booth, Gregory G. Colomb, Joseph M. Williams, Joseph Bizup, William T. FitzGerald. University of Chicago Press.
- 2. Research Design: Qualitative, Quantitative, and Mixed Methods Approaches, Fifth edition. John W. Creswell, J. David Creswell. SAGE Publications, Inc.
- 3. A Manual for Writers of Research Papers, Theses, and Dissertations, Ninth Edition. Chicago Style for Students and Researchers. Kate L. Turabian, Gregory G. Colomb, Joseph Bizup, Joseph M. Williams, Wayne C. Booth, William T. FitzGerald. University of Chicago Press.
- 4. A Professor's Guide to Writing Essays. The No-nonsense Plan for Better Writing. Second edition. Jacob Neumann.
- 5. Cite Right, Third Edition: A Quick Guide to Citation Styles--MLA, APA, Chicago, the Sciences, Professions, and More (Chicago Guides to Writing, Editing, and Publishing). Charles Lipson. University of Chicago Press.
- **6.** Handbook of Biological Statistics (3rd ed.). McDonald, J.H. Sparky House Publishing, Maryland.

BOT 542 MNP Practicals based on BOT 541 MN Research Methodology (2 Credits: 15 Practicals)		
2	Analysis of qualitative and quantitative data sets	3P
3	Handling Systat/PAST3 for statistical analysis	3P
4	Making tables and graphs using Microsoft Excel	3P
5	Handling of Mendeley for referencing	2P
6	Manuscript formatting using Microsoft word	2P
7	Review writing, various databases	3P
8	Handling of Microsoft power point for scientific presentation	2P

SEMESTER II: CORE COURSES (Mandatory)

BOT 551 MJ Taxonomy-III (Angiosperms) (2 Credits: 30 Lectures)

Credit 1: Fundamentals of taxonomy		15L
1	Origin of angiosperms, cradle of angiosperms, abominable mystery, fossil angiosperms	2L
2	Morphological features used in identification of angiosperms	3L
3	Taxonomy: definition, aims, principles and importance. Taxonomic tools and literature: Flora, monograph, revisions, herbarium, botanic gardens, journals, websites. Organizations involved in angiosperm taxonomy	2L
4	Floristics: need and significance, history, methods, botanical explorations in India	1L
5	Global Taxonomy Initiatives:systematics agenda- 2000, systematics knowledge and value of biodiversity, biodiversity strategy and systematics agenda for 2020	3L
6	Systems of classification: brief history, artificial systems: Carl Linnaeus, Natural system: Bentham & Hooker Phylogenetic systems: Engler &Prantl, Cronquist, Takhtajan, lvances in taxonomy	4L
	· · · · · · · · · · · · · · · · · · ·	21
2	Overview of APG system of classification Families of angiosperms: Characteristic features, interrelationships and economic importance of following clades:	2L
	ANA Grade: Nymphaeaceae	1L
	Magnoliids: Magnoliaceae	1L
	Monocots: Acorales-Poales	3L
	Eudicots: Ranunculaceae and Core Eudicots: Amaranthaceae	1L
	Superrosids: Crassulaceae	1L
	Rosids-I: Fabaceae (Leguminosae)	1L
	Rosids-II: Malvaceaeand Superasterids: Santalaceae	1L
	Euasterids-I: Lamiaceae and Euasterids-II: Asteraceae	1L
3	Endemism, hotspots, IUCN categories	3L

- 1. Angiosperm Phylogeny Group (2016) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. *Botanical Journal of the Linnean Society* 181: 1–20.
- 2. Cronquist, A. 1981. An Integrated System of Classification of Flowering Plants. Columbia University Press, New York.
- 3. Davis, P. H. and V. H. Heywood 1991. Principles of Angiosperm Taxonomy. Today and Tomorrow Publications, New Delhi
- 4. Douglas E. Soltis, Pamela E. Soltis, Peter K. Endress and Mark W. Chase, 2005. Phylogeny and Evolution of Angiosperms. Sinauer Associates, Inc., Publishers, Sunderland, USA.

- 5. Ian J. Kitching, Peter L. Forey, Christopher J. Humphries and David M. Williams, 1998. Cladistics: The Theory and Practice of Parsimony analysis (2nd Ed.). The Oxford University Press.
- 6. Jain, S.K. and R.R. Rao. 1977. A handbook of Field and Herbarium methods. Today and Tomorrow Printers and Publishers, New Delhi.
- 7. Lawrence George H. M. 1951. Taxonomy of Vascular plants Oxford and IBH Publ. Co. Pvt. Ltd., New Delhi
- 8. Manilal, K. S. and M. S. Muktesh Kumar (ed.) 1998. A Hand book of Taxonomy Training, DST, New Delhi
- 9. Naik, V. N. 1984. Taxonomy of Angiosperms Tata McGrow-Hill Publication Com. Ltd., New Delhi
- 10. Pandey, Arun K. and Shruti Kasana. 2021. *Plant Systematics*. Taylor & Francis Ltd. Edition1st Edition. Pages 340. DOI https://doi.org/10.1201/9781003183464
- 11. Quicke, D.L.J. 1993. Principles and Techniques of Contemporary Taxonomy. Blackie Academic & Professional (An imprint of Chapman & Hall.).
- 12. Quicke, Donald, L. J. 1993. Principles and Techniques of Commemoratory Taxonomy. Blakie Academic and Professional, London
- 13. Radford, A.E., W.C. Dickinson, J.R. Massey and C.R. Bell. 1974. Vascular Plant Systematics, Harper & Row, New York.
- 14. Salemi, M. and A.-M. Vandamme (Eds.) 2003. The Phylogenetic Handbook. A Practical Approach to DNA and Protein Phylogeny. Cambridge University Press.
- 15. Simpson, Michael George. 2006. Plant systematics. Elsevier Academic Press.
- 16. Singh, Gurcharan. 2004. Plant Systematics: Theory and practice Oxford and YBH Publishing Co. Pvt. Ltd., New Delhi.
- 17. Singh, Gurcharan. 2019. Plant Systematics: An Integrated Approach, Fourth Edition. CRC Press.7.
- 18. Sivarajan, V.V. 1991. (2nd ed.). Introduction to the Principles of Plant Taxonomy (Ed. N S K Robson). Oxford & IBH publishing Co. Pvt. Ltd.
- 19. Stace, C. A. 1989. Plant Taxonomy and Biosystematics Etwaed Arnold, London.
- 20. Stevens, P. F. (2001 onwards). Angiosperm Phylogeny Website. Version 9, June 2008 [and more or less continuously updated since]. http://www.mobot.org/MOBOT/research/APweb/
- 21. Stuessy Tod F. 2002. Plant taxonomy. The systematic Evaluation of comparative data. Bishen Singh Mahendra Pal Singh, Dehra Dun.
- 22. Stuessy, Tod F., 2009. Plant taxonomy: the systematic evaluation of comparative data (2nd ed.). New York: Columbia University Press.
- 23. Takhtajan, A. 1986. Floristic Regions of the World. University of California Press.
- 24. Taylor, D. V. and L. J. Hickey 1997. Flowering plants: Origin, evolution and phylogeny CBS Publishers a Distributors New Delhi.
- 25. Walter S. Judd, Christopher S. Campbell, Elizabeth A. Kellogg, Peter F. Stevens and Michael J. Donoghue. 2007. Plant Systematics: A Phylogenetic Approach, Third Edition. Sinauer Associates, Inc., Publishers, Sunderland, USA.

BOT 552 MJ Plant Development-I (2 Credits: 30 Lectures)

Credit 1: Bas	sic Concepts in Plant Development	15L
1	Basic processes in plant development	4 L
	a. Competence, determination, commitment, specification,	
	induction, differentiation, dedifferentiation and redifferentiation	
	b. Morphogenetic gradients, cell fate and cell lineages	
	c. Polarity and symmetry	
	d. Juvenility and transition to adult phase	
2	Development of epidermal structures: trichomes and stomata	2 L
3	Development of vascular elements: differentiation of xylem and	2 L
	phloem	
4	Secondary growth: cambium, gross structure of wood	2 L
5	Development of secretory tissues: nectaries, laticifers and resin ducts	2 L
6	Transition from vegetative to reproductive phase: induction,	3L
	morphological and biochemical changes in shoot apex and floral	
	meristems	
Credit 2: Ve	getative Development	15L
1	Meristem types and activities of meristems. Organization of shoot ar	3L
	root apical meristems. Regulation of meristem size, lateral organ	
	initiation from root and shoot meristems	
2	Leaf development, plastochron and phyllotaxy	2 L
3	Molecular genetics of rootdevelopment	3L
	Molecular genetics of shoot development	4 L
	Molecular genetics of leaf development	3L

- 1. The Arabidopsis Book. (www.arabidopsisbook.org)
- 2. Bhojwani S. S., Dantu P. K. and Bhatnagar S. P. (2014). The Embryology of Angiosperms. (6th Edition) Vikas Pub. House. Paperback edition.
- 3. Bhojwani S.S. and Soh W.Y. (2001). Current Trends in Embryology of Angiosperms, Kluwer Academic Publishers.
- 4. Buchanan B. B., Gruissem W. and Jones R. L. (2015) Biochemistry and Molecular Biology of Plants. Second Edition. Wiley Blackwell.
- 5. Burgess J. (1985) An Introduction to Plant Cell Development. Cambridge University Press.
- 6. Davies P. J. (Editor) (2004) Plant Hormones. Biosynthesis, Signal Transduction, Action. Springer Publications.
- 7. Fahn A. (1990) Plant Anatomy (4th Edition) Pergamon Press, London, New York.
- 8. Gilbert S. F. (2013). Developmental Biology (10th Edition). Sinauer Associates, Inc., Massachusetts, USA.
- 9. Graham C. F. and Wareing P.F. (1984). Developmental Control in Animals and Plants. Blackwell Scientific Publications, UK.
- 10. Johri B. M. and Srivastava P. S. (2001). Reproductive Biology of Plants. Narosa Publishing House, New Delhi.
- 11. Jones R., Ougham H., Thomas H. and Waaland S. (2013) The Molecular Life of Plants. Wiley Blackwell.

- 12. Krishnamurthy K.V. (1988) Methods in Plant Histochemistry. S. Viswanathan Printers & Publishers.
- 13. Lyndon R.F. (1990) Plant Development: The Cellular Basis. (Topics in Plant Physiology, Vol. 3) Springer Publications.
- 14. Leyser O. and Day S. (2009) Mechansims in Plant Development. Wiley Blackwell.
- 15. Raghavan V. (2000) Developmental Biology of Flowering Plants. Springer Verlag.
- 16. Wada M., Shimazaki K., Iino M. (2005). Light sensing in plants. Springer.
- 17. Wareing P. F. and Philips I. D. J. (1981) Growth and Differentiation in plants. Pergamon Press
- 18. Wolpert L., Tickle C. and Arias A. M. (2015) Principles of Development. (5th Edition) Oxford University Press.

BOT 553 MJ Plant Ecology (2 Credits: 30 Lectures)

Credit 1:	Population Ecology	15L
1	Concept and scope of Ecology	1L
2	Autecology, Synecology and Macroecology	1L
3	Ecological Models:Concepts, classification, model building and	1L
	tools	
4	Molecular Ecology: Concept, tools, applications	2 L
5	Population Ecology: Characteristics of population	1L
6	Ecological limits and size of the population	2L
7	Life history strategies and evolution, CSR triangle	2L
8	Metapopulation: Concept, types and dynamics, theory of island	3L
	biogeography	
9	Extinction events, population viability analysis	2L
Credit 2:	Community Ecology	15L
1	Concept, niche, ecotone and edge effect, evolution and coevolution	3L
2	Plant-plant interactions:types, epiphytic, parasitism and allelopathy	3L
3	Intra- and inter-specific interactions: competition, predation,	2 L
	herbivory	
4	Community structure, genetic and species diversity	2L
5	Qualitative and quantitative analysis of community	2 L
6	Physiognomy and phenology of community	1L
7	Plant community in changing environment:disturbance, climate	2 L
	change and invasion	

- 1. Begon, M., Townsend, C. R. and Harper, J. L. (2005). *Ecology: From individuals to Ecosystems* 4th edition, Wiley-Blackwell.
- 2. Odum, E. P. (2007) Fundamentals of Ecology, 5th edition, Thomson books.
- 3. Coleman, D.C., Crossley, D. A. and Handrix, P. F (2004) *Fundamentals of Soil Ecology*, 2ndedition, Elsevier academic press.
- 4. Ambhast, R. S. (1998) A Text Book of Plant Ecology, 9th edition, Friend and Co.
- 5. Canter L (1996) *Environmental Impact Assessment*, 2nd Edition, McGraw Hill Publishing Company.
- 6. Gurevitch, J., Scheiner, S. M. and Fox, G. A. (2006) *The Ecology of Plants*, Sinauer Associates.
- 7. Hynes, H. B. N. (1978) Biology of Polluted Water, 1st edition, Liverpool University Press.

- 8. Sutherland, W. J. (Ed.). (2006). *Ecological Census Techniques: AHandbook*. Cambridge University Press.
- 9. Mittelbach, G. G., & McGill, B. J. (2019). Community Ecology. Oxford University Press.
- 10. Trewavas, A. (2014). Plant Behaviour and Intelligence. OUP Oxford.
- 11. Wohlleben, P. (2016). The hidden life of trees: What they feel, how they communicate—Discoveries from a secret world (Vol. 1). Greystone Books.
- 12. Schulze, E. D., Beck, E., Buchmann, N., Clemens, S., Müller-Hohenstein, K. and Scherer-Lorenzen (2019). *Plant Ecology*. Springer
- 13. Misra R and Puri GS (2018). *Indian Manual of Plant Ecology*. Scientific Publishers (India)
- 14. Jose, S., Singh, H. P., Batish D. R. and Kohli, R.K. (2013). Invasive Plant Ecology. CRC Press.
- 15. Pugnaire, F.I. and Valladares, F. (2007). Functional Plant Ecology. CRC Press
- 16.Hasanuzzaman, M., Fujita, M., Oku, H, andTofazzal Islam, M. (2019). *Plant Tolerance to Environmental Stress*. CRC Press
- 17. Dighton, J. (2018). Fungi in Ecosystem Processes. CRC Press
- 18. Cronk, J. K. and Siobhan Fennessy, M. (2001). Wetland Plants. CRC Press
- 19. Lemon, E. R. (2019). *CO2 and Plants*. The Response of Plants to Rising Levels of Atmospheric Carbon Dioxide. CRC Press
- 20. Davet, P. (2004). Microbial Ecology of Soil and Plant Growth. CRC Press
- 21. Schulze, E.D., Beck, E. and Muller-Hohenstein, K. (2002). Plant Ecology. Springer

	BOT 554 MJ Cell Biology (2 Credits: 30 Lectures)	
Credit 1: Co	ell organelles, cell cycle and senescence	15L
1	Cell wall: Biogenesis, ultra-structure, primary and secondary wall, cell expansion and elongation, functions	2 L
2	Cell membranes:molecular organization, transport of ions across membranes, membrane transport proteins, structure and role of plasmodesmata	2L
3	Cell organelles: structure and function of vacuole, ER, mitochondria, chloroplast, Golgi complex, nucleus	4L
4	Cell cycle:phases of cell cycle, functional importance, check points, molecular events and regulation of cell cycle	3L
5	Senescence, programmed cell death, apoptosis, receptors and other proteins involved in selective autophagy, intracellular homeostasis	4L
Credit 2: S	Signal transduction	
1	Signal transduction: Types of receptors, G-proteins and G-protein coupled receptors	4L
2	Phospholipid signaling, Ca ²⁺ calmodulin cascade, diversity in protein kinases and phosphatases, secondary messengers, regulation of signaling pathways	6L
3	Specific signaling mechanisms: biotic and abiotic stress, ABA induced stomatal closure	3L
4	Nuclear: organelle signaling during plastid development	2L

BOT 555 MJ Molecular Biology-1 (2 Credits: 30 Lectures) Credit 1: DNA and RNA DNA structure: types of base pairing, unusual structures, topology Melting and reassociation of DNA, Cot curves and kinetic complexity of DNA. Organization of genomes, repetitive and

and gene expression, gene duplication and divergence

unique sequences, C value paradox, number of genes, rot curves

positioning.histone modifications.chromosome organization.

Packaging of genomes in nuclei, structure of chromatin, nucleosome

centromeres, telomeres	
Initiation, elongation and termination of DNA replication, molecular machinery of DNA replication in prokaryotes and eukaryotes	3L
eukaryotes	
RNA structure: modified bases, pairing, secondary structure	1L

15L

2L

3L

3L

2L

6	Transcription units, RNA polymerases, initiation, elongation and	3L
	termination of transcription in prokaryotes and eukaryotes	
Credit 2: Pro	otein synthesis and translocation 15L	
1	Protein synthesis: tRNA charging, ribosomal organization.	5L
	Initiation, elongation and termination of protein synthesis in	
	prokaryotes and eukaryotes, proof reading	
2	Post-translational processing of proteins, protein modifications.	3L
	Chaperones and protein folding	
3	Proteases, ubiquitination and degradation of proteins by proteasomes	2L
4	Protein targeting in cell organelles and secretory proteins	3L

Reference books

3

4

5

- 1. Genes IX– Benjamin Lewin, Jones and Bartlett, 2008
- 2. Genes X– Benjamin Lewin, Jones and Bartlett, 2011
- 3. Molecular Biology of the Cell Alberts, B, Bray, D, Raff, M, Roberts, K and Watson JD, Garland Publishers, 1999
- 4. Principles of Biochemistry Lehninger, W.H. Freeman and Company, 2005

Seed-storage proteins in cereals and legumes

Prad	BOT 556 MJP Practicals on BOT 551, 552, 553 MJ cticals based on BOT MJ 551 Taxonomy III (Angiosperms)	
1	Identification and study of plant species using taxonomic tools	2P
2	Preparation of herbarium specimens, documentation and digitization (physical vs. virtual)	2P
3	Studies on the following Classes as per Bentham and Hooker's system of classification at least one family from each group/class/order and preparation of artificial keys for identification of any two unknown specimens:	

	Dicotyledons:	7P
	a. Polypetalae: Thalamiflorae, Disciflorae, Calyciflorae	, <u></u>
	b. Gamopetalae: Inferae, Heteromerae, Bicarpellatae	
	c. Monochlamydae: Curvembryae, Multiovulateaquaticae,	
	Multiovulateterrestris, Microembryae, Daphniales,	
	Achlamydosporae, Unisexuales, Ordines anomali.	
	Monocotyledones:	
	a. Microspermae b. Epigynae c. Coronariae d. Calycinae e.	4P
	Nudiflorae f.Apocarrae g. Glumaceae	
4	Identification of economically important plants	3P
5	Ex-situ conservation methods of biodiversity – through seed,	2P
	vegetative methods.	
	(any one plant species per technique)	
	Practicals based on BOT MJ 552 Plant Development-I	5P
1	Isolation of vegetative and reproductive apical meristems and their	1 P
	comparison	
2	Comparative studies on stomatal types in dicots and monocots	1P
3	Observation of epidermal (trichomes, glands and lenticels) and	1 P
	secretory (nectaries and laticifers) structures	
4	Histochemical comparison of vegetative and reproductive	2P
	shoot apex	
	Practicals based on BOT MJ 553 Plant Ecology	
1	Determination of minimum size of sampling unit for studying	2P
	specific plant community	
2	Determining frequency, density, abundance and Importance Value	3P
	Index (IVI) of the species in a plant community	
3	Calculating species richness, similarity, diversity indices, cluster	2P
	analysis and coordination in different plant communities	
4	Analyses and interpretation of plant population data	1P
5	Effect of leaf leachates on seed germination/saplings	2P
6	Isolation and observation of root-associated microbes	2P
7	Study of stratification and physiognomy of a plant community	1P
8	Determination of similarity and association index	1P
	BOT MJP 557 Practicals based on BOT 554 and 555 MJ	
1	Practicals based on BOT MJ 604 Cell Biology Isolation of chloroplast fraction for:	2P
1	Isolation of chloroplast fraction for: a. Studying Hill reaction	∠٢
	b. Measuring size and number of broken and intact chloroplast	
2	Cytochemical studies of special cell types: guard cells, senescent	3P
4	cells, bundle sheath cells, meristematic cells, laticiferous cells,	31
	glandular cells	
3	To induce and study senescence in leaf samples	2P
5	To induce plasmolysis and observe plasmodesmatal connections in	1P
4		
4	plant cells	11

	Practicals based on BOT MJ 605 Molecular Biology	5P
1	Isolation and quantification of plasmid DNA	2P
2	Electrophoretic separation of plasmid isoforms	1P
3	Isolation and quantification of plant genomic DNA	2P
4	Effect of temperature and alkali on absorbance of DNA	1P
5	Isolation of seed-storage proteins from leguminous seeds and quantitation of each fraction	2P
6	SDS-PAGE-based separation of globulins and relative molecular weight determination	3P

SEMESTER II: ELECTIVE COURSES

BOT 560 MJ Plant Tissue Culture (2 Credits: 30 Lectures)

Credit 1: Fu	ndamentals of plant tissue culture (PTC)	15L
1	History and conceptsunderlying PTC	2L
2	Laboratory set up: Sterility, Growth media, Nutrients and Plant Growth Regulators	2L
3	Micropropagation: selection of explants, media, growth regulators, stages and case studies	5L
4	Callus and cell suspension cultures: selection of explants, media, growth regulators, growth kinetics, bioreactors and case studies	6L
Credit 2: Ap	plied aspects of PTC	15L
1	Somaclonal variation, androgenesis, germplasm conservation and cryopreservation	5L
2	Somatic embryogenesis and synthetic seed production	2L
3	Protoplast isolation and culture, somatic hybridization	2L
4	Plant production: scaling up, cost and budget-related aspects	3L
5	Export potential of PTC-based products and quality control	3L

- 1. Bajaj Y. P. S. Ed. (1988) Biotechnology in Agriculture and Forestry vol. 4, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo.
- 2. Chandra S., Lata H. and Varma A. (2013) Biotechnology for Medicinal Plants. Micropropagation and Improvement. Springer-Verlag, Berlin, Heidelberg.
- 3. Charlwood B. V. and Rhodes M. V. Ed. (1999) Secondary products from plant tissue culture. Clarendon Press, Oxford.
- 4. Cseke L. J., Kirakosyan A., Kaufman P. B., Warber S., Duke J. A. and Brielman H. L. (2006) Natural Products from Plants. 2nd Edition, CRC Press, Taylor & Francis Group.

- 5. Das H. K. Ed. (2007) Textbook of Biotechnology. 3rd Edition. Wiley India (P) Ltd.
- 6. Fu T.-J., Singh G. and Curtis W. R. (2000) Plant Cell and Tissue Culture for the Production of Food Ingredients. Springer International Edition. Springer (India) Pvt. Ltd., New Delhi.
- 7. Jain S. M. and Saxena P. K. (2009) Protocols for in vitro Cultures and Secondary Metabolite Analysis of Aromatic and Medicinal Plants. Humana Press.
- 8. Kurz W.G.W. Ed. (1989) Primary and Secondary Metabolism of Plant and Cell Cultures, Springer Verlag, Berlin.
- 9. Morris, A.H. et al., Eds (1986) Secondary Metabolism in Plant Cell Cultures, Cambridge Univ. Press, Cambridge, U.K.
- 10. Trigiano R. N. and Gray D. J. (1999) Plant Tissue Culture Concepts and Laboratory Exercises. 2nd Edition. CRC Press, Boca Raton, New York.
- 11. Verpoorte R. and Alferman H. W. (Editors) (2003) Metabolic engineering of plant secondary metabolites. Kluwar Academic Publishing.

metal	bolites. Kluwar Academic Publishing.	
	BOT 567 MJP Practicals Based on BOT 560 MJ Plant Tissue Cultu (2 Credits: 15 Practicals)	re
1	Preparation of nutrient media, sterilization of glassware and media, maintenance of aseptic conditions	2P
2	Micropropagation of <i>Withania</i> sp./Gerbera/ <i>Gladiolus</i> /Carnation: explant selection, surface sterilization, media preparation, inoculation, incubation and sub-culturing	5P
3	Callus culture of sugar beet: explant selection, surface sterilization, media preparation, inoculation, incubation and sub-culturing	4P
4	Extraction and separation of pigments from beet root callus	3P
5	Standardization of a low cost micropropagation protocol	4P
C. 14 1. 1	BOT 561 MJ Plant-Organism Interaction (2 Credits: 30 Lectures)	15L
Creatt 1: 1	Plants interacting with macro-organisms	15L
1	Beneficial interaction: Plant-pollinator interaction, pollination mutualism (obligate and facultative). Interrelationship between floral morphology, chemistry and pollination	3L
2	Different insect herbivores and their feeding patterns, plant defense strategies, growth-defense trade-offs. Plant-mollusks interaction	4L
3	Plant defense mechanisms against herbivores: defense signaling, defense moleculesand cross-talk,tritrophic interactions	5L
4	Below ground interaction: Plant-nematode interaction- recognition, signaling, mechanism, defense molecules against nematodes	3L

Credit 2: P	Plants interacting with micro-organisms	15L
1	Lichens: types, symbiotic partners, relationship and mutualism	2L
2	Endophytes: types, association, role in plant growth promotion and alleviation of biotic and abiotic stress	4L
3	Mycorrhizal symbiosis: ecto- and endo mycorrhizae, mycorrhizal induced resistance, role in plant growth promotion and alleviation of biotic and abiotic stress, tritrophic interactions	5L
4	Nodulating bacteria: <i>Rhizobium</i> , nod factors, mechanism of nitrogen fixation	1L
5	Nematophagous fungi: diversity, physical and biochemical interactions between nematodes and fungi, biological control	3L

- 1. Hormonal Cross-Talk, Plant Defense and Development. Plant Biology, Sustainability and Climate Change (2023)- Edited by: AzamalHusen and Wenying Zhang.
- 2. Plant-Microbe Interaction Recent Advances in Molecular and Biochemical Approaches (2023) Volume 2: Agricultural Aspects of Microbiome Leading to Plant Defence. Edited by: Prashant Swapnil, Mukesh Meena, ... Andleeb Zehra.
- 3. Variable Plants and Herbivores in Natural and Managed Systems (1983) Edited by: Robert F. Denno and Mark S. McClure
- 4. Herbivores: Their Interactions with Secondary Plant Metabolites (1991) Volume I: The Chemical Participants. Second Edition. Edited by: Gerald A. Rosenthal and May R. Berenbaum.
- 5. Herbivores: Their Interactions with Secondary Plant Metabolites (1992). Volume II: Ecological and Evolutionary Processes. Second Edition. Edited by: Gerald A. Rosenthal and May R. Berenbaum.
- 6. Fungal endophytes in plants (2018). Edited by Gary A. Strobel.
- 7. Microbial endophytes (2020) Functional Biology and Applications. eBook ISBN:9780128226650. Edited by: Ajay Kumar. Radhakrishnan A.K.
- 8. Mycorrhizal Symbiosis (2008). 3rd edition. Sally Smith and David Read. eBook ISBN:9780080559346.
- 9. Arbuscular Mycorrhizae Interactions in Plants, Rhizosphere, and Soils (2002). Edited By: AK Sharma and BN Johri
- 10. Molecular Mycorrhizal Symbiosis (2016). Online ISBN: 9781118951446 |DOI:10.1002/9781118951446. Edited by: Francis Martin

В	OT 568 MJP Practicals based on BOT 561 MJ Plant-Organism Inter (2 Credits: 15 Practicals)	action
1	Study of different feeding guilds	1P
2	Effect of herbivory on plant photosynthesis and growth	2P
3	Estimation of levels of plant defense molecules before and after herbivory	3P
4	Effect of host and non-host plants on herbivore performances	3P
5	Estimation of flavonoids in nematode infested plants	2P
6	Effect of plant defense metabolites on insect growth	3P
7	Estimation of green leaf volatiles (GLVs) upon herbivory by GCMS	3P
8	Isolation of Arbuscular Mycorrhizal Fungi (AMF) from rhizosphere and determination of percent colonization in plant roots	2P
9	In vivo culture, maintenance of AMF and its effect on plant growth	3P
10	Observation and documentation of various lichen forms in nearby forest area	2P
11	Isolation, <i>in vitro</i> culture and testing of nitrogen fixing ability of nodulating and non-nodulating bacteria	2P
12	Isolation and observation of nematodes from rhizospheric soil/root galls	2P
	BOT 562 MJ Plant Immunity (2 Credits: 30 Lectures)	
Credit 1:	Pathogen perception, defense signaling and resistance	15L
1	Overview of host pathogen interaction, plant pathogens, pests and plant diseases	1L
2	Host and non-host defenses: Pre-existing and induced structural and chemical defenses	2L
3	Active defense: pathogen recognition (PAMPs and DAMPs), plant receptors (PRRs and NLRs), PTI, ETI, resistosomes	3L

4		
4	Signal transduction pathways activated during plant resistance to pathogens, role of MAPK signalling, role of SA and JA signalling	4L
5	Transcriptional reprogramming in plant defense and role of transcription factors	3L
6	Role of pathogenesis related proteins (PRPs) and specialized secondary metabolites in defense	2L
Credit 2: Pr	riming, induced resistance and small RNAs	15L
1	Concept of priming, induced resistance: SAR and ISR, chemical induced resistance	4L
2	Phytohormone cross talk in SAR and ISR	2L
3	Phytohormone cross talk in SAR and ISR Epigenetic control of plant defense mechanism	2L 2L
_	•	

- 1. Agrios Plant Pathology, 6th Edition, Editor Richard Oliver
- 2. Plant Pathology and Plant Pathogens, John A. Lucas, WILEY
- 3. Biochemistry and Molecular Biology of Plants, 2nd Edition, Bob B. Buchanan, (Editor), Wilhelm Gruissem (Editor), Russell L. Jones (Editor), WILEY

BOT 569 MJP Practicals based on BOT 562 MJ Plant Immunity		
Culture and maintenance of fungal pathogens	2P	
Artificial inoculation of fungal pathogen and disease scoring	3P	
Detection of H ₂ O ₂ accumulation in infected plant tissue by DAB staining	1P	
Detection of callose deposition in infected plant tissue	1P	
Time course evaluation of antioxidative enzyme activity during fungal infection	3P	
Expression analyses of defense genes in infected plant tissue	4P	
	Culture and maintenance of fungal pathogens Artificial inoculation of fungal pathogen and disease scoring Detection of H ₂ O ₂ accumulation in infected plant tissue by DAB staining Detection of callose deposition in infected plant tissue Time course evaluation of antioxidative enzyme activity during fungal infection	

BOT 563 MJ Organic Farming (2 Credits: 30 Lectures) 15L **Credit 1: Fundamentals of organic farming** 1 Historical overview: Importance, principles and advantages of **2**L organic farming 2 Organic farming practices: Crop rotation, diversification, 5L composting, vermicomposting, green manuring, biofertilizers, microbial consortia, IPM,IKS in organic farming, biodynamic farming, permaculture, community supported agriculture, biomass utilization Organic farming for specific crops: Cereals, pulses, millets, 3 5L vegetables, spices, fruits, medicinal and aromatic plants Plant resources required forbee keeping (apiculture) and sericulture 4 2LCredit 2: Marketing and certification, Government policies15L 1 Social aspects of organic farming, organic farming certification 5L process, organic market trends in India, marketing organic produces, organizations and associations involved 2 Government policies, national programmes and support for organic 5L farming in India, incentives and subsidies, government schemes Challenges and future of organic farming, solutions and 3 5L innovations, future prospects and opportunities, success stories/case studies, organic producer companies/ farmers/ NGOs

- 1. Awasthi, L. P. (Ed.). (2021). Biopesticides in organic farming: recent advances.
- 2. Barbieri, P., Starck, T., Voisin, A. S., &Nesme, T. (2023). Biological nitrogen fixation of legumes crops under organic farming as driven by cropping management: A review. *Agricultural Systems*, 205, 103579.
- 3. Biswas, S., Ali, M. N., Goswami, R., & Chakraborty, S. (2014). Soil health sustainability and organic farming: A review. *Journal of Food Agriculture and Environment*, 12(3-4), 237-243.
- 4. Chandrashekar, H. M. (2010). Changing scenario of organic farming in India: An overview.
- 5. Das, S., Chatterjee, A., & Pal, T. K. (2020). Organic farming in India: a vision towards a healthy nation. *Food Quality and Safety*, 4(2), 69-76.
- 6. Das, S., Chatterjee, A., & Pal, T. K. (2020). Organic farming in India: a vision towards a healthy nation. *Food Quality and Safety*, 4(2), 69-76.
- 7. Dhiman, V. (2020). Organic farming for sustainable environment: Review of existed policies and suggestions for improvement. *International Journal of Research and Review*, 7(2), 22-31.

- 8. Joachim, S. (2006). Review of history and recent development of organic farming worldwide. *Agricultural sciences in China*, 5(3), 169-178.
- 9. Lakner, S., &Breustedt, G. (2017). Efficiency analysis of organic farming systems a review of concepts, topics, results and conclusions. *German Journal of Agricultural Economics*, 66(2), 85-108.
- 10. Lammerts van Bueren, E. T., Jones, S. S., Tamm, L., Murphy, K. M., Myers, J. R., Leifert, C., & Messmer, M. M. (2011). The need to breed crop varieties suitable for organic farming, using wheat, tomato and broccoli as examples: A review. *NJAS: Wageningen Journal of Life Sciences*, 58(3-4), 193-205.
- 11. Lund, V., & Algers, B. (2003). Research on animal health and welfare in organic farming—a literature review. *Livestock Production Science*, 80(1-2), 55-68.
- 12. Lynch, D. H., MacRae, R., & Martin, R. C. (2011). The carbon and global warming potential impacts of organic farming: does it have a significant role in an energy constrained world?. *Sustainability*, 3(2), 322-362.
- 13. Mukherjee, K., Konar, A., & Ghosh, P. (2022). Organic farming in India: A brief review. *International Journal of Research in Agronomy*, 5(2), 113-118.
- 14. Reddy, B. S. (2010). Organic farming: status, issues and prospects—a review. *Agricultural Economics Research Review*, 23(347-2016-16927), 343-358.
- 15. Röös, E., Mie, A., Wivstad, M., Salomon, E., Johansson, B., Gunnarsson, S., ... & Watson, C. A. (2018). Risks and opportunities of increasing yields in organic farming. A review. *Agronomy for sustainable development*, 38, 1-21.
- 16. Sani, M. N. H., & Yong, J. W. (2021). Harnessing synergistic biostimulatory processes: A plausible approach for enhanced crop growth and resilience in organic farming. *Biology*, 11(1), 41.
- 17. Sapbamrer, R., &Thammachai, A. (2021). A systematic review of factors influencing farmers' adoption of organic farming. *Sustainability*, *13*(7), 3842.
- 18. Singh, R., Jat, N. K., Ravisankar, N., Kumar, S., Ram, T., & Yadav, R. S. (2019). Present Status and Future Prospects of Organic Farming in India. *Sustainable Agriculture*, 275.
- 19. Soni, R., & Sharma, A. (2016). Vermiculture technology: a novel approach in organic farming. *Indian Horticulture Journal*, 6(1), 150-154.
- 20. van Bruggen, A. H., Gamliel, A., &Finckh, M. R. (2016). Plant disease management in organic farming systems. *Pest Management Science*, 72(1), 30-44.
- **21.** Yadav, S. K., Babu, S., Yadav, M. K., Singh, K., Yadav, G. S., & Pal, S. (2013). A review of organic farming for sustainable agriculture in Northern India. *International Journal of Agronomy*, 2013.

	BOT 570 MJP Practicals based on BOT 563 MJ Organic Farm (2 Credits: 15 Practicals)	ing
1	Designing and planning of organic farm and maintenance of field record	1P
2	Preparation of vermicompost/green manure/organic manure and analyses of N, P, K	2P
3	Preparation of bacterial biofertilizer and testing its <i>in vitro</i> plant growth promoting activity	3P

4	Identification of pests and diseases and their biocontrol using biopesticides	2P
5	Preparation of <i>Panchgavya</i> , <i>Beejamrut</i> and <i>Jeevamrut</i> and its effect on plant growth promotion	2P
6	Physico-chemical analyses of soil	2P
7	Procedure for documentation and certification of organic products	1P
8	Visit to a biofertilizer manufacturing unit, organic farm and market	2P
	BOT 564 MJ Carbon Credit and Environment Impact Assessment (2 Credits: 30 Lectures)	
Credit 1: 0	Carbon and green credit	15L
1	Concept and significance, green credit importance, greenhouse gases, global warming andnet zero concept	2L
2	Carbon credit initiative, Paris climate agreement, Glasgow COP26 climate change summit	2L
3	Carbon trading credit and carbon market, status in developed and developing countries	2L
4	Carbon trading emissions under Kyoto protocol, CDM, emission trading in India	2L
5	Plants and mitigation of pollution	1L
6	Green belt and its significance	1L
7	Modelling of greenbelt and plantation design	1L
8	Nursery techniques and plantation methods	1L
9	Acts and regulations related to carbon credit and green credit, green climate fund	1L
10	Preparation of project proposal, procedure for tendering related to carbon credit, central pollution control board, various ministries, their role, activities and schemes	2L
11	Organizations, Institutes, NGOs working in the field of carbon credit	1L
Credit 2: I	Environmental Impact Assessment	15L
1	Concept, impact analysis, assessment and impact statement	2L
2	EIA and its importance in project planning process	1L

3	Contents of EIA: project description, anticipated environmental impacts and mitigation measures	2L
4	Environmental monitoring programme, project benefits, environmental cost benefit analysis	2L
5	Environment attributes: air, water, noise, land and soil	2L
6	Monitoring of physical environmental parameters, collection and interpretation of baseline data for various environmental attributes	2L
7	Application of various models for prediction of impact on air environment, water environment, noise environment and land	2L
8	EIA notification September 2006 and amendments: categorization of projects, procedure for environmental clearance, public participation in environmental decision-making process	2L
BOT 571	MJP Practicals based on BOT 564 MJ Carbon Credit and Environ Assessment (2 Credits: 15 Practicals)	ment Impact
1	Estimation of carbon credit by non-destructive method for determining biomass/carbon assimilation of trees	2P
2	Estimation of water and waste management-based carbon credit of campus/society/industry	2P
3	Estimation of carbon credit based on air pollution reduction	1P
4	Assessment of carbon foot-print of Botanic garden/society/industry	2P
5	Demonstration of silviculture practices for green belt development	3P
6	Collection and interpretation of meteorological data for baseline study of EIA	2P
7	Collection and interpretation of air and noise pollution data	1P
9	Assessment of physico-chemical properties of surface and ground water	2P
10	Assessment and interpretation of soil quality baseline data	1P
11	Collection and interpretation of baseline ecological and biodiversity data	1P
12	Case studies on EIA for industries and infrastructure projects	2P

BOT 565 Millet-based Nutraceuticals (2 Credits: 30 Lectures) **Credit1: Introduction to millets** 1 Classification: major, minor, pseudo-millets 2LGlobal scenario of millet cultivation, millet producing states in 2 **4**L India, millet map of India, Indian Knowledge System (IKS): Description of medicinal and health benefits of millets in Avurvedic texts (balancing *doshas*) 3 Cultivation practices of millets in India: broadcasting, 2Ltransplanting, inter-cropping etc., major pests and pathogens. control measures 4 Nutritional parameters (dietary fiber, proteins, carbohydrates, **2L** lipids, vitamins, micronutrients etc.) of different millets and their comparison with other cereals 5 **2L** Millets in the Indian rural and urban diet, consumption preferences, role of millets in reducing nutrient deficiency Agronomic trait improvement in millets, nutrigenomics and 6 3L nutrigenetics **Credit 2: Nutraceutical value of millets** Introduction to nutraceuticals, formulations, plant-based 3L 1 nutraceuticals 2 Overview of polyphenol, flavonoid, phytic acid, carotenoid, 3Ltocopherol, phytosterol, arabinoxylan content in millets 3 Health benefits of millets: strengthening bones, positive effect on 3L nervous system, maintaining cardiac health, managing type-II diabetes, lowering cholesterol, promoting immunity etc. Anti-oxidant and anti-aging properties of finger millet 4 **1**L Processing of millets: dehusking/decortication, milling, soaking, 5 3L germination, malting, fermentation, cooking, roasting etc. Start-up opportunities: manufacturing value-added products, 6 **2L** branding, product development and marketing

Suggested References

https://www.fssai.gov.in/upload/uploadfiles/files/Guidance_Notes_Version_2_Millets_29_01_202_0.pdf

Srivastava Rakesh K., Satyavathi C. Tara, Mahendrakar Mahesh D., Singh Ram B., Kumar Sushil, Govindaraj Mahalingam, Ghazi Irfan A.Addressing Iron and Zinc Micronutrient Malnutrition Through Nutrigenomics in Pearl Millet: Advances and Prospects.Frontiers in Genetics 12 (2021) https://www.frontiersin.org/articles/10.3389/fgene.2021.723472

Gowda, N.A.N.; Siliveru, K.; Prasad, P.V.V.; Bhatt, Y.; Netravati, B.P.; Gurikar, C. Modern Processing of Indian Millets: A Perspective on Changes in Nutritional Properties. Foods 2022, 11, 499. https://doi.org/10.3390/foods11040499

Zhang Z, Li X, Sang S, McClements DJ, Chen L, Long J, Jiao A, Jin Z, Qiu C. Polyphenols as Plant-Based Nutraceuticals: Health Effects, Encapsulation, Nano-Delivery, and Application. Foods. 2022 Jul 23;11(15):2189. doi: 10.3390/foods11152189. PMID: 35892774; PMCID: PMC9330871.

	BOT 572 MJP Practicals on BOT 565 Millet-based Nutraceuticals (2 Credits: 15 Practicals)	5
1	Estimation and comparison of total carbohydrates from finger millet and little millet	2P
2	Estimation of total nitrogen from finger millet by the Kjeldahl method	2P
3	Estimation and comparison of total lipid content in different millets	2P
4	Estimation of reducing sugars, total fibre and ash content in little millet	2P
5	Estimation of Fe, Ca, Mg in red and white landraces of finger millet	2P
6	Processing of millets for manufacturing value-added products (extruded snacks, noodles, flakes etc.) and assessment of their sensory attributes	3P
8	Malting of finger millet grains to prepare 'ragi-malt' and its nutritional analyses	2P
9	Visit to a millet-based local industry/minor millet cultivation in a tribal area	2P

BOT 566 MJ Aromatic Plants (2 Credits: 30 Lectures) **Credit 1: Aspects and Prospects** Aromatic Plants: Introduction, Diversity, Aspects and Prospects **2**L 2 Commercial names, Sources, Major Volatile Compounds 2L1L 3 Aromatic Herbs in Food 4 Bioactive Compounds, Processing, and Applications **2L** 5 Properties of bioactive compounds, recovery and applications 1L Spices and Condiments- Diversity, Cultivation and Utilization 2L 6 7 Application of essential oil- Aromatherapy, Aromatics, Perfume, **4**L Room Freshener, Deodorants, Cosmaceuticals, medicines, mosquito repellent, etc 8 Aroma mission, Government schemes, Processing unit 1L **Credit 2: Cultivation, processing and marketing** Agro-techniques for commercially important aromatic crops 5L found in various agro climatic regions (comparative account) 2 High yielding varieties and their characteristics 1L 3 Processing, extraction technologies, green extraction 5L technologies, encapsulation of recovered bioactives 4 Aromatic trade: documentation, sources, markets 1L5 Establishment of processing unit: procedure, cost and 1L requirements

References:

6

1. Aboudaou, M., Ferhat, M. A., Hazzit, M., Ariño, A., Djenane, D. (2018). Solvent free-microwave green extraction of essential oil from orange peel (*Citrus sinensis* L.): effects on shelf life of flavored liquid whole eggs during storage under commercial retail conditions. [Preprint].

Available at: https://www.preprints.org/manuscript/201801.0055/v12018010055 (Accessed August 15, 2018). doi: 10.20944/preprints201801.0055.v1

2L

- 2. Atal C.K & Kapur B.M. 1982. Cultivation and Utilization of Aromatic Plants. RRL, CSIR, Jammu.
- 3. Atal, C.K. and Kapur, B.M. 1982. Cultivation and Utilization of Aromatic Plants. Regional Research Laboratory, Jammu-Tawi, 815p.

Packaging, Trademark, Value addition, Marketing

- 4. Barata AM, Rocha F, Lopes V, Carvalho AM (2016) Conservation and sustainable uses of medicinal and aromatic plants genetic resources on the worldwide for human welfare. *Industrial Crops and Products* 88: 8–11. DOI: 10.1016/j.indcrop.2016.02.035.
- 5. Brenes, A.; Roura, E. Essential oils in poultry nutrition: Main effects and modes of action. *Anim. Feed Sci. Technol.* **2010**, *158*, 1–14.
- 6. Chatterjee SK. Cultivation of medicinal and aromatic plants in India A commercial approach, Acta Hortic. 2001; 576:191-202.
- 7. Chopra, R.N., Nayar, S.L. and Chopra, I.C. 1956. Glossary of Indian Medicinal Plants. Council of Scientific and Industrial Research, New Delhi, 330p
- 8. CSIR, 1953. The Wealth of India, Industrial Products Part III D-E. Council of Scientific and Industrial Research, New Delhi, 250p
- 9. CSIR, 1966. The Wealth of India. Raw Materials Vol. VIII. Council of Scientific and Industrial Research, New Delhi
- 10. Farooqi, A.A & Sriram AH. 2000. Cultivation Practices for Medicinal and Aromatic Crops. Orient Longman Publ.
- 11. Farooqi, A.A, Khan MM & Vasundhara M. 2001. Production Technology of Medicinal and Aromatic Crops. Natural Remedies Pvt. Ltd.
- 12. https://dmapr.icar.gov.in/
- 13. https://www.cimap.res.in/
- 14. Joseph. 2007. Aomatic Plants. New India Publ. Agency.
- 15. Joy, P. P., Thomas, J., Mathew, S., Jose, G. and Joseph, J. 2001. Aromatic plants. In: Tropical Horticulture Vol. 2. Bose, T.K., Kabir, J., Das, P. and Joy, P.P. (eds.), NayaProkash, Calcutta, India, pp 633-733
- 16. Kharat, T.D., Mokat, D.N. (2021). Comparative Study of Essential Oil Found in Roots of Wild and Cultivated Drug Anantmool. *Journal of Essential Oil Bearing Plants*, 24 (6), 1227-1234.
- 17. King, J. W. (1990). Applications of capillary supercritical fluid chromatography-supercritical fluid extraction to natural products. *J. Chromatogr. Sci.* 28 (1), 9–14. doi: 10.1093/chromsci/28.1.9
- 18. Lawrence, B.M. 1980. New trends in essential oils. Perfumer and Flavorist, 5: 6-16.
- 19. Mathela C.S., Kharkwal H., Shah G.C. Essential oil composition of some Himalayan *Artemisia* species. *J. Essent. Oil Res.* 1994;6:345–348.
- Misra, B.C., Rao Y.R., Reeta M., Panighrahi M.R. and Moharana, C. 1998. Economic importance of Kewda (Pandanus odoratimuss) in Ganjam district. Indian Perfumer, 42: 128-130
- 21. Mokat, D.N., Kharat, T.D. (2022). Essential Oil Composition in Leaves of Ocimum Species Found in Western Maharashtra, India. *Journal of Essential Oil Bearing Plants*, 25 (1), 1-8.
- 22. Padalia R.C., Verma R.S., Chauhan A., Goswami P., Chanotiya C.S. Chemical analysis of volatie oils from west Himalayan Pindrow fir *Abiespindrow. Nat. Prod. Commun.* 2014;9:1181–1184.
- 23. Perumalla, A.V.S.; Hettiarachchy, N.S. Green tea and grape seed extracts-Potential applications in food safety and quality. *Food Res. Int.* **2011**, *44*, 827–839.
- 24. Rajeswara Rao BR, Rajput DK, Nagaraju G, Adinarayana G. Scope and potential of medicinal and aromatic plants products for small and medium enterprises. Journal of Pharmacognosy. 2012; 3(2):112-114.
- 25. Rajeswara Rao BR. Cultivation of Indian Medicinal and Aromatic Plants Present Status and Future Prospects, National symposium on conservation, cultivation and biotechnology of medicinal plants. 2010; 1:11-15.

- 26. Ramawat KG & Merillon JM. 2003. BioTechnology-Secondary Metabolites. Oxford & IBH.
- 27. Satyal P., Paudel P., Poudel A., Dosoky N.S., Moriarity D.M., Vogler B., Setzer W.N. Chemical compositions, phytotoxicity, and biological activities of *Acorus calamus* essential oils from Nepal. *Nat. Prod. Commun.* 2013;8:1179–1181.
- 28. Shaikh, M.N., Kasabe, U.I., Mokat, D.N. (2018). Influence of Rhizosphere Fungi on Essential Oil Production and Menthol Content in Mentha arvensis L.. *Journal of Essential Oil Bearing Plants*, 21 (4), 1076-1081.
- 29. Shaikh, M.N., Suryawanshi, Y.C., Mokat, D.N. (2019). Volatile Profiling and Essential Oil Yield of Cymbopogon citratus (DC.) Stapf Treated with Rhizosphere Fungi and Some Important Fertilizers. *Journal of Essential Oil Bearing Plants*, 22 (2), 484-492.
- 30. Slikkerveer LJ. The challange of non-experimental validation of MAC plants. In: Bogers RJ, Craker LE, Lange D, editors. *Medicinal and Aromatic Plants: Agricultural, Commerical, Ecological, Legal, Pharmacological and Social Aspects.* Springer; Dordrecht, The Netherlands: 2006.
- 31. Suryawanshi, Y.C., Mokat, D.N. (2019). Chemical Composition of Essential Oil of Madhucalongifolia var. latifolia (Roxb.) A. Chev. Flowers. *Journal of Essential Oil Bearing Plants*, 22 (4), 1034-1039.
- 32. Suryawanshi, Y.C., Mokat, D.N. (2019). GCMS and elemental analysis of Madhucalongifolia var. latifolia seeds. *International Journal of Pharmaceutical Sciences and Research*, 10 (2), 786-789.
- 33. Ushir Y.V., Tatiya A.U., Surana S.J., Patil U.K. Gas chromatography-mass spectrometry analysis and antibacterial activity of essential oil from aerial parts and roots of *Anisomelesindica* Linn. *Int. J. Green Pharm.* 2010;4:98–101.
- 34. Weiss, E.A. 1997. Essential Oil Crops, CAB International, New York, 600p.

BOT 573 MJP Practicals based on BOT 566 MJ Aromatic Plants (2 Credits: 15 Practicals)

1	Identification of aromatic plants including spices	2P
2	Identification of raw material and various value-added products	2P
3	Nursery techniques for propagation of citronella, vetiver, palmarosa and	2P
	geranium	
4	Agrotechniques of commercially important aroma crops	5P
5	Lab and commercial scale extraction methods of essential oils	3P
6	GC-MS analyses of lemon grass/mint/geranium/vetiver	3P
7	Preparation of value-added products such as perfume, room freshener,	4P
	deodorants, mosquito-repellent	
8	Project proposal writing, bank loan procedure	2P
9	Exposure to trading, wholesale and retail market	2P
10	Visits to processing industry/field	4P

- 1. Aboudaou, M., Ferhat, M. A., Hazzit, M., Ariño, A., Djenane, D. (2018). Solvent free-microwave green extraction of essential oil from orange peel (*Citrus sinensis* L.): effects on shelf life of flavored liquid whole eggs during storage under commercial retail conditions. [Preprint].
- 2. Atal C.K & Kapur B.M. 1982. Cultivation and Utilization of Aromatic Plants. RRL, CSIR, Jammu.

- 3. Atal, C.K. and Kapur, B.M. 1982. Cultivation and Utilization of Aromatic Plants. Regional Research Laboratory, Jammu-Tawi, 815p.
- 4. Barata AM, Rocha F, Lopes V, Carvalho AM (2016) Conservation and sustainable uses of medicinal and aromatic plants genetic resources on the worldwide for human welfare. *Industrial Crops and Products* 88: 8–11. DOI: 10.1016/j.indcrop.2016.02.035.
- 5. Brenes, A.; Roura, E. Essential oils in poultry nutrition: Main effects and modes of action. *Anim. Feed Sci. Technol.* **2010**, *158*, 1–14.
- 6. Chatterjee SK. Cultivation of medicinal and aromatic plants in India A commercial approach, Acta Hortic. 2001; 576:191-202.
- 7. Chopra, R.N., Nayar, S.L. and Chopra, I.C. 1956. Glossary of Indian Medicinal Plants. Council of Scientific and Industrial Research, New Delhi, 330p
- 8. CSIR, 1953. The Wealth of India, Industrial Products Part III D-E. Council of Scientific and Industrial Research, New Delhi, 250p
- 9. CSIR, 1966. The Wealth of India. Raw Materials Vol. VIII. Council of Scientific and Industrial Research, New Delhi
- 10. Farooqi, A.A & Sriram AH. 2000. Cultivation Practices for Medicinal and Aromatic Crops. Orient Longman Publ.
- 11. Farooqi, A.A, Khan MM & Vasundhara M. 2001. Production Technology of Medicinal and Aromatic Crops. Natural Remedies Pvt. Ltd.
- 12. https://dmapr.icar.gov.in/
- 13. https://www.cimap.res.in/
- 14. Joseph. 2007. Aomatic Plants. New India Publ. Agency.
- 15. Joy, P. P., Thomas, J., Mathew, S., Jose, G. and Joseph, J. 2001. Aromatic plants. In: Tropical Horticulture Vol. 2. Bose, T.K., Kabir, J., Das, P. and Joy, P.P. (eds.), NayaProkash, Calcutta, India, pp 633-733
- 16. Kharat, T.D., Mokat, D.N. (2021). Comparative Study of Essential Oil Found in Roots of Wild and Cultivated Drug Anantmool. *Journal of Essential Oil Bearing Plants*, 24 (6), 1227-1234.
- 17. King, J. W. (1990). Applications of capillary supercritical fluid chromatography-supercritical fluid extraction to natural products. *J. Chromatogr. Sci.* 28 (1), 9–14. doi: 10.1093/chromsci/28.1.9
- 18. Lawrence, B.M. 1980. New trends in essential oils. Perfumer and Flavorist, 5: 6-16.
- 19. Mathela C.S., Kharkwal H., Shah G.C. Essential oil composition of some Himalayan *Artemisia* species. *J. Essent. Oil Res.* 1994;6:345–348.
- 20. Misra, B.C., Rao Y.R., Reeta M., Panighrahi M.R. and Moharana, C. 1998. Economic importance of Kewda (Pandanus odoratimuss) in Ganjam district. Indian Perfumer, 42: 128-130
- 21. Mokat, D.N., Kharat, T.D. (2022). Essential Oil Composition in Leaves of Ocimum Species Found in Western Maharashtra, India. *Journal of Essential Oil Bearing Plants*, 25 (1), 1-8.
- 22. Padalia R.C., Verma R.S., Chauhan A., Goswami P., Chanotiya C.S. Chemical analysis of volatie oils from west Himalayan Pindrow fir *Abiespindrow. Nat. Prod. Commun.* 2014;9:1181–1184.
- 23. Perumalla, A.V.S.; Hettiarachchy, N.S. Green tea and grape seed extracts-Potential applications in food safety and quality. *Food Res. Int.* **2011**, *44*, 827–839.
- 24. Rajeswara Rao BR, Rajput DK, Nagaraju G, Adinarayana G. Scope and potential of medicinal and aromatic plants products for small and medium enterprises. Journal of Pharmacognosy. 2012; 3(2):112-114.

- 25. Rajeswara Rao BR. Cultivation of Indian Medicinal and Aromatic Plants Present Status and Future Prospects, National symposium on conservation, cultivation and biotechnology of medicinal plants. 2010; 1:11-15.
- 26. Ramawat KG & Merillon JM. 2003. BioTechnology-Secondary Metabolites. Oxford & IBH.
- 27. Satyal P., Paudel P., Poudel A., Dosoky N.S., Moriarity D.M., Vogler B., Setzer W.N. Chemical compositions, phytotoxicity, and biological activities of *Acorus calamus* essential oils from Nepal. *Nat. Prod. Commun.* 2013;8:1179–1181.
- 28. Shaikh, M.N., Kasabe, U.I., Mokat, D.N. (2018). Influence of Rhizosphere Fungi on Essential Oil Production and Menthol Content in Mentha arvensis L.. *Journal of Essential Oil Bearing Plants*, 21 (4), 1076-1081.
- 29. Shaikh, M.N., Suryawanshi, Y.C., Mokat, D.N. (2019). Volatile Profiling and Essential Oil Yield of Cymbopogon citratus (DC.) Stapf Treated with Rhizosphere Fungi and Some Important Fertilizers. *Journal of Essential Oil Bearing Plants*, 22 (2), 484-492.
- 30. Slikkerveer LJ. The challange of non-experimental validation of MAC plants. In: Bogers RJ, Craker LE, Lange D, editors. *Medicinal and Aromatic Plants: Agricultural, Commerical, Ecological, Legal, Pharmacological and Social Aspects.* Springer; Dordrecht, The Netherlands: 2006.
- 31. Suryawanshi, Y.C., Mokat, D.N. (2019). Chemical Composition of Essential Oil of Madhucalongifolia var. latifolia (Roxb.) A. Chev. Flowers. *Journal of Essential Oil Bearing Plants*, 22 (4), 1034-1039.
- 32. Suryawanshi, Y.C., Mokat, D.N. (2019). GCMS and elemental analysis of Madhucalongifolia var. latifolia seeds. *International Journal of Pharmaceutical Sciences and Research*, 10 (2), 786-789.
- 33. Ushir Y.V., Tatiya A.U., Surana S.J., Patil U.K. Gas chromatography-mass spectrometry analysis and antibacterial activity of essential oil from aerial parts and roots of *Anisomelesindica* Linn. *Int. J. Green Pharm.* 2010;4:98–101.
- 34. Weiss, E.A. 1997. Essential Oil Crops, CAB International, New York, 600p.

BOT 581	On Job Training (OJT)/Field Project/FP	4C
OJT/FP		

COURSE STRUCTURE FOR M. Sc. BOTANY PART II (SEMESTER III AND IV)

Course Code	Course Name	Credits
	Credit Framework for Semester-III	
	Major Core [10 (T) + 4 (P)]	
BOT-601-MJ	Molecular Biology-II	2
BOT-602-MJ	Tools and Techniques in Botany-I	2
BOT-603-MJ	Climate change and plants	2
BOT-604-MJ	Plant genetic engineering	2
BOT-605-MJ	Plant Development-II	2
BOT-606-MJP	Practicals based on MB-II & TTB-I	2
BOT-607-MJP	Practicals based on climate change and plants, plant genetic engineering & plant development - II	2
	Total Major Core Credits	14
	Major Elective (any one)	ı
BOT-610-MJ(A)	Advanced Phycology- I	
BOT-610-MJ(B)	Advanced Mycology-I	
BOT-610-MJ(C)	Angiosperms systematics - I	
BOT-610-MJ(D)	Plant Ecology-I	2
BOT-610-MJ(E)	Advanced Plant Physiology-I	
BOT-610-MJ(F)	Pharmacognosy – I	
BOT-610-MJ(G)	Advanced Plant Genetics and Breeding-I	
BOT-610-MJ(H)	Plant Biotechnology- I	
BOT-611-MJP(A)	Practicals based on BOT-610-MJ(A) Advanced phycology - I	
BOT-611-MJP(B)	Practicals based on BOT-610-MJ(B) Advanced Mycology-I	
BOT-611-MJP(C)	Practicals based on BOT-610-MJ(C) Angiosperms systematics -I	
BOT-611-MJP(D)	Practicals based on BOT-610-MJ(D) Plant Ecology-I	
BOT-611-MJP(E)	Practicals based on BOT-610-MJ(E) Advanced Plant Physiology -I	2
BOT-611-MJP(F)	Practicals based on BOT-610-MJ(F) Pharmacognosy-I	
BOT-611-MJP(G)	Practicals based on BOT-610-MJ(G) Advanced Plant Genetics and Breeding- I	
BOT-611-MJP(H)	Practicals based on BOT-610-MJ(H) Plant Biotechnology- I	
	Total Major Elective Credits	4
BOT-631-RP	Research Project	4
	Total Credits for Semester-III	22

Course Code	Course Name	Credits
	Credit Framework for Semester-IV	·
	Major Core [8 (T) + 4 (P)]	
BOT-651-MJ	Bioinformatics and Biostatistics	2
BOT-652-MJ	Plant Evolution	2
BOT-653-MJ	Tools and Techniques in Botany-II	2
BOT-654-MJ	Biodiversity, conservation & utilization	2
BOT-655-MJP	Practicals based on Bioinformatics and Biostatistics and Plant Evolution	2
BOT-656-MJP	Practicals based on TTB-II and Biodiversity, conservation & utilization	2
	Total Major Core Credits	12
	Major Elective (any one)	
BOT-660-MJ(A)	Advanced Phycology- II	
BOT-660-MJ(B)	Advanced Mycology-II	
BOT-660-MJ(C)	Angiosperms systematics - II	
BOT-660-MJ(D)	Plant Ecology-II	2
BOT-660-MJ(E)	Advanced Plant Physiology-II	2
BOT-660-MJ(F)	Pharmacognosy – II	
BOT-660-MJ(G)	Advanced Plant Genetics and Breeding-II	
BOT-660-MJ(H)	Plant Biotechnology- II	
BOT-661-MJP(A)	Practicals based on BOT-610-MJ(A) Advanced phycology - II	
BOT-661-MJP(B)	Practicals based on BOT-610-MJ(B) Advanced Mycology-II	
BOT-661-MJP(C)	Practicals based on BOT-610-MJ(C) Angiosperms systematics - II	
BOT-661-MJP(D)	Practicals based on BOT-610-MJ(D) Plant Ecology-II	
BOT-661-MJP(E)	Practicals based on BOT-610-MJ(E) Advanced Plant Physiology -II	2
BOT-661-MJP(F)	Practicals based on BOT-610-MJ(F) Pharmacognosy-II	
BOT-661-MJP(G)	Practicals based on BOT-610-MJ(G) Advanced Plant Genetics and Breeding -II	
BOT-661-MJP(H)	Practicals based on BOT-610-MJ(H) Plant Biotechnology- II	
	Total Major Elective Credits	4
BOT-681-RP	Research Project	6
	Total Credits for Semester-IV	22

SEMESTER III: CORE COURSES (Mandatory) BOT-601-MJ Molecular Biology-II 2C (2 Credits: 30 Lectures) Credit 1: DNA and RNA 15L Overview of DNA structure, physical and chemical properties and replication 1L2 Packaging of genomes in viruses, bacteria and organelles 2LDNA damage and repair 2L4 Molecular mechanism of recombination and transposition 2LOverview of RNA structure and transcription in prokaryotes and eukaryotes 1L Processing of mRNA, tRNA & rRNA, alternative splicing 2L6 7 mRNA localisation 1L Ribozymes and riboswitches 2LNon-coding RNAs, RNA interference 2L**Credit 2: Proteins and regulation of gene expression** 15L Protein synthesis - Overview 2LRegulation of transcription - Regulation of trp operon by attenuation, 4L Regulation of lytic and lysogenic cycles in phages Regulation of gene expression at higher levels of genome organization, 4L chromatin remodeling, locus control regions, enhancers and insulators 5L Regulation of protein synthesis, post-translational regulation, regulation of protein function Reference books: 1. Genes IX- Benjamin Lewin, Jones and Bartlett, 2008 2. Genes X– Benjamin Lewin, Jones and Bartlett, 2011 3. Molecular Biology of the Cell – Alberts, B, Bray, D, Raff, M, Roberts, K and Watson JD, Garland Publishers, 1999 4. Principles of Biochemistry – Lehninger, W.H. Freeman and Company, 2005

	BOT-602-MJ Tools and Techniques in Botany-I (2 Credits: 30 Lectures)	2C
Cr	edit 1	15L
1	SI System of measurement: Fundamental and derived units	1L
2	Making solutions: Moles and molarity, molar, molal, and percent solutions, stock solutions and dilutions, pH measurements and preparation of buffers	2L
3	Electrochemical techniques: Construction and working of equipment for measurement of electrical conductivity and pH	2L
4	Measurement of water potential and osmolarity: Osmolarity and osmotic pressure, osmolarity equation, types of osmometers, construction and working of osmometers	2L
5	Gas exchange measurements: Construction and working of Infrared Gas Analyser (IRGA), Clark electrode (O ₂ electrode)	2L
6	Radioactive techniques: Isotopes and their half-lives, specific activity of radioisotopes, making radioisotope solutions, radiation counters, liquid scintillation counters, autoradiography	3L
7	Microtomy: Principles of tissue fixation for microtomy, types of microtomes, serial sectioning and staining	3L
Cr	edit 2	15L
1	Centrifugation techniques: High speed centrifuges, rotors, ultracentrifugation, density gradient centrifugation	3L
2	Crystallography and diffraction: X ray crystallography, principle and working, biological macromolecular crystallography	4L
3	Microscopy and microscopic techniques: Light, dark, phase contrast, epifluorescence, electron and confocal microscopy, micrometry	8L

- 1. David L. Nelson, Michael M. Cox Lehninger Principles of Biochemistry; W. H. Freeman 6th edition edition 2013.
- 2. David M Freifelder, Physical Biochemistry: Applications to Biochemistry and Molecular Biology (Life Sciences/Biochemistry, W. H. Freeman; 2nd Revised edition, 1983.
- 3. Jeremy M. Berg, John L. Tymoczko, Lubert Stryer Biochemistry, W. H. Freeman; 7th edition 2011.
- 4. Keith Wilson, John Walker, "Practical Biochemistry Principles and Techniques" Cambridge University Press 2010.
- 5. S. M. Khasim, "Botanical Microtechnique: Principles and Practice". Capital Publishing Company. 2002.
- 6. Thomas J. Kindt, Barbara A. Osborne and Richard Goldsby "Kuby Immunology".W. H. Freeman; 6th edition 2006.
- 7. Bradbury, S. & Evennett, P. J. Contrast techniques in light microscopy. RMS Handbook No. 34. Bios Press. 1996.
- 8. Bradbury, S. (1989). Introduction to the optical microscope. (Revised edn.) RMS Handbook No 1. O.U.P.
- 9. Reiner Westermeier, Electrophoresis in Practice: A Guide to Methods and Applications of DNA and Protein Separations, Wiley-VCH Verlag GmbH & Co. KGaA, 2004.
- 10. Golakiya B A, Radio Tracer Techniques For Agriculturists And Biologists, New India Publishing Agency, June 2008.

	BOT-603-MJ Climate change and plants (2 Credits: 30 Lectures)	2C
Cr	redit 1 Concepts and policies	15L
1	Introduction to climate change: Overview of key concepts climate, weather and the greenhouse gas effect, important greenhouse gasses and their main sources, changes in the climate since the industrial revolution, impacts of climate change on surface temperature, precipitation, ocean pH, sea-level and Arctic sea-ice extent	4L
2	Greenhouse gasses: Role of industries in production of CFC products	2L
3	Climate change adaptation: Adaptations due to climate change at morphological, physiological, biochemical, reproductive levels in plants	3L
4	International policies and framework to address climate change: United Nations Framework Convention on Climate Change (UNFCCC), Kyoto Protocol and its associated bodies, Montereal protocol, national policies	4L
5	Net zero, renewable energy, empowering in safer future, green belt development	2L
Cr	redit 2 Impacts and climate change mitigation strategies	15L
1	Climate change effects on agriculture: crops, crop cycles, soil quality and soil organic carbon	5L
2	Climate change impact on forest: Forest dispersion and shifting, forest fires, trees responses to temperature and water availability, increased CO2 concentration, carbon storage and nutrient availability	5L
3	Climate change mitigation: An overview of emissions levels and mitigation targets, international mechanisms to support climate change mitigation and low carbon development	5L
Re	ferences	<u>I</u>

- 1. Aldy, J & Pizer, W 2014, Comparability of Effort in International Climate Policy Architecture, Discussion Paper 2014-62, Harvard Project on Climate Agreements, Cambridge, Mass.
- 2. Bodansky, D 2010, The International Climate Change Regime: The Road from Copenhagen, Policy Brief, Harvard Project on Climate Agreements, Belfer Centre for Science and International Affairs, Harvard Kennedy School.
- 3. Bodansky, D 2012, The Durban Platform Negotiations: Issues and Options for a 2015 agreement, Centre for Climate and Energy Solutions, Washington D.C.
- 4. Clarke, L, Jiang, K, Akimoto, K, et al. 2014, 'Assessing Transformation Pathways', in Climate Change 2014: Mitigation of Climate Change, Working Group III contribution to the IPCC 5th Assessment Report, Intergovernmental Panel on Climate Change, Geneva.

- 5. Climate Change Authority 2014, Reducing Australia's Greenhouse Gas Emissions—Targets and Progress Review, Final Report, Climate Change Authority, Melbourne.
- 6. Climate Change Authority 2014a, Using International Emissions Reductions To Help Meet Australia's 2020 Target, (forthcoming) Climate Change Authority, Melbourne.
- 7. The Climate Institute 2014, Moving Below Zero: Understanding Bio-energy with Carbon Capture and Storage, Sydney.
- 8. den Elzen, M & Höhne N 2008, 'Reductions of greenhouse gas emissions in Annex I and non-Annex I countries for meeting concentration stabilisation targets, An editorial comment,' Climatic Change, 91:249–274 DOI 10.1007/s10584-008-9484-z.
- 9. den Elzen, M, Roelfsema, M, Hof, A, Böttcher, H & Grassi, G 2012, Analysing the emission gap between pledged emission reductions under the Cancún Agreements and the 2°C climate target, PBL Netherlands Environmental Assessment Agency, Copenhagen.
- 10. Department of the Environment 2014, Emissions Reduction Fund White Paper, Canberra.
- 11. Garnaut, R 2008, The Garnaut Climate Change Review Final Report, Commonwealth of Australia, Cambridge University Press, Melbourne.
- 12. GLOBE International 2013, Climate legislation study—a review of climate change legislation in 33 countries, third edition, Climate and Development Knowledge Network, Antony Rowe, Chippenham.
- 13. Gupta, S, Tirpak, D, Burger, N, et al. 2007, 'Policies, Instruments and Co-operative Arrangements', in Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Metz, B, Davidson, O, Bosch, O, Dave, R, Meyer, L (eds)), Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
- 14. Haites, E, Yamin, F, Hohne, N 2013, Possible Elements of a 2015 Legal Agreement on Climate Change, IDDRI, Working Papers, No. 16/13, Paris.
- 15. Hale, T & Harris, M 2014, Country-to-Country Review under the Next Climate Treaty: Lessons from other Intergovernmental Review Processes, Policy memo: 24 February 2014, Blavatnik School of Government, University of Oxford.
- 16. Hood, C, Briner, G & Rocha, M 2014, GHG or not GHG: Accounting for Diverse Mitigation Contributions in the Post-2020 Climate Framework. Climate Change Expert Group, Paper No. 2014(2), OECD, International Energy Agency, Paris.
- 17. International Energy Agency 2013, Policies and Measures Database, viewed 22 May, Paris, http://www.iea.org/policiesandmeasures/(Opens in a new tab/window).
- 18. Jackson, E & McGoldrick, W 2010, Global climate policy post-Copenhagen: Progress and prospects, Discussion Paper, The Climate Institute, Sydney.
- 19. Kee, HL, Ma, H & Mani, M 2010, The Effects of Domestic Climate Change Measures on International Competitiveness, Policy Research Working Paper 5309, The World Bank Development Research Group Trade and Integration Team and Environment Department, World Bank, Washington D.C.
- Levin, K & Finnegan, J 2013, Designing National Commitments to Drive Measurable Emissions Reductions After 2020, Working Paper, World Resources Institute, Washington D.C.

- 21. Mazouz, S & Jackson, E 2012, Emissions Trading Coalitions. Leveraging Emission Trading to Achieve Greater Levels of Global Mitigation Ambition, Discussion Paper, The Climate Institute, Sydney.
- 22. Morgan, J, Tirpak, D, Levin, K & Dagnet, Y 2013, A Pathway to a Climate Change Agreement in 2015: Options for Setting and Reviewing GHG Emission Reduction Offers, World Resources Institute, Washington D.C.
- 23. Olsen, KH, Fenhann, J & Lutken, S 2013, Elements of a New Climate Agreement by 2015, Perspective Series 2013, UNEP Risoe Centre, Roskilde.
- 24. Prinn, R 2013, 400 ppm CO2? Add Other GHGs, and It's Equivalent to 478 ppm, online interview, viewed 11 June 2014, http://oceans.mit.edu/featured-stories/5-questions-mits-ron-prinn-400-
- 25. Rajamani, L 2012, 'The Durban Platform for Enhanced Action and the future of the climate regime,' International and Comparative Law Quarterly, vol. 61, pp. 501–18.
- 26. Redondo, ED 2012. 'The Universal Periodic Review Is There Life Beyond Naming and Shaming in Human Rights Implementation?, New Zealand Law Review, vol. 4.
- 27. Reisinger, A, Kitching, R, Chiew, F, et al. 2014, 'Australia and New Zealand', in Climate Change 2014: Impacts, Adaptation and Vulnerability, Working Group II contribution to the IPCC 5th Assessment Report, Intergovernmental Panel on Climate Change, Geneva.
- 28. Renewable Energy Policy Network for the 21st Century (REN21) 2013, Renewables 2013 Global Status Report, REN21 Secretariat, Paris.
- 29. Rocha, MT 2013, Elaborating the 'framework for various approaches' under the UNFCCC, Discussion Document, OECD, Paris.
- 30. Rogelj, J, Hanaoka, T, Hare, W, et al. 2011, 'Emissions pathways consistent with a two degree temperature limit', Nature Climate Change, vol. 1, pp. 413–18.
- 31. Rogelj, J, McCollum, D, O'Neill, B, & Riahi, K 2012, '2020 emissions levels required to limit warming to below 2°C', Nature Climate Change, vol. 3, pp. 405–12.
- 32. Rogelj, J 2013, Scenario Note—Pathways towards Returning Warming to below 1.5°C by 2100: Briefing Note to the Climate Institute, Climate Analytics, Berlin.
- 33. Spencer, T & Hipwell, E 2013, 'Coordinating, Mandating, Monitoring: What Can the Post 2015 Climate Regime Learn from Global Financial Governance?', Carbon Climate Law Review, vol. 4, pp. 293–305.
- 34. Stavins, R, Ji, Z, Brewer, T, et al. 2014, 'International Cooperation: Agreements & Instruments', in Climate Change 2014: Mitigation of Climate Change, Working Group III contribution to the IPCC 5th Assessment Report, Intergovernmental Panel on Climate Change, Geneva.
- 35. The Treasury and DIICCSRTE 2013, Climate Change Mitigation Scenarios, Modelling report provided to the Climate Change Authority in support of its Caps and Targets Review, Government of Australia, Canberra. United Nations Environment Programme (UNEP) 2013, The Emissions Gap Report, UNEP, Nairobi.
- 36. United Nations Framework Convention on Climate Change (UNFCCC) Secretariat 2011, Compilation of economy-wide emissions reduction targets to be implemented by parties included in Annex I to the Convention, FCCC/SB/2011/INF.1/Rev.1, 7 June.

- 37. UNFCCC Secretariat 2013, Compilation of information on nationally appropriate mitigation actions to be implemented by Parties not included in Annex I to the Convention, FCCC/SBI/2013/inf.12/rev.2, 28 May 2013.
- 38. United States Energy Information Administration (EIA) 2014, Short-term Energy Outlook, May 2014, Washington D.C.
- 39. United States Environment Protection Agency (EPA) 2014, Clean Power Plan Proposed Rule, May 2014, Washington D.C.
- 40. Weischer, L, Morgan, J & Patel, M 2012, 'Climate Clubs: Can Small Groups of Countries make a Big Difference in Addressing Climate Change?', Review of European Community & International Environmental Law, vol. 21, pp. 177–92.
- 41. Werksman, J 2010, 'Legal symmetry and legal differentiation under a future deal on climate,' Climate Policy, vol. 10:6, 672–7, DOI: 10.3763/cpol.2010.0150.
- 42. Winkler, H & Rajamani, L 2013, 'Common but differentiated responsibilities and respective capabilities in a regime applicable to all,' Climate Policy, DOI:10.1080/14693062.2013.791184.
- 43. Winkler, H 2014, International requirements for transparency of mitigation actions, Input by ERC to the Department of Environmental Affairs, Energy Research Centre, University of Cape Town.

	BOT-604-MJ Plant genetic engineering (2 Credits: 30 Lectures)	2C
Cr	edit 1: Basics of recombinant DNA technology (RDT)	15L
1	Enzymes used in RDT: restrictions endonucleases, ligases, kinase, TDT,	1L
	polymerases, phosphatase, reverse transcriptase	
2	Vectors: plasmids, lambda based vectors, phagemid, cosmid, BAC and YAC	3L
3	PCR and its types	1L
4	Blotting techniques: Southern, Northern and Western	2L
5	Cloning methods: restriction ligation, TA, gateway, golden gate, Gibson assembly	3L
6	DNA Sequencing: History, Sanger, Illumina, ONT and PacBio long read platforms	3L
7	Gene expression techniques: quantitative PCR, RNAseq	2L
Cr	edit 2: Methods and applications of plant transformation	15L
1	Transgenic plants: selection of vector, selection of promoter, constitutive, tissue specific, conditional, marker genes and antibiotics	4L
2	Methods for plant transformation: Physical and chemical	2L
3	Agrobacterium mediated plant transformation: Mechanism of T-DNA transfer, binary vector, co-cultivation, selection and regeneration	4L

4	Applications of transgenic crops: Biotic and abiotic stress, nutritional value and	3L
	improvement of quality	
5	Biosafety concerns related to transgenic plants	2L
а	4 ID I	

Suggested Readings:

- 1. Recombinant DNA Principles and Methodologies. Greene JJ and Rao VS, Marcel Dekker, New York, 1998.
- 2. Principles of gene manipulation. Primrose SB, Twyman RM and Old RW, 6th Edition, Blackwell Science, Oxford, 2001
- 3. Engineering plants for commercial products and applications. Eds. Collins GB and Shepherd RJ, NY Acad. Of Science Publishers 1996
- 4. DNA markers. Eds. Caetano-Anolles and Gresshoff, Wiley-VCH Publishers, NY, 1998
- 5. Bioinformatics. Westhead, DR, Parish JH and Twyman, RM, BIOS Scientific Publishers Ltd., Oxford, 2003
- 6. Collins GB and Shepherd RJ Eds., 1996, Engineering plants for commercial products and application. NY Acad. Of Science Publishers
- 7. Senson CW Edt, 2002, Essentials of Genomics and Bioinformatics, Wiley-VCH Publishers, NY.
- 8. Charlwood B.V. and Rhodes MV Edt. 1999, Secondary products from plant tissue culture. Clarendon Press, Oxford.
- 9. Dicosmo F and Misawa M, Edt 1996, Plant cell culture: Secondary metabolism towards industrial application, CRC press, Boca Raton, N.Y.
- 10. Ramawat K G and Merillon J M, Edt.1999 Biotechnology: Secondary metabolites, Oxford IBH Publishing Co., New Delhi.
- 11. Buchanan BB, Grussem Wand Jones RL, 2000, Biochemistry and molecular biology of plants, IK International Pvt Ltd. New Delhi.
- 12. Verapoorte R and Alferman HW Eds, 2002 Metabolic engineering of plant secondary metabolites. Kluwar Academic Publ., Netherlands.

	BOT-605-MJ Plant Development-II	2C
	(2 Credits: 30 Lectures)	
Cro	edit 1 – Reproductive development	15L
1	Flower development: molecular basis - ABC & ABCE models	3L
2	Development of stamen, anther, sporogenous tissue, tapetum, microsporogenesis, pollen and male gametophyte	2L
3	Development of ovule, integuments, sporogenous tissue, megaspore, female gametophyte	2L
4	Molecular basis of male and female gametophyte development	2L
5	Interaction between pollen & pistil, pollen tube guidance, self-incompatibility, double fertilization and triple fusion, role of synergids, endosperm development and imprinting	3L
6	Structure of seed, germination and mutants	1L

7	Stages of embryogenesis, structure and organization of embryo, suspensor,	2 L
	embryogenesis mutants and establishment of body plan	
Cro	edit 2 - Intrinsic and extrinsic factors regulating plant development	15L
1	Light mediated regulation: a. Photoreceptors- phytochromes, cryptochromes,	2L
	phototropins	3L
	b. Signal transduction leading to photomorphogenesis and photoperiodic	2 L
	responses	
	c. Circadian rhythms	
2	Hormonal regulation	
	a. Perception, signalling and regulation of gene expression by hormones -	
	Hormone receptors, mutants in hormone signalling, transcription factors	
	involved in hormone signalling	4 L
	b. Role of hormones in germination, growth and flowering. Cross-talk	
	between hormone signalling pathways	3L
3	Regulation of development by metabolites (sugars and Nitrogen)	1L

- 1. The Arabidopsis Book. (www.arabidopsisbook.org)
- 2. Bhojwani S. S., Dantu P. K. and Bhatnagar S. P. (2014). The Embryology of Angiosperms. (6th Edition) Vikas Pub. House.Paperback edition.
- 3. Bhojwani S.S. and Soh W.Y. (2001). Current Trends in Embryology of Angiosperms, Kluwer Academic Publishers.
- 4. Buchanan B. B., Gruissem W. and Jones R. L. (2015) Biochemistry and Molecular Biology of Plants. Second Edition. Wiley Blackwell.
- 5. Burgess J. (1985) An Introduction to Plant Cell Development. Cambridge University Press.
- 6. Davies P. J. (Editor) (2004) Plant Hormones. Biosynthesis, Signal Transduction, Action Springer Publications.
- 7. Fahn A. (1990) Plant Anatomy (4th Edition) Pergamon Press, London, New York.
- 8. Gilbert S. F. (2013). Developmental Biology (10th Edition). Sinauer Associates, Inc., Massachusetts, USA.
- 9. Graham C.F. and Wareing P.F. (1984). Developmental Control in Animals and Plants. Blackwell Scientific Publications, UK.
- 10. Johri B. M. and Srivastava P. S. (2001). Reproductive Biology of Plants. Narosa Publishing House, New Delhi.
- 11. Jones R., Ougham H., Thomas H. and Waaland S. (2013) The Molecular Life of Plants. Wiley Blackwell.
- 12. Krishnamurthy K.V. (1988) Methods in Plant Histochemistry. S. Viswanathan Printers & Publishers.
- 13. Lyndon R.F. (1990) Plant Development The Cellular Basis. (Topics in Plant Physiology, Vol. 3) Springer Publications.
- 14. Leyser O. and Day S. (2009) Mechanisms in Plant Development. Wiley Blackwell.
- 15. Raghavan V. (2000) Developmental Biology of Flowering Plants. Springer Verlag.
- 16. Razdan M.K. (2003) Introduction to Plant Tissue Culture, Second Edition. Science Publishers Inc., USA, UK.
- 17. Wada M., Shimazaki K., Iino M. (2005). Light sensing in plants. Springer.
- 18. Wareing P. F. and Philips I. D. J. (1981) Growth and Differentiation in plants. Pergamon Press
- 19. Wolpert L., Tickle C. and Arias A. M. (2015) Principles of Development. (5th Edition) Oxford University Press.

ВО	OT-606-MJP Practical based on BOT 601 MB-II & BOT 602 TTB-I (2 Credits: 15 Practicals)	2C
Pra	acticals on molecular biology (Any 8)	
1	Restriction digestion of plasmid DNA and gel electrophoresis	2P
2	Demonstration of DNA ligation and separation of ligated DNA on agarose gel	2P
3	Primer designing, amplification of DNA fragment/gene using PCR and separation of PCR products	4P
4	Isolation of plant total RNA and quantification	2P
5	Formaldehyde denaturing gel electrophoresis for total RNA separation	1P
6	SDS-PAGE based separation of globulin seed storage protein and determination of molecular weight	3P
Pra	acticals on tools and techniques in botany -I (Any 7P)	
1	Absorption spectra of BSA / DNA and determination of absorption maxima, molar extinction coefficient	2P
2	Plant tissue sectioning using cryomicrotome	1P
3	Estimation of photosynthetic rate using IRGA	1P
4	Demonstration of Oxygen measurement system	1P
5	Determination of pKa and buffering capacity of acetate buffer	2P
6	Electrical conductivity measurement of different solutions	2P
7	Epifluorescence microscopy	1P
8	Measurement of cell dimensions using micrometry	1P

BO	T-607-MJP Practicals based on BOT-603-MJ climate change and plants,	2C
BO	T-604-MJ Plant genetic engineering & BOT 605 plant development - II	
	(2 Credits: 15 Practicals)	
Pra	acticals based on climate change and plants (Any 5P)	
1	Measurement of photosynthetic rate and stomatal conductivity under elevated carbon concentrations	2P
2	Measurement of photosynthetic rate under elevated temperature	2P
3	GIS based measurement of vegetation	2P
4	Effect of elevated CO2 levels on seed germination and growth	2P
5	Water quality assessment using multiparameter water analyser	2P
6	Effect of climate change on plant disease incidences	2P

Pra	acticals based on plant genetic engineering (Any 5P)	
1	PCR amplification of the gene/gene fragment and cloning into vector	2P
2	Transformation in <i>E. coli</i> using heat shock method and selection of transformants	3P
3	Restriction digestion of plasmid and separation of DNA fragments using agarose gel electrophoresis	2P
4	Colony PCR based screening of recombinant clones	2P
5	Sanger sequencing data analysis	1P

Pr	acticals based on plant development - II (Any 5P)	
1	Observations on: a. Microsporogenesis and development of male gametophyte b. Megasporogenesis and development of female gametophyte	2P
2	Isolation and studies on types of endosperm	1P
3	Isolation and studies on types of embryo development	1P
4	<i>In vitro</i> germination of microspore/pollen. Correlation between fertility and viability of pollen	2P
5	Isolation and histochemical characterisation of floral meristem	1P

	BOT-610-MJ(A) Advanced Phycology- I (2 Credits: 30 Lectures)	2C
Cr	edit 1	15L
1	Approaches in the study of algal systematics	1L
2	Cyanophyta: Botanical and bacteriological codes for nomenclature, Kenyon-Murata classification system, traditional and modern trends in the classification	3L
3	Chlorophyta: Morphology & ultrastructure based concepts. Use of mitotic, cytokinesis, chloroplast, pyrenoid and eyespot characteristics in systematic studies	4L
4	Charophyta: Evolution and origin of land plants	1L
5	Ochrophyta: Environmental factors controlling life cycles, Phlorotannins and physodes, modern trends in the classification	2L
6	Rhodophyta: Modern trends in the classification	2L
7	Brief overview of phylogeny of Xanthophyceae, Eustigmatophyceae, Bacillariophyceae, Dinophyceae, and Euglenophyceae	2L
Cr	edit 2	15L
1	Phytoplankton: Classification, sampling methods, primary productivity, nutrient uptake models (Michaelis - Menten, and Monod, Droop models)	3L
2	Algae in marine environment: Physico-chemical properties, intertidal seaweeds, zonation patterns and factors affecting distribution of intertidal seaweeds	3L
3	Algal adaptation to nutrient availability (Carbon, Nitrogen and Phosphate)	2L
4	Cyanobacterial symbioses with fungi and other plants, cellular responses during symbiosis	2L
5	Extremophilic algae and their survival mechanisms	3L
6	Algae: Bioindicators and bioluminescence	2L
Re	ferences	

- 1. Archibald, J. M., Simpson, A. G. B. and Slamovits, C. H. (eds.) (2017). Handbook of the protists (2nd ed.). Springer International Publishing AG, pp. 1657.
- 2. Bellinger, E. G. and Sigee, D. C. (2015). Freshwater algae: Identification, enumeration and use as bioindicators (2nd ed.). John Wiley & Sons, Ltd., UK, pp. 275.

- 3. Bhattacharya, D. (ed.) (1997). *Origins of algae and their plastids, Plant systematics and evolution supplement 11*. Springer-Verlag Wien, pp. 287.
- 4. Brodie, J. and Lewis, J. (eds.) (2007). *Unravelling the algae: the past, present, and future of algal systematics*. CRC Press, Boca Raton, pp. 376.
- 5. Graham, L. E. and Wilcox, L. W. (2000). Algae. Prentice Hall, Inc., NJ, pp. 640.
- 6. Hoek, C. Van Den, Mann, D. G. and Jahns, H. M. (2009). *Algae: An introduction to Phycology*. Cambridge University Press, New Delhi, pp. 623.
- 7. Lee, R. E. (2008). *Phycology*. Cambridge University Press, Cambridge, pp. 547.
- 8. Lobban, C. S. and Harrison, P. J. (1997). *Seaweed ecology and physiology*. Cambridge University Press, Cambridge, pp. 366.
- 9. Pal, R. and Choudhury, A. K. (2014). *An introduction to phytoplanktons: Diversity and ecology*. Springer, India, pp. 167.
- 10. Pawlowski, K. (ed.) (2009). *Prokaryotic symbionts in plants –Microbiology Monographs, Volume 8.* Springer-Verlag Berlin Heidelberg, pp. 306.
- 11. Pereira, L. and Neto, J. M. (eds.) (2015). *Marine algae: Biodiversity, Taxonomy, Environmental Assessment, and Biotechnology*. CRC Press Boca Raton, pp. 390.
- 12. Round, F. E. (1984). *The Ecology of Algae*. Cambridge University Press.
- 13. Sahoo, D. and Seckbach, J. (2015). *The algae world (Cellular origin, life in extreme habitats and astrobiology 26*). Springer Science, Dordrecht, pp. 598.
- 14. Sarma, T. A. (2013). *Handbook of cyanobacteria*. CRC Press, Boca Raton, pp. 802.
- 15. Seckbach, J. (ed.) (2007). Algae and cyanobacteria in extreme environments (Cellular origin, life in extreme habitats and astrobiology 11). Springer, Dordrecht, The Netherlands, pp. 811.
- 16. Singh, B., Bauddh, K. and Bux, F. (eds.) (2015). *Algae and environmental sustainability* (*Developments in applied phycology 7*). Springer, India, pp. 181.
- 17. Singh, P. K., Kumar, A., Singh, V. K. and Shrivastava, A. K. (eds.) (2020). *Advances in cyanobacterial biology*. Elsevier Inc., UK, pp. 403.

BOT-611-MJP(A) Practicals based on BOT-610-MJ(A) Advanced Phycology – I (2 Credits: 15 Practicals)		2C
1	Collection, characterization and identification of algae from diverse habitats	4P
2	Morphometric studies of algae	1P
3	Estimation of phytoplankton primary productivity	2P
4	Isolation and identification of symbiotic algae from lichen/ Anthoceros/ Azolla	3P
5	Documenting algal biofilm development on an artificial substratum/habitat	2P
6	Karyological studies in eukaryotic algae	1P
7	Use of algal databases and other online resources	1P
8	DNA extraction and amplification by using primers based on 18/16s rRNA or ITS from algae	3P
9	Construction of phylogenetic tree based on conserved genes in algae	2P
10	Effect of heavy metal/salinity stress on microalgae	2P
11	Effect of nitrogen/phosphorus on the growth of microalgae	2P
12	Effect of light intensities on the growth of microalgae	2P
13	Study of desiccation stress tolerance in algae	2P
14	Preparation of herbarium specimens (wet and dry)	2P

	BOT-610-MJ(B) Advanced Mycology-I (2 Credits: 30 Lectures)	2C
Cro	edit 1-Fungal systematics	15L
1	Systematic, origin, evolution and phylogeny of fungi: Natural and molecular method of fungal systematics	2L
2	Overview of a higher level phylogenetic classification of fungi (Hibbett et al 2007 and Kirk 2008)	1L
3	Subkingdom- Dikarya: Ascomycota and Basidiomycota; Phylum: Chytridiomycota; Phylum: Blastocladiomycota; Phylum: Neocallimastigomycota; Phylum: Glomeromycota: Phylum: Microsporidia; Sub-	12L

	phylum: Enomophthoromycotina; Sub-Phylum: Mucoromycotina; Sub-Phyllum: Zoopagomycotina; Sub-Phylum: Kickxellomycotina	
Cr	edit 2- Fungal physiology and applications	15L
1	Heterothallism, heterokaryosis and parasexual cycle	2L
2	Physiological specialization and fungal sex hormones	3L
3	Biodegradation of waste - solid and liquid waste management through fungi	5L
4	Application of fungi in biodegradation: Cellulose, hemicelluloses, pectic compounds, lignin, Fungi in bioremediation	5L

- 1. Ainsworth and Bisbys Dictionary of the fungi (10thed) by Kirk et. al. 2008 C.A.B. International, Oxon, UK.
- 2. Hibbett DS, Binder M, Bischoff JF, Blackwell M, Cannon PF, Eriksson OE, et al. (2007). "A higher level phylogenetic classification of the Fungi" (PDF). Mycological Research 111(5): 509–547. doi:10.1016/j.mycres.2007.03.004. PMID 17572334.
- 3. 21centuary guidebook of fungi, David Moore, Geoffrey D. Robson, Anthony P. J. Trinci:Cambridge University Press. 2011.
- 4. Introduction of Fungi by John Webster and Roland Weber, Third edition, Cambridge University Press, 2007.
- 5. Introductory Mycology by Alexopolous J., Mims C. W. and M. Blackwell, fourth edition, Wiley India Pvt Ltd, 2007.
- 6. Topics in Mycology and Pathology by L. N. Nair, first edition, New Central Book Agency Kolkata, 2007.
- 7. Fungal Biology by J. W. Deacon, Fourth edition, Blackwell Publishing Ltd, 2006.
- 8. Biodiversity of fungi: Inventory and Monitoring methods by M. S. Foster, G. F. Wills and
- J. M. Mueller, first edition, Academic Press, 2004. Practicals:
- 9. Mycoremediation: Fungal Bioremediation by Harbhajan Singh, first edition, John Wiley and Sons, Hoboken, New Jersey, 2006.
- 10. An introduction to fungi: by H.C. Dube, Scientific publisher India, fourth edition, 2015.

Be	OT-611-MJP(B) Practicals based on BOT-610-MJ(B) Advanced Mycology-I	2C
	(2 Credits: 15 Practicals)	
1	Study of the representative genera belonging to all the group of fungi with respect to observations made based on tissue differentiation, accessory organs, asexual and sexual structures, and fruiting body	4P
2	Study of fungal cellulase and hemicellulase activity	3P
3	Isolation and culture of fungi from rotting wood/ oil spills/ leaf litter	3P
4	Slide culture technique for in vivo study of fungi	2P
5	Sensitivity of fungicides on fungal cultures	2P
6	DNA isolation, primer designing and PCR amplification of MAT genes	4P
7	Isolation and quantification of fungal hormones	2P

	BOT-610-MJ(C) Angiosperms systematics – I (2 Credits: 30 Lectures)	2C
Cr	edit 1	15L
1	Taxonomy: Phases of taxonomy, taxonomy as synthetic discipline.	4L
	Botanical nomenclature: Scientific names, principles, typification, effective and valid publication	
2	Apomorphies of Angiosperms: Flower, stamen, reduced male and female gametophyte, carpel, double integuments, endosperm formation, sieve tube members, vessels, etc.	3L
3	Taxonomic hierarchy: Ranks of taxa; Major categories: Division, class, order, family; Minor categories: genus, species and infraspecific categories	3L
4	Taxonomic tools and literature: Botanical keys, their merits and demerits. Type specimens and protologue, journals and websites	2L
5	Evolutionary concepts and principles: Causes of variations in population, population and environment	3L
Cr	edit 2	15L
1	Morphological and biological species concept: Allopatric, abrupt, sympatric, hybrid and apomictic speciation	2L

2	Isolating mechanisms in plant speciation: Premating- temporal, habitat, floral, reproductive mode; post mating, prezygotic- incompatibility; post mating, postzygotic- incompatibility, hybrid inviability, hybrid floral isolation, hybrid sterility, hybrid breakdown	3L
3	Morphological variations, systematic position, interrelationships, phylogeny and economic importance of following clades: ANA Grade- Hydatellaceae; Magnoliids- Lauraceae, Aristolochiaceae; Monocots- Hydrocharitaceae, Asparagaceae, Commelinaceae, Eriocaulaceae, Musaceae	10L
	Eudicots- Nelumbonaceae; Core Eudicots- Nyctaginaceae; Superrosids-Vitaceae, Rosids-I: Cucurbitaceae, Rosaceae; Rosids-II: Capparaceae, Brassicaceae; Superrosids: Loranthaceae, Santalaceae; Euasterids-I: Rubiaceae, Apocynaceae; Euasterids-II: Araliaceae; Certaophyllaceae	

- 1. Angiosperm Phylogeny Group (2016) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. *Botanical Journal of the Linnean Society* 181: 1–20.
- 2. Cronquist, A. 1981. An Integrated System of Classification of Flowering Plants. Columbia University Press, New York.
- 3. Davis, P. H. and V. H. Heywood 1991. Principles of Angiosperm Taxonomy. Today and Tomorrow Publications, New Delhi
- 4. Douglas E. Soltis, Pamela E. Soltis, Peter K. Endress and Mark W. Chase, 2005. Phylogeny and Evolution of Angiosperms. Sinauer Associates, Inc., Publishers, Sunderland, USA.
- 5. Eshbaugh, W.H. Systematics Agenda 2000: an historical perspective. *Biodivers Conserv* 4, 455–462 (1995). https://doi.org/10.1007/BF00056336
- 6. Ian J. Kitching, Peter L. Forey, Christopher J. Humphries and David M. Williams, 1998. Cladistics: The Theory and Practice of Parsimony analysis (2nd Ed.). The Oxford University Press.
- 7. Lawrence George H. M. 1951. Taxonomy of Vascular plants Oxford and IBH Publ. Co. Pvt. Ltd., New Delhi
- 8. Manilal, K. S. and M. S. Muktesh Kumar (ed.) 1998. A Hand book of Taxonomy Training, DST, New Delhi
- 9. Naik, V. N. 1984. Taxonomy of Angiosperms Tata McGrow-Hill Publication Com. Ltd., New Delhi
- 10. Pandey, Arun K. and Shruti Kasana. 2021. *Plant Systematics*. Taylor & Francis Ltd. Edition 1st Edition. Pages 340. DOI https://doi.org/10.1201/9781003183464
- 11. Quicke, D.L.J. 1993. Principles and Techniques of Contemporary Taxonomy. Blackie Academic & Professional (An imprint of Chapman & Hall.).
- 12. Radford, A.E., W.C. Dickinson, J.R. Massey and C.R. Bell. 1974. Vascular Plant Systematics, Harper & Row, New York.
- 13. Simpson, Michael George. 2006. Plant systematics. Elsevier Academic Press.
- **14**. **Singh, Gurcharan**. 2019. Plant Systematics: An Integrated Approach, Fourth Edition. CRC Press.7.

- 15. Sivarajan, V.V. 1991. (2nd ed.). Introduction to the Principles of Plant Taxonomy (Ed. N S K Robson). Oxford & IBH publishing Co. Pvt. Ltd.
- 16. Stace, C. A. 1989. Plant Taxonomy and Biosystematics Etwaed Arnold, London.
- 17. Stevens, P. F. (2001 onwards). Angiosperm Phylogeny Website. Version 9, June 2008 [and more or less continuously updated since]. http://www.mobot.org/MOBOT/research/APweb/
- 18. Stuessy Tod F. 2002. Plant taxonomy. The systematic Evaluation of comparative data. Bishen Singh Mahendra Pal Singh, Dehra Dun.
- 19. Stuessy, Tod F., 2009. Plant taxonomy: the systematic evaluation of comparative data (2nd ed.). New York: Columbia University Press.
- 20. Takhtajan, A. 1986. Floristic Regions of the World. University of California Press.
- 21. Taylor, D. V. and L. J. Hickey 1997. Flowering plants: Origin, evolution and phylogeny CBS Publishers a Distributors New Delhi.
- 22. Walter S. Judd, Christopher S. Campbell, Elizabeth A. Kellogg, Peter F. Stevens and Michael J. Donoghue. 2007. Plant Systematics: A Phylogenetic Approach, Third Edition. Sinauer Associates, Inc., Publishers, Sunderland, USA.

	BOT-611-MJP(C) Practicals based on BOT-610-MJ(C) Angiosperms	2C
	systematics -I	
	(2 Credits: 15 Practicals)	
1	To study apomorphies of various clades	4P
2	Preparation of taxonomic keys for identifications of plants	2P
3	Identification of genus and species of locally available wild plants using regional and state Floras (3 specimens for each practical)	5P
4	Methodology to describe a new taxon as per ICN	2P
5	Identification of plant specimens in the field (at least 50 species).	2P
6	Methodology to study type specimens and protologue	3P
7	Preparation of herbarium specimens (dry and wet)	3P

	BOT-610-MJ(D) Plant Ecology-I (2 Credits: 30 Lectures)	2C
Cr	edit 1: Ecosystem ecology	15L
1	Development, structure and functions of ecosystem	2L
2	Major biomes in India and the world, global species distribution patterns, special habitats	3L

3	Biodiversity hotspots, endemism, in-situ and ex-situ conservation	3L
4	Perturbation in ecosystems: Natural and anthropogenic, restoration ecology	2L
5	Environmental legislations: IUCN, Kyoto protocol, Paris agreement, CBD and CDM, intergovernmental panel on climate change, Biological diversity act 2002	5L
Cro	edit 2: Behavioral and chemical ecology	15L
1	Behavioral Ecology: Introduction and causes, differentiating behavior of cognition, and consciousness in plants	4L
2	Adaptations for survival and reproduction in plants: Camouflage, defensive coloration, and mimicry, types and mechanisms; continuous vs monocarpic reproduction	5L
3	Chemical ecology: Plant organism interaction, tritrophic interaction, attraction of pollinators, plants responses to oviposition	3L
4	Plant migration and dispersal ecology	3L

- 1. Begon, M., Townsend, C. R. and Harper, J. L. (2005). *Ecology: From individuals to Ecosystems* 4th edition, Wiley-Blackwell.
- 2. Odum, E. P. (2007) Fundamentals of Ecology, 5th edition, Thomson books.
- 3. Coleman, D.C., Crossley, D. A. and Handrix, P. F (2004) *Fundamentals of Soil Ecology*, 2nd edition, Elsevier academic press.
- 4. Ambhast, R. S. (1998) A Text Book of Plant Ecology, 9th edition, Friend and Co.
- 5. Canter L (1996) *Environmental Impact Assessment*, 2nd Edition, McGraw Hill Publishing Company.
- 6. Gurevitch, J., Scheiner, S. M. and Fox, G. A. (2006) *TheEcology of Plants*, Sinauer Associates.
- 7. Hynes, H. B. N. (1978) Biology of Polluted Water, 1st edition, Liverpool University Press.
- 8. Sutherland, W. J. (Ed.). (2006). *Ecological Census Techniques: AHandbook*. Cambridge University Press.
- 9. Mittelbach, G. G., & McGill, B. J. (2019). Community Ecology. Oxford University Press.
- 10. Trewavas, A. (2014). Plant Behaviour and Intelligence. OUP Oxford.

- 11. Wohlleben, P. (2016). *The hidden life of trees: What they feel, how they communicate—Discoveries from a secret world* (Vol. 1). Greystone Books.
- 12. Schulze, E. D., Beck, E., Buchmann, N., Clemens, S., Müller-Hohenstein, K. and Scherer-Lorenzen (2019). *Plant Ecology*. Springer
- 13. Misra R and Puri GS (2018). *Indian Manual of Plant Ecology*. Scientific Publishers (India)
- 14. Jose, S., Singh, H. P., Batish D. R. and Kohli, R.K. (2013). *Invasive Plant Ecology*. CRC Press.
- 15. Pugnaire, F.I. and Valladares, F. (2007). Functional Plant Ecology. CRC Press
- 16. Hasanuzzaman, M., Fujita, M., Oku, H, and Tofazzal Islam, M. (2019). *Plant Tolerance to Environmental Stress*. CRC Press
- 17. Dighton, J. (2018). Fungi in Ecosystem Processes. CRC Press
- 18. Cronk, J. K. and Siobhan Fennessy, M. (2001). Wetland Plants. CRC Press
- 19. Lemon, E. R. (2019). *CO2 and Plants*. The Response of Plants to Rising Levels of Atmospheric Carbon Dioxide. CRC Press
- 20. Davet, P. (2004). Microbial Ecology of Soil and Plant Growth. CRC Press
- 21. Schulze, E.D., Beck, E. and Muller-Hohenstein, K. (2002). Plant Ecology. Springer

	BOT-611-MJP(D) Practicals based on BOT-610-MJ(D) Plant Ecology-I (2 Credits: 15 Practicals)	2C
1	Study of plant adaptations in epiphytes and parasites	3P
2	Assessment of plant species based on IUCN criteria	2P
3	Study of plant adaptation related to survival and reproduction	2P
4	Study of plant mimicry	1P
5	Study of pollination mechanisms	2P
6	Studying plant microbes/ insect interaction	2P
7	Case studies of the ecosystems and preparation of report	2P
8	Detection of green leaf volatiles after herbivory	2P
9	Study of different types of insect herbivores	2P

10	Visit to Botanic garden/ institutes involved in conservation	1P
11	Study of biomass production in an ecosystem	2P

	BOT-610-MJ(E) Advanced Plant Physiology-I (2 Credits: 30 Lectures)	2C
Cr	edit 1: Photosynthesis and respiration	15L
1	Chlorophyll fluorescence kinetics and determination of PSI, PSII efficiency, CO ₂ compensation point. Photoinhibition and protection mechanisms, photorespiration	4L
2	Evolution and diversity of photosynthetic systems. Evolution of RuBPCase and Calvin cycle. Partitioning of photosynthetic assimilates under different conditions, feedback regulation of photosynthesis	4L
3	Alternative oxidase pathway in plants, regulation of respiration, GABA shunt. Inhibitors and uncouplers of mitochondrial electron transport chain, diverse electron transport systems in plant mitochondria.	4L
4	Interdependence of mitochondria and chloroplasts. Protective effects of mitochondrial respiration on photosynthesis, growth and maintenance respiration. Role of respiration in plant carbon balance	3L
Cr	edit II: Crop physiology	15L
1	Crop growth analysis - CGR, RGR, NAR, LAI, LAD and LAR, factors affecting phenology and yield, root- shoot relationship	6L
2	Agrometeorological observations, data recording, analysis, presentation and interpretation. Correlation studies of weather data and crop growth	3L
3	Competitive relationships and competitive functions, biological and agronomic basis of yield advantage under intercropping	3L
4	Dryland crop production, constraints and remedial measures, heat unit concept of crop maturity, types of heat unit	3L
Su	ggested Readings:	
1. Berg J.M., Tymoczko J.L., Stryrer L. (2002) Biochemistry. 5th Ed. Wlt. Freeman and Company, New York.		nd

- 2. Buchanan B.B., Gruissem W., Jones R.L. (2000) Biochemistry and Molecular Biology of Plants. IK International, Mumbai.
- 3. Davis P. J. (Eds.).(2004) Plant Hormones. Kluwer Academic Publishers, Dordrecht, Netherlands.
- 4. Goodwin T.W., Mercer E.I. (1998) Introduction to Biochemistry. CBS Publishers, New Delhi. 4. Heldt H. W. (2004) Plant Biochemistry. Academic Press, California.
- 5. Lawlor D.W. (2001) Photosynthesis in C3 and C4 Pathway.3rd Ed. Viva. New Delhi.
- 6. Nelson David and Cox Michael. (2007) Lehninger Principles of Biochemistry.W.H.Freeman and Company. New York.
- 7. Lincoln Taiz and Eduardo Zeiger (2010) Plant Physiology, 5th edition. Sinauer Associates, Inc. Publishers. Sunder land, USA

	BOT-611-MJP(E) Practicals based on BOT-610-MJ(E) Advanced Plant Physiology-I	2C
1	(2 Credits: 15 Practicals) Measurement of chlorophyll fluorescence	1P
2	Measurement of relative water content in C3, C4, and CAM plants in water related conditions	2P
4	Determination of respiration flux through cytochrome c and AOX pathway	1P
5	Determination of RuBPCase activity in C3 and C4 plants	2P
6	Determination of PEPcase activities in C4 and CAM plants	2P
7	Determination of the ratio of reducing and non-reducing sugars at different stages of crop growth	2P
8	Comparison of growth rate and days to flowering in response to altered photoperiod / nitrogen fertilizer application / irrigation in a crop plant	3P
9	Estimation of neutral and acid invertase activity during grain filling in any crop species	3P
10	Construction of crop growth curve	1P
11	Comparative analysis of productivity in non-irrigated and irrigated areas	2P

	BOT-610-MJ(F) Pharmacognosy – I (2 Credits: 30 Lectures)	2C
Cr	edit 1: Natural product chemistry	15L
1	Overview of major secondary metabolite biosynthetic pathways in plants	1L
2	Occurrence & distribution of phenolics and flavonoids, alkaloids, tannins, terpenoids and essential oils	3L
3	Regulation of secondary metabolite pathways and compartmentation of these in plants	3L
4	Methods of extraction, purification, identification and estimation of major metabolites. Case studies	6L
5	High Throughput Screening (HTS)	2L
Cr	edit 2: Applied Pharmacognosy	15L
1	Ethnobotany: Concept, relevance and classification. Methods and techniques used in ethnobotany. Ethnopharmacology and its applications.	3L
2	Regulatory requirements for new drugs: Biomarkers, definition, importance in crude drug standardization	4L
3	Standardization, quality, efficacy and safety requirements & assessment procedures for herbal medicines as per USFDA	3L
4	Nutraceuticals and cosmeceuticals: Introduction, classification and their formulations, botanical sources, properties and uses	5L
Cit	ggested Readings:	

- 1. Bajaj, Y.P.S., Ed. (1988) Biotechnology in Agriculture and Forestry vol. 4, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo.
- 2. Buchanan B. B., Gruissem W. and Jones R. L. (2015) Biochemistry and Molecular Biology of Plants. Second Edition. Wiley Blackwell.
- 3. Chandra S., Lata H. and Varma A. (2013) Biotechnology for Medicinal Plants. Micropropagation and Improvement. Springer-Verlag, Berlin, Heidelberg.
- 4. Charlwood B.V. and Rhodes M. V. Ed. (1999) Secondary products from plant tissue culture. Clarendon Press, Oxford.
- 5. Cseke L. J., Kirakosyan A., Kaufman P. B., Warber S., Duke J. A. and Brielman H. L. (2006) Natural Products from Plants. 2nd Edition, CRC Press, Taylor & Francis Group.
- 6. Das H. K. (Editor) (2007) Textbook of Biotechnology. 3rd Edition. Wiley India (P) Ltd.
- 7. Dewick Paul M. (2002) Medicinal Natural Products (A Biosynthetic Approach), 2nd Edition, John Wiley and Sons Ltd., England.

- 8. DiCosmo F. and Misawa M. (Editors) (1996), Plant Cell Culture Secondary Metabolism toward Industrial Application. CRC Press, Boca Raton, New York.
- 9. European Pharmacopoeia. 9th Edition. (2017). 3 Volume Set.
- 10. Evans W. C. (2009) Trease and Evans' Pharmacognosy. Elsevier Health Sciences.
- 11. Farooqi A. A. and Sreeramu B. S. (2004) Cultivation of Medicinal and Aromatic Crops. Revised Edition. Universities Press (India) Pvt. Ltd.
- 12. Fu T.-J., Singh G. and Curtis W. R. (2000) Plant Cell and Tissue Culture for the Production of Food Ingredients. Springer International Edition. Springer (India) Pvt. Ltd., New Delhi.
- 13. Greene J. J. and Rao V. B. (1998) Recombinant DNA Principles and Methodologies. CRC Press.
- 14. Harborne A. J. (1998) Phytochemical Methods A Guide to Modern Techniques of Plant Analysis. Third Edition. Chapman and Hall.
- 15. Indian Pharmacopoeia 7th Edition (2014). 4 Volume Set.
- 16. Primrose S. B. and Twyman R. (2006). Principles of Gene Manipulation and Genomics. 7th Edition, Wiley-Blackwell.
- 17. Pushpangadan P., Nyman U. L. F., George V. (1995) Glimpses of Indian Ethanopharmacology. Tropical Botanic Garden and Research Centre Thiruvananthapuram, India and The Royal Danish School of Pharmacy, Copenhagen, Denmark..
- 18. Rai M. and Carpinella M. C. (2006) Naturally Occurring Bioactive Compounds. Elsevier B. V.
- 19. Raman N. (2006) Phytochemical Techniques. New India Publishing Agency, New Delhi, India.
- 20. Ramavat K. G. and Goyal Shaily (2009) Comprehensive Biotechnology. 1st Edition. S. Chand Publishing.
- 21. Ramawat K. G. and Merillon J-M. (Editors) (1999) Biotechnology: Secondary metabolites, Oxford IBH Publishing Co., New Delhi
- 22. Ramawat K. G. and Merillon J-M. (Editors) (2008) Bioactive Molecules and Medicinal Plants. Springer Verlag, Berlin, Heidelberg.
- 23. Schirmer, R.E., (2000), Modern Methods of Pharmaceutical Analysis, Vol. 1, 2. CRC Press, Boca Raton, Florida.
- 24. Sensen C. W. (Editor) (2002) Essentials of Genomics and Bioinformatics, Wiley-VCH, Germany.
- 25. Smith, P. M. (1976) The Chemotaxonomy of Plants. Edward Arnold, UK
- 26. Swain T. E. (1963) Chemical Plant Taxonomy, Academic Press, London and New York.
- 27. Trigiano R. N. and Gray D. J. (1999) Plant Tissue Culture Concepts and Laboratory Exercises. 2nd Edition. CRC Press, Boca Raton, New York.
- 28. Tyler, V. E., Brady, L. R. and Robbers J. E. (1976) Pharmacognosy, Balliere Tindall, Calcutta.
- 29. Vasil I. K. (Editor) (1986) Cell culture and somatic cell genetics of plants. Vol. 4. Academic Press, New York.

- 30. Verpoorte R. and Alferman H. W. (Editors) (2003) Metabolic engineering of plant secondary metabolites. Kluwer Academic Publishing.
- 31. Wagner H. and Bladt S. (1996) Plant Drug Analysis A Thin Layer Chromatography Atlas. 2^{nd} Edition. Springer.
- 32. Wagner, H. and Wolff P. (Editors) (1977) New Natural Products and Plant Drugs with Pharmacological, Biological or Therapeutical Activity. Springer Verlag, Berlin, Heidelberg, New York.

	BOT-611-MJP(F) Practicals based on BOT-610-MJ(F) Pharmacognosy-I (2 Credits: 15 Practicals)	2C
1	Identification of crude (leaf, stem, root, bark, flower, fruit) drugs with the help of macroscopic & microscopic features	3P
2	Estimation of percentage extractive values of crude drugs	2P
3	Comparative histochemical studies of crude drugs and their adulterants/substitutes	3P
4	Authentication of crude drugs using Pharmacopoeias	1P
5	Extraction and estimation of alkaloids from medicinal plants	2P
6	TLC based separation and identification of phytoconstituents	1P
7	Extraction of essential oils from aromatic plants/ plant products	2P
8	Paper chromatography based separation and identification of phytoconstituents	1P
9	Characterization of phytopharmaceuticals by HPLC / HPTLC	2P
10	Profiling of plant extracts using HPTLC	2P

	BOT-610-MJ(G) Advanced Plant Genetics and Breeding-I	2C
	(2 Credits: 30 Lectures)	
Cr	edit 1: Cytogenetics, molecular markers and its applications breeding	15L
1	Variation in chromosome number: Euploidy (haploids, autopolyploids, allopolyploids), aneuploids (nullisomics, monosomics, trisomics, tetrasomics). Mapping methods with aneuploids, alien addition / substitution lines	4L
2	Chromosome markers, banding techniques, GISH and FISH analysis	2L
3	PCR: Principle, types and applications	2L

4	Molecular markers: Types, diversity assessment, gene mapping, marker assisted selection	4L
5	Map based cloning, QTL identification and mapping	3L
Cr	edit 2: Breeding for quality traits	15L
1	Heterosis and its exploitation: Concept of heterosis, inbreeding depression, estimation of heterosis	2L
2	Hybrid varieties: Development and evaluation of inbreds, types of male sterility, production of hybrid seeds, merits, demerits and achievements through hybrid varieties	4L
3	Conventional and biotechnological approaches to improve crops for:	
	(a) Abiotic stresses – Drought and salinity	3L
	(b) Biotic stresses – Disease resistance, insect resistance	3L
	(c) Quality improvement - Protein and oil	3L

- 1. Burnham, C.R. (1962) Discussions in cytogenetics. Burgess Pub. Co., Minnesota.
- 2. Hartl, D.L., Jones E.W.(2001). Genetics: Principle and analysis (4th edn) Jones and Barlett Pub., USA.
- 3. Khush, G S (1973) Cytogenetics of Aneuploids. Academic press New York, London.
- 4. Lewin, B. Genes VIII. Oxford, University press. New York, USA.
- 5. Russel, P.J. 1998. Genetics (5th edn). The Benjamin/Cummins Pub. Co., Inc. USA.
- 6. Snustad, D.P. and Simmons, M.J. ,2000. Principles of genetics (4th edn). John Wiley and Sons, Inc., USA.
- 7. Strickberger, M.W: Genetics (4th edn). Mcmillan Publishing Company, New York.
- 8. Griffiths, A.J.F and Gilbert, W.M (2nd edn). Modern genetic analysis. W.H. Freeman and Company, New york.
- 9. Singh, B.D.(2005). Plant breeding: principles and methods. 7th edn.
- 10. Allard, R.W.(1960), principles of plant breeding. John Wiley and sons, Inc., New York.
- 11. Chopra, V.L. (2000) Plant breeding: Theory and practice 2nd edn. Oxford & IBH Pub., Co., ltd. New Delhi.
- 12. Sharma, J.R. 1994. Principles and practices of plant breeding. Tata Mcgraw Hill. Pub. Co. Ltd. New Delhi.
- 13. Simmonds, N.W. 1979 Principles of crop improvement. Longman, London and New York.
- 14. VL Chopra, Plant Breeding: Theory & Practice.
- 15. D.Roy, Plant Breeding: Analysis & exploitation of variation. Narosa publication.
- 16. DK Kar & S. Haldar, Plant Breeding & Biometery.

	BOT-611-MJP(G) Practicals based on BOT-610-MJ(G) Advanced Plant Genetics and Breeding -I	2C
	(2 Credits: 15 Practicals)	
1	Analysis of induced aberrations	3P
2	Meiotic behaviour of auto and allopolyploids	2P
3	Analysis of chiasma frequency	2P
4	Karyotype analysis	3P
5	Handling data on polygenic traits for analysis of variance and covariance,	2P
	partitioning of variance components, heterosis	
6	Analysis of interspecific hybrids	3P
7	Localization of heterochromatin region using C-banding technique	3P
8	Generation of mutant population and observation of agronomically important traits	3P
9	Testing segregating population / mutant against biotic or abiotic stress	2P
10	Isolation and amplification of DNA using ISSR/RAPD markers and assessment of genetic diversity	5P
11	Induction and assessment of polyploidy	3P
12	Hybridization techniques in self and cross pollinated plants	4P
13	<i>In-vitro</i> anther/ microspore culture	2P
14	Construction of genetic linkage map using Mapmaker	2P
15	QTL analysis using given marker scoring data	2P

	BOT-610-MJ(H) Plant Biotechnology- I (2 Credits: 30 Lectures)	2C
Cr	edit 1: Gene libraries, screening of recombinants and sequencing	15L
1	Construction of genomic and cDNA libraries: Plasmid based, cosmid, BAC, YAC libraries, full length cDNA libraries	3L
2	Screening of genomic and cDNA libraries: Isolation of specific genes, probe labelling, nucleic acid hybridization and detection, structure & function based screening, antibodies, PCR pooling	3L
3	DNA sequencing methods, overview, next generation sequencing: evolution, platforms, library preparation, data acquisition and analysis tools	3L
4	Genome sequencing approaches: Shotgun, clone contig, chromosome walking, use of physical map	3L
5	Plant whole genome sequencing: Advances in long read sequencing and applications, Hi-C sequencing, DNase I hypersensitivity	3L
Cr	edit 2: Genetic transformation of plants	15L
1	Overview of plant transformation methods	3L
	Agrobacterium: Ti plasmid, molecular mechanisms of transfer and integration into host plant genome, agroinfiltration for transient expression	
2	Rhizobium rhizogenes: Ri plasmid, hairy root induction and its applications	2L
3	Binary vector for functional genomics studies: virus-based vectors for transient expression, vectors for chloroplast transformation, vectors for marker-free selection, artificial microRNA mediated silencing, CRISPR vectors, Vectors for promoter analysis, subcellular localization, transactivation	6L
4	In planta transformation and analysis of transformants	2L
5	Screening of transformants in subsequent generations - copy number, heterozygosity and expression	2L
Su	Suggested Readings:	
	Recombinant DNA – Principles and Methodologies. Greene JJ and Rao VS, Marcel I w York, 1998.	Dekker,
	Principles of gene manipulation. Primrose SB, Twyman RM and Old RW, 6th Inckwell Science, Oxford, 2001	Edition,

- 3. Differentially expressed gene in plants. Hansen and Harper, Taylor and Francis Ltd. London, 1997.
- 4. Engineering plants for commercial products and applications. Eds. Collins GB and Shepherd RJ, NY Acad. Of Science Publishers 1996
- 5. DNA markers.Eds. Caetano-Anolles and Gresshoff, Wiley-VCH Publishers, NY, 1998
- 6. Introduction to Bioinformatics.Attwood, T.K., Parry-Smith, DJ, Addison Wesley Longman, Harlow, Essex, 1999
- 7. Bioinformatics. Westhead, DR, Parish JH and Twyman, RM, BIOS Scientific Publishers Ltd., Oxford, 2003
- 8. Bioinformatics Sequence and genome analysis. D.W. Mount, CBS Publishers, NewDelhi, 2003
- 9. Collins GB and Shepherd RJ Eds., 1996, Engineering plants for commercial products and application. NY Acad. Of Science Publishers
- 10. Senson CW Edt, 2002, Essentials of Genomics and Bioinformatics,. Wiley-VCH Publishers, NY.
- 11. Charlwood B.V. and Rhodes MV Edt. 1999, Secondary products from plant tissue culture.Clarendon Press, Oxford.
- 12. Dicosmo F and Misawa M, Edt 1996, Plant cell culture: Secondary metabolism towards industrial application, CRC press, Boca Raton, N.Y.
- 13. Ramawat K G and Merillon J M, Edt.,1999 Biotechnology: Secondary metabolites, Oxford IBH Publishing Co., New Delhi.
- 14. Buchanan BB, Grussem Wand Jones RL, 2000, Biochemistry and molecular biology of plants, IK International Pvt Ltd. New Delhi.
- 15. Verapoorte R and Alferman HW Eds, 2002 Metabolic engineering of plant secondary metabolites. Kluwar Academic Publ., Netherlands.

BC	OT-611-MJP(H) Practicals based on BOT-610-MJ(H) Plant Biotechnology- I	2C
	(2 Credits: 15 Practicals)	
1	Transformation of Agrobacterium tumefaciens with binary vector using freeze	2P
	thaw method and selection for transformants	
2	Transformation of plant tissues using Agrobacterium tumefaciens based vectors	3P

3	Detection of transformants using GUS/GFP/gene specific PCR	3P
4	Construction of vector for functional constructions	2D
4	Construction of vector for functional genomics studies	3P
5	Basic linux commands for handling next generation sequencing data	2P
6	Next generation sequencing file formats, quality control and removal of low-quality reads	2P
7	Agrobacterium-mediated transient expression in Nicotiana benthamiana for scorable /visible markers	4P
8	Induction of transgenic hairy roots in medicinal plants and characterization of transgene	4P
	SEMESTER IV: CORE COURSES	
	(Mandatory)	
	BOT-651-MJ Bioinformatics and Biostatistics	2C
	(2 Credits: 30 Lectures)	
Cre	edit 1: Basic and structural bioinformatics	15L
1	Introduction to databases and retrieving information from databases: Nucleotide, protein sequence and genome databases	1L
2	Sequence similarities, pairwise comparison of DNA and protein sequences, dynamic programming algorithms, FASTA and BLAST	2L
3	Multiple sequence alignments, progressive methods, iterative methods, localized alignments	2L
4	Determining phylogenetic relationships using DNA and protein sequences	2L
5	Protein structures, Ramachandran plot, protein folding	3L
6	Protein structure function relationship, conformational energy calculations	1L
7	Protein structure predictions, secondary and tertiary	1L
8	Protein structure modelling: homology modelling, protein threading, <i>ab initio/de novo</i> modelling, artificial intelligence for protein modelling	3L
Cre	edit 2: Biostatistics	15L
1	Descriptive statistics: Populations and samples, graphical presentation of data frequency distribution, central tendency and dispersion: Mean, median, variance standard deviation	2L

2	Sampling distributions, standard error of mean	1L
3	Normal distribution, standardised normal distribution (z), attributes of normal distributions, Student's t distribution, estimation and confidence interval	2L
4	Hypothesis testing, type I and type II errors	1L
5	Binomial and Poisson distribution	1L
6	Non-parametric tests	1L
7	Experimental designs- completely randomised, randomised block and factorial experimental designs	2L
8	Test of homogeneity, analysis of variance, post hoc tests	2L
9	Correlation and regression, linear and non-linear regression	2L
10	Chi-square test for goodness of fit and independence	1L

- 1. Statistical Methods Snedecor G.W. and Cochran W.G. Affiliated East-West Press Pvt. Ltd. 1989
- 2. Statistical methods in Agriculture and Experimental Biology Mead, R. and Curnow, R.N. Chapman and Hall, 1983
- 3. Practical statistics and experimental design for plant and crop science Clewer, A.G. and Scarisbrick, A.H., John Wiley, New York, 2001
- 4. Bioinformatics Westhead, DR, Parish JH and Twyman, RM, BIOS Scientific Publishers Ltd., Oxford, 2003
- 5. Bioinformatics and Molecular Evolution Higgs PG and Attwood TK, Blackwell Publishing, Oxford, UK, 2005
- Bioinformatics A Practical Guide to the Analysis of Genes and Proteins- Baxevanis A. D.,
 Francis Ouellette B. F. John Wiley & sons Inc., 2001
- 7. Bioinformatics and Functional Genomics, 3rd Edition Jonathan Pevsner 2015 Wiley-Blackwell
- 8. Structural Bioinformatics, 2nd Edition Jenny Gu, Philip E. Bourne 2009 Wiley-Blackwell

	BOT-652-MJ Plant Evolution (2 Credits: 30 Lectures)	2C
Cr	edit 1 Concepts of evolution	15L
1	Evolutionary theories - Lamarckism, Darwinism, concepts of variation, adaptation, struggle for fitness: natural selection & mutations, Neo-Lamarckism, Neo-Darwinism	4L
2	Origin of cells and unicellular evolution - Origin of basic biological molecules, abiotic synthesis of organic monomers and polymers, concepts of Oparin and Halden, Miller's experiment, origin and evolution of prokaryotic and eukaryotic cells, anaerobic metabolism, photosynthesis and aerobic metabolism	5L
3	Paleontology and evolutionary history - The geological time scale, major evolutionary events	1L
4	Study of major groups of fossil plants with reference to evolutionary history and general characters- Psilopsida, Lycopsida, Sphenopsida, Pteropsida, Progymnospermopsida, Gymnospermopsida	5L
Cr	edit 2	15L
1	Origin of Angiosperms: Monophyletic or Polyphyletic, Pteridosperms theory, Bennettitalean theory, Gnetalean theory	5L
2	The mechanisms of evolution: Natural selection, migration and random genetic drift, adaptive radiation and modification, isolation mechanisms, speciation, allopatric and sympatric, convergent evolution, sexual selection, co-evolution	5L
3	Molecular evolution: origin of new genes and proteins, gene duplication and divergence, molecular divergence and molecular clocks, molecular phylogeny,	5L
\mathbf{p}_{α}	ferences	

Alberts B., Bray D., Lewis J., Raff M., Roberts K., Watson J.D. (1989). Molecular Biology of the Cell. 2nd Edn. Garlan Publ. Inc. New York.

Biswas C and Johari B.M 2004. The Gymnosperms Narosa Publishing House, New Delhi. 497 pp.

Chamberlain C.J 1934. Gymnosperms-Structure and Evolution, Chicago.

Cronquist, A. 1968. The Evolution and Classification of Flowering Plants. Thomas Nel and Sons, Ltd. London.

De Robertis and De Robertis (2005). (8th edition) (Indian) Cell and Molecular Biology, Lippincott Williams, Philadelphia. [B.I Publications Pvt. Ltd. New Delhi].

Lodish S., Baltimore B., Bek C., Lawrence K. (1995).Molecular Cell Biology. 3 rd Edn. Scientific American Books, New York.

Stewart W.N. and Rathwell G.W. 1993. Paleobotany and the Evolution of plants. Cambridge University Press.

Verma P.S and Agarwal V.K. (2006) Cell Biology, Genetics, Molecular Biology, Evolution, Ecology. S.Chand and Company, New Delhi.

	BOT-653-MJ Tools and Techniques in Botany-II (2 Credits: 30 Lectures)	2C
Cr	edit 1	15L
1	Spectroscopic techniques: Visible, UV, IR spectrophotometry, spectrofluorimetry, NMR spectroscopy, circular dichroism, atomic absorption and mass spectrometry, MALDI-TOF, flow cytometry	9L
2	Electrophoretic techniques: Supports, electroendosmosis, electrophoresis (native with activity staining, dissociating and denaturing conditions), isoelectric focusing, 2-D electrophoresis, staining	6L
Cr	edit 2	15L
1	Chromatographic techniques: Paper, thin layer and column chromatography, gel filtration, ion exchange and affinity chromatography, high pressure liquid chromatography, gas chromatography	8L
2	Immunological techniques: Immune response, antibodies and their specificity, antigen-antibody interactions, immunodiffusion and immunoelectrophoresis techniques, immunoassays	7L

- 1. David L. Nelson, Michael M. Cox Lehninger Principles of Biochemistry; W. H. Freeman 7th edition edition 2017.
- 2. David M Freifelder Physical Biochemistry: Applications to Biochemistry and Molecular Biology (Life Sciences/Biochemistry, W. H. Freeman; 2nd Revised edition, 1983.
- 3. Jeremy M. Berg, John L. Tymoczko, Lubert Stryer Biochemistry, W. H. Freeman; 7th edition edition 2011.
- 4. Keith Wilson, John Walker, "Practical Biochemistry Principles and Techniques" Cambridge University Press 2010.

- 5. S. M. Khasim, "Botanical Microtechnique: Principles and Practice". Capital Publishing Company. 2002.
- 6. Thomas J. Kindt, Barbara A. Osborne and Richard Goldsby "Kuby Immunology" .W.H. Freeman; 6th edition edition 2006.
- 7. Allen, James P. Biophysical chemistry. Wiley-Blackwell; 2008.
- 8. Peter Jomo Walla, Modern Biophysical Chemistry. Wiley-VCH Verlag GmbH & Co. KGaA; 2014.
- 9. Donald L. Pavia, Gary M. Lampman, George S. Kriz; Introduction to Spectroscopy
- 10. Neil E. Jacobsen, NMR Spectroscopy Explained: Simplified Theory, Applications and Examples for Organic Chemistry and Structural Biology, John Wiley & Sons, Inc.; 2007.

	BOT-654-MJ Biodiversity, conservation & utilization (2 Credits: 30 Lectures)	2C
Cr	edit 1 Concepts and types	15L
1	Biological diversity : Introduction, mega diversity countries, magnitude of biodiversity, direct, indirect and ethical values of biodiversity, loss of biodiversity, reasons for loss of biodiversity, taxonomic initiatives, Systematic Agenda 2020	3L
2	Genetic diversity: Nature and origin of genetic variations (within and between populations), assessment of genetic diversity - molecular approaches to plant diversity assessment based on allozymes and DNA based markers	4L
3	Species diversity: Phytogeographic and floristic patterns of species diversity, centers of species diversity, spatial patterns of species diversity	3L
4	Ecosystem diversity: Plant diversity within and between ecosystems in Indian subcontinent. Agro-biodiversity - domestication and distribution of cultivated species with respect to agro climatic zones. Diversity in domesticated species	3L
5	Endemism, hotspots, categories of IUCN, Keystone and Flagship species	2L
Cr	edit 2 Biodiversity assessment and conservation	15L
1	Methods of assessment of species diversity: Diversity indices - species richness, species abundance. CAMP exercise - objectives and procedure, remote sensing & ground truthing	2L
2	Organizations associated with Biodiversity management: UNEP, WWF, FAO, WCMC, CBD, IPR, CITES, Ramsar convention, International Undertaking on Plant Genetic resources and Farmers Rights, MoEFCC	3L

3	Strategies of sustainable utilization: Plant genetic resources and sustainable utilization	2L
4	Conservation strategies: Sacred Groves, Sthalavrikshas, People's movement for biodiversity conservation, Chipko movement, etc. Organizations involved in conservations, IEC activities taken by government	2L
5	In-situ conservation: Protected areas, biosphere reserves and national parksEx-situ conservation: Germplasm collections, Botanic gardens, seed banks, pollen banks, field gene banks, DNA banks, In-vitro conservation methods	4L
6	Acts and Public notices related to biodiversity, People's Biodiversity Register (PBR), IKS	2L

- 1. Avise JC (1994) Molecular Markers, Natural History and Evolution, Chapman & Hall, London
- 2. Barbier EB, Burgess JC & Folke C. (1994) Paradise Lost? The Ecological Economics of Biodiversity; Earthscan, London
- 3. Bowles M.L. & Whelan C.J. (1996) Restoration of Endangered Species; Cambridge Univ. Press.
- 4. Bowles M.L. & Whelan C.J. (Eds.) (1996) Restoration of Endangered Species; Cambridge Univ. Press.
- 5. Dwivedi O.P (1994), Environmental Ethics; Sanchar Publishing House, New Delhi
- 6. EDavid Hill, Matthew Fasham, Graham Tucker, Michael Shewry & Philip Shaw (Eds.) (2004) Handbook of Biodiversity Methods Survey, Evaluation and Monitoring; Cambridge
- 7. Foster, M. G. Mueller and Bills G. (2004) Biodiversity of fungi: Inventory and Monitoring methods Academic Press. 777ppp
- 8. Gadgil M. & Guha R. (1992) This Fissured Land: An Ecological History of India; Oxford University Press, New Delhi
- 9. Hajra P.K. & V. Mudgal (Eds.) (1997) Plant Diversity Hotspots in India An Overview, BSI
- 10. Handbook of the Convention on Biological Diversity (2001), Secretariat of the Convention on Biological Diversity. Earthscan publ., London
- 11. Heywood and Watson (Edt.) (1995) Global Biodiversity Assessment, UNEP, Cambridge University Press.
- 12. Hunter Cevera, J.C. and Angella Belt (1996) Maintaining cultures for Biotechnology and Industry.
- 13. Kothari, Ashish (1997) Understanding Biodiversity- Life, sustainability and Equity; Orient Longman
- 14. Krishnamurthy K.V. (2003) An Advanced Textbook on Biodiversity-Principles and Practice, Oxford & IBH Publ. New Delhi
- 15. Magurran Anne (1988) Ecological Diversity & Its Measurement, Chapman & Hall India
- 16. Michael J. Jeffries (2005) Biodiversity and Conservation, Routledge, London

- 17. Michael P. (1984) Ecological Methods for field & Laboratory investigations, TMH Co. ltd. Bombay.
- 18. N.K. Uberoi (2003) Environmental Management, Excel Books, New Delhi
- 19. Ninan K.N. (2007) The Economics of Biodiversity Conservation, Earthscan, London
- 20. Paroda R S and Arora R K (1991) Plant Genetic Resources: Conservation and Management, IBPGR, India
- 21. Razdan M K and Cocking E C (1997) Conservation of Plant Genetic Resources *In Vitro*, Volume 1, Oxford & IBH Pub.
- 22. Shailaja Ravindranath & Sudha Premnath (1997) Biomass Studies Field Methods for Monitoring Biomass, Oxford & IBH, New Delhi.
- 23. Singh J S, Singh S P and Gupta S R (2006) Ecology Environment and Resource Conservation, Anamaya Publishers
- 24. T.V. Ramchandra, R. kiran, N. Ahalya (2002) Status, Conservation & Management of Wetlands, Allied Publ. New Delhi.
- 25. Uma Shaanker, R. Ganeshiah, KN. & Bawa KS (Eds) (2001) Forest Genetic Resources: Status, Threats and Conservation Strategies; Oxford & IBH, New Delhi
- 26. WCMC (1992) Global Biodiversity: Status of the Worlds Living Resources; Chapman and Hall, London
- 27. William J. Sutherland (1997) Ecological Census Techniques A Handbook. Cambridge Uni. Press.
- 28. WRI/IUCN/UNEP (1992) Global Biodiversity Strategy: Guidelines for Action to Save, Study, and Use Earth's Biotic Wealth Sustainably and Equitably; WRI Publ, Baltimore, MD.

B	OT-655-MJP Practicals based on BOT-651 Bioinformatics and Biostatistics and BOT-652-MJ Plant Evolution (2 Credits: 15 Practicals)	2C
Pra	acticals based Bioinformatics (Any 5P)	
1	Data retrieval of nucleotide, protein and genome sequences from databases	2P
2	Pairwise comparison of DNA and protein sequences - BLAST	2P
3	Multiple sequence alignments: progressive & iterative methods	2P
4	Determining phylogenetic relationships using DNA and protein sequences	2P
5	Visualizing protein 3D structure	1P
6	Prediction of 3D structure of proteins using homology modelling	2P

Pra	acticals based Biostatistics (Any 5P)	
1	Data, graphical presentation of data – frequency distribution, Sample means and standard deviations, confidence intervals	2P
2	Hypothesis testing-comparison of means	2P
3	Analysis of variance	2P
4	Correlation and regression	2P
5	Binomial distribution	2P
6	Non-parametric test	2P
Pra	Practicals based on Plant Evolution- II (Any 5P)	
1	Study of available fossils of Psilopsida, Lycopsida, Sphenopsida, Progymnospermopsida and Gymnospermopsida	3P
2	Study of available fossils of Angiosperms	1P
3	Construction of phylogenetic tree to trace plant evolution	1P
4	Comparative morpho-anatomical analysis of vegetative and reproductive structures	2P
5	Computational analysis of gene duplication and divergence	2P

	BOT-656-MJP Practicals based on BOT-653-MJ Tools and Techniques in Botany-II and BOT-654-MJ Biodiversity, conservation & utilization (2 Credits: 15 Practicals)	2C
Pra	acticals based on Tools and Techniques in Botany-II (Any 8P)	
1	Extraction and separation of plant pigments by thin layer chromatography	2P
2	Derivatization and separation of amino acids/ fatty acids using TLC	2P
3	Ouchterlony immunodiffusion technique for testing specificity of antigens and antibodies	2P
4	Separation of protein using gel filtration/ affinity / ion exchange chromatography	2P
5	Demonstration of Spectrofluorimetry	1P
6	Demonstration of HPLC and quantification of analyte	2P

7	Demonstration of GC-MS and quantification of analyte	2P
8	Separation of enzyme isoforms using native PAGE and activity staining	3P
Pra	acticals based on biodiversity, conservation & utilization (Any 7P)	
1	Biodiversity assessment by line transect and quadrat method	2P
2	Inventory and estimation of plant species richness	2P
3	Estimation of biomass of grassland/ woody vegetation	2P
4	To study floral and faunal diversity	2P
5	Propagation of any two threatened plant species through asexual and sexual methods	2P
6	Assessment of vegetation by using GIS	1P

	BOT-660-MJ(A) Advanced Phycology-II (2 Credits: 30 Lectures)	2C
Cre	edit 1	15L
1	Cultivation of microalgae: Sampling methods, nutrient media, isolation techniques, role of physical and chemical factors on growth kinetics and measurements	3L
2	Scaling-up, harvesting and drying of algal biomass, continuous cultures	2L
3	Photobioreactors (closed system) for mass production of microalgae: Principle considerations and designing, tubular and flat-plate reactors, merits and demerits	2L
4	Mariculture of seaweeds: Necessity and principles, cultivation of economically important <i>Porphyra</i> , <i>Gracilaria</i> , <i>Kappaphycus</i> , <i>Laminaria</i>	2L
5	Conservation strategies for algae: Role of genetic resource centers and culture collections, methodologies	3L
6	Algal genomics and metabolic engineering: Biofuel production, lipid enhancement	3L

Cre	edit 2	
1	Eutrophication: Causes, chemical and biological responses of eutrophication, Production of toxic metabolites from bloom forming algae and their consequences on aquatic environments and trophic level	4L
2	Phycoremediation by High Rate Algal Ponds (HRAPs)	2L
3	Secondary metabolites from microalgae and their biosynthesis, Inducibility of defense metabolites against herbivores in microalgae, Microcystis-Daphnia interaction: a case study	5L
4	Grazer's impact on seaweeds and seaweed communities, seaweed defenses against grazers	4L

- 1. Andersen, R. A. (ed.) (2005). Algal culturing techniques. Elsevier Academic Press, pp. 578.
- 2. Barsanti, L. and Gualtieri, P. (2006). Algae: anatomy, biochemistry and biotechnology. CRC Press, pp. 301.
- 3. Benson, E. E. (ed.) (1999). Plant conservation biotechnology. Taylor & E. Francis, pp. 309.
- 4. Bhattacharya, D (ed). (1997). Origin of algae and their plastids. Springer-Verlag, New York, pp. 287. 5.
- 5. Bux, F. (ed.) (2013). Biotechnological applications of microalgae- biodiesel and value added products. CRC Press, pp. 227.
- 6. Caldwell, M. M., Heldmaier, G., Jackson, R. B., Lange, O. L., Mooney, H. A., Schulze, E. D. and Sommer, U. (eds.) (2012). Seaweeds biology-Novel insights into ecophysiology, ecology and utilization. Springer-Verlag, pp. 510.
- 7. Dominguez, H. (ed.) (2013). Functional ingredients from algae for foods and nutraceuticals. Woodhead Publishing Ltd., UK., pp. 734.
- 8. Evangelista, V., Barsanti, L., Frassanito, A. M., Passarelli, V. and Gualtieri, P. (eds.) (2008). Algal toxins: nature, occurrence, effect and detection. Springer, pp. 399.
- 9. Gonzalez-Fernandez, C. and Munoz, R. (eds.) (2017). Microalgae-based biofuels and bioproducts. Woodhead Publishing, UK. Pp. 540.
- 10. Gouveia, L. (2011). Microalgae as a feedstock for biofuels. Springer, New York, pp. 69.

- 11. Gupta, R. K. and Pandey, V. D. (eds.) (2007). Advances in applied Phycology. Daya Publishing House, Delhi, pp. 299.
- 12. Kim, S. K. (ed) (2011). Marine medicinal foods: Implications and applications macro and microalgae. Elsevier Inc., pp. 466.
- 13. Kim, S. K. (ed.) (2012). Handbook of marine macroalgae-biotechnology and applied Phycology. Wiley Blackwell, pp. 567.
- 14. Kristiansen, J. (ed.) (1996). Biogeography of freshwater algae. Springer Science+Business Media, pp. 161.
- 15. Leon, R., Galvan, A. and Fernandez, E. (eds.) (2007). Transgenic microalgae as green cell factories. Landes Biosciences and Springer Science+Business Media, LLC, U.S.A., pp. 128.
- 16. Lobban, C. S. and Harrison, P. J. (1997). Seaweed ecology and physiology. Cambridge University Press, pp. 366.
- 17. Pandey, A., Lee, D. J., Chisti, Y. and Soccol, C. R. (eds.) (2014). Biofuels from algae. Elsevier, pp. 338.
- 18. Richmond, A. and Hu, Q. (eds.) (2013). Handbook of microalgal culture-applied Phycology and biotechnology. Wiley Blackwell, pp. 719.
- 19. Sarma, T. A. (2013). Handbook of cyanobacteria. CRC Press, pp. 802.
- 20. Seckbach, J. and Kociolek, J. P. (2011). The diatom world. Springer, pp. 534.
- 21. Stoermer, E. F. and Smol, J. P. (eds.) (2004). The diatoms: applications for the environmental and earth sciences. Cambridge University Press, 469.
- 22. Upadhyay, S. K. and Singh, S. P.(eds). (2021). Bioprospecting of plant biodiversity for industrial molecules. John Wiley & Sons Ltd., UK. Pp. 431.
- 23. Whitton, B. A. (ed.) (2012). Ecology of cyanobacteria II-Their diversity in space and time. Springer, pp. 760.
- 24. Zajic, J. E. (ed.) (1970). Properties and products of algae. Plenus Press, New York, London, pp. 154.

BO	OT-661-MJP(A) Practicals Based on BOT-660-MJ(A) Advanced Phycology-	2C
	(2 Credits: 15 Practicals)	
1	Preparation of nutrient media for growing algal cultures	1P
2	Collection, isolation, purification and maintenance of microalgae	4P
3	Small scale biomass production of selected microalgae	2P

4	Extraction of lipids from algal biomass	2P
5	Separation and quantification of algal TAG/lipid using HPTLC	2P
6	Study of algal biodiesel properties	2P
7	Biphasic culturing of N ₂ -fixing soil algae	2P
8	Immobilization of microalgae for bioprospecting	1P
9	Extraction of agar-agar/alginates from seaweeds	2P
10	Preparation of seaweed liquid fertilizer and its effect on seedling growth	3P
11	Enrichment of algal cultures for mass production	2P
12	Determination of carotenoids/phycobiliproteins in microalgae	1P
13	Measurement of photosynthesis in microalgae	1P
14	Determination of microalgal cell counts	1P
15	Algal growth measurements and growth curve studies	3P
16	Lyophilization, reculturing and viability testing of microalgae	2P
17	Identification of bloom causing algae	2P
18	Visit to algal cultivation pond/institute/industry	2P
19	Primer designing and PCR based amplification of secondary metabolite pathway gene/s	4P

	BOT-660-MJ(B) Advanced Mycology-II (2 Credits: 30 Lectures)	2C
Cr	edit: 1 Metabolic engineering and bioprospecting of fungi	15L
1	Secondary metabolites in fungi: Types, biosynthetic pathways, significance and medicinal importance	2L
2	Fungal genomics to understand biosynthetic gene clusters (BGCs)	1L
3	Metabolic engineering in fungi to produce secondary metabolites	4L
4	Endophytic fungi and their role in plants and in therapeutics	2L
5	Medicinal mushrooms: Active principles in <i>Ganoderma lucidum, Cordyceps, Innonotus, Tremetes</i> etc.	2L
6	Production of fungal biomass for industrially important biomolecules	2L
7	Lichens: Overview, secondary metabolites and their biosynthetic pathways	2L
Cr	edit:2 Fungi in food and food industries	15L
1	Fungi as food: Mushrooms and other edible fungi, fungi in food web, cell and mycelium as food, fermented products, nutraceuticals	5L
2	Application of fungi in food and beverages industry, industrially important fungal enzymes	5L
3	Fungi and food spoilage: Types, factors responsible for spoilage and control measures	5L

Akyüz, M.; Kirbağ, S. Nutritive value of wild edible and cultured mushrooms. *Turk J Biol* 2010, *34*, 97–102.

Dube, R. and Mukerji, K. G. 2001. Microbial Technology A. P. H. > Publishing corporation, New Delhi.

Galun, M. (ed.) (1988) CRC Handbook of Lichenology. Volume III. - CRC Press, Inc., Boca Raton

Gupta, R and Mukerji, K. G. 2001 Microbial Technology A. P. H. Publishing Coprporation, New delhi.

Moore- Landerckar, E. J. 1972. Fundamentals of the fungi. Prentice hall, Englewood Cliffs.

Sati S.C. (2006) Recent mycological researches. L.K. International Pub. Housing Pvt. Ltd. New Delhi

Smith, J.F. and Barry, D.R.: The filamentous fungi Vol.I Industrial Mycology Vol.II and III.

Vijay kumar Gupta, Robert L. Mach, S. Sreenivasaprasad. Fungal Biomolecules – sources, Applications and Recent developments by 2015, Published by John Wiley & Sons. ltd.

BC	OT-661-MJP(B) Practicals based on BOT-660-MJ(B) Advanced Mycology-II (2 Credits: 15 Practicals)	2C
	(2 Cleuits, 13 Hacticals)	
1	Introduction and data retrieval from fungal databases	1P
2	Retrieval of fungal genome data and identification of secondary metabolites gene cluster using antiSMASH (fungi) webserver	2P
3	Isolation of endophytic fungi and determination of antimicrobial activity	3P
4	Detection of secondary metabolites from lichen thalli	2P
5	Study the various medicinal mushrooms and determining their bioactivity	3P
6	Production of alcohol/ other products by fermentation technique	2P
7	Visit to the fungal research laboratory/ industry	2P
8	Preparation of fungal wet/ dried herbarium specimens	1P
9	Primer designing and PCR based amplification of secondary metabolite pathway gene/s	4P

	BOT-660-MJ(C) Angiosperms systematics-II (2 Credits: 30 Lectures)	2C
Cred	lit 1: Systematics	15L
1	Systematics : Overview, Sources of data - morphology, micromorphology, anatomy, embryology, palynology, biochemistry, karyology, sequence data etc.	7L
2	Biosystematics : Aims, concepts, methods, categories - ecotype, ecospecies, cenospecies, comparium, ecotypic variations and taxonomy, scope and limitations	3L
3	Taxometrics: Principles, methodology, merits and demerits	2L
4	Cladistics: Principles, cladistic approach in plant classification, methodology, merits and demerits	3L
Cred	dit 2: Molecular aspects and APG IV	15L
1	DNA based markers : Introduction to hybridization and PCR based markers - RFLP, RAPD, AFLP, SSR, SNP, sequence-based polymorphism	2L
2	Determining genetic relatedness using DNA based markers- Phylogenetic tree construction using distance based (UPGMA, Neighbour joining) and character based (Maximum Likelihood, Maximum Parsimony, Bayesian analysis) methods. DNA barcoding, phylogenetic relationships and taxonomic disputes	3L
3	Major clades in APG: Morphological variations, systematic position, interrelationships, phylogeny and economic importance of following families: ANA Grade: Amborellaceae, Magnoliids: Myristicaceae, Annonaceae; Monocots: Orchidaceae, Pandanaceae, Poaceae; Eudicots: Papaveraceae, Core Eudicots: Dilleniaceae; Superrosids: Haloragaceae; Rosids-I: Moraceae, Euphorbiaceae; Rosids-II: Geraniaceae, Myrtaceae; Superasterids: Polygonaceae; Euasterid-I: Molluginaceae, Euasterid-II: Pittosporaceae.	10L
Reco	ommended Books and Websites	
23.	Angiosperm Phylogeny Group (2016) An update of the Angiosperm Phylogen classification for the orders and families of flowering plants: APG IV. <i>Botanical</i>	• •

- of the Linnean Society 181: 1–20.
- 24. Davis, P. H. and V. H. Heywood 1991. Principles of Angiosperm Taxonomy. Today and Tomorrow Publications, New Delhi

- 25. Douglas E. Soltis, Pamela E. Soltis, Peter K. Endress and Mark W. Chase, 2005. Phylogeny and Evolution of Angiosperms. Sinauer Associates, Inc., Publishers, Sunderland, USA.
- 26. Ian J. Kitching, Peter L. Forey, Christopher J. Humphries and David M. Williams, 1998. Cladistics: The Theory and Practice of Parsimony analysis (2nd Ed.). The Oxford University Press.
- 27. Lawrence George H. M. 1951. Taxonomy of Vascular plants Oxford and IBH Publ. Co. Pvt. Ltd., New Delhi
- 28. Manilal, K. S. and M. S. Muktesh Kumar (ed.) 1998. A Hand book of Taxonomy Training, DST, New Delhi
- 29. Naik, V. N. 1984. Taxonomy of Angiosperms Tata McGrow-Hill Publication Com. Ltd., New Delhi
- 30. Quicke, D.L.J. 1993. Principles and Techniques of Contemporary Taxonomy. Blackie Academic & Professional (An imprint of Chapman & Hall.).
- 31. Pandey, Arun K. and Shruti Kasana. 2021. *Plant Systematics*. Taylor & Francis Ltd. Edition1st Edition. Pages 340. DOI https://doi.org/10.1201/9781003183464
- 32. Radford, A.E., W.C. Dickinson, J.R. Massey and C.R. Bell. 1974. Vascular Plant Systematics, Harper & Row, New York.
- 33. Salemi, M. and A.-M. Vandamme (Eds.) 2003. The Phylogenetic Handbook. A Practical Approach to DNA and Protein Phylogeny. Cambridge University Press.
- 34. Simpson, Michael George. 2006. Plant systematics. Elsevier Academic Press.
- 35. Singh, Gurcharan. 2004. Plant Systematics: Theory and practice Oxford and YBH Publishing Co. Pvt. Ltd., New Delhi.
- 36. Singh, Gurcharan. 2019. Plant Systematics: An Integrated Approach, Fourth Edition. CRC Press.7.
- 37. Stace, C. A. 1989. Plant Taxonomy and Biosystematics Etwaed Arnold, London.
- 38. Stevens, P. F. (2001 onwards). Angiosperm Phylogeny Website. Version 9, June 2008 [and more or less continuously updated since]. http://www.mobot.org/MOBOT/research/APweb/
- 39. Stuessy Tod F. 2002. Plant taxonomy. The systematic Evaluation of comparative data. Bishen Singh Mahendra Pal Singh, Dehra Dun.
- 40. Stuessy, Tod F., 2009. Plant taxonomy: the systematic evaluation of comparative data (2nd ed.). New York: Columbia University Press.
- 41. Taylor, D. V. and L. J. Hickey 1997. Flowering plants: Origin, evolution and phylogeny CBS Publishers a Distributors New Delhi.
- 42. Walter S. Judd, Christopher S. Campbell, Elizabeth A. Kellogg, Peter F. Stevens and Michael J. Donoghue. 2007. Plant Systematics: A Phylogenetic Approach, Third Edition. Sinauer Associates, Inc., Publishers, Sunderland, USA.

	BOT-661-MJP(C) Practicals based on BOT-660-MJ(C) Angiosperms	2 C
	systematics- II	
	(2 Credits: 15 Practicals)	
1	Micromorphology, anatomy, palynology and karyology features used for classification	4P
2	Identification of genera and species of various clades as per APG IV (any 20 species)	5P

3	Study of characters of anemophilous, hydrophilous, cheiropterophilous, entomophilous flowers	2P
	- Carrette Paracon and Article Paracon and Art	
4	Exercises on nomenclature problems	2P
5	Exercise on numerical taxonomy	1P
6	DNA isolation, PCR and phylogenetic tree construction	4P
7	Study of fossil angiosperms	2P
8	Field visit to nearby forest areas/ institutes	4P

BOT-660-MJ(D): Plant Ecology – II (2 Credits: 30 Lectures)	2C
	15L
Introduction, principles, scale concepts and hierarchy theory	3L
Landscape heterogeneity and dynamics, pattern analysis, data generation through GIS and metrics, spatial analysis	3L
Landscape models and disturbance dynamics	2L
Landscape connectivity and its effects on individual movement and dispersal	3L
Landscape effects on population distributions and dynamics, population genetic, community and ecosystem structure	2L
Applications: Forest management, regional risk assessment, continental-scale monitoring	2L
edit 2: Bioremediation mechanisms	15L
Biomonitoring of contaminated ecosystems	1L
Decontamination practices: chemical, physical and biological	2L
Microbial systems: Aerobic and anaerobic degradation of the wastes	3L
Solid waste management practices, composting and biogas production	3L
Mechanisms of phytoremediation: Phytoextraction, Phytostabilization, Phytoaccumulation and Phytovolatilization, Phycoremediation	3L
	cedit 1: Landscape Ecology Introduction, principles, scale concepts and hierarchy theory Landscape heterogeneity and dynamics, pattern analysis, data generation through GIS and metrics, spatial analysis Landscape models and disturbance dynamics Landscape connectivity and its effects on individual movement and dispersal Landscape effects on population distributions and dynamics, population genetic, community and ecosystem structure Applications: Forest management, regional risk assessment, continental-scale monitoring edit 2: Bioremediation mechanisms Biomonitoring of contaminated ecosystems Decontamination practices: chemical, physical and biological Microbial systems: Aerobic and anaerobic degradation of the wastes Solid waste management practices, composting and biogas production Mechanisms of phytoremediation: Phytoextraction, Phytostabilization,

- 1. Begon, M., Townsend, C. R. and Harper, J. L. (2005). *Ecology: From individuals to Ecosystems* 4th edition, Wiley-Blackwell.
- 2. Odum, E. P. (2007) Fundamentals of Ecology, 5th edition, Thomson books.
- 3. Coleman, D.C., Crossley, D. A. and Handrix, P. F (2004) *Fundamentals of Soil Ecology*, 2ndedition, Elsevier academic press.
- 4. Ambhast, R. S. (1998) A Text Book of Plant Ecology, 9th edition, Friend and Co.
- 5. Canter L (1996) *Environmental Impact Assessment*, 2nd Edition, McGraw Hill Publishing Company.
- 6. Gurevitch, J., Scheiner, S. M. and Fox, G. A. (2006) *TheEcology of Plants*, Sinauer Associates.
- 7. Hynes, H. B. N. (1978) *Biology of Polluted Water*, 1st edition, Liverpool University Press.
- 8. Sutherland, W. J. (Ed.). (2006). *Ecological Census Techniques: AHandbook*. Cambridge University Press.
- 9. Mittelbach, G. G., & McGill, B. J. (2019). Community Ecology. Oxford University Press.
- 10. Trewavas, A. (2014). Plant Behaviour and Intelligence. OUP Oxford.
- 11. Wohlleben, P. (2016). *The hidden life of trees: What they feel, how they communicate—Discoveries from a secret world* (Vol. 1). Greystone Books.
- 12. Schulze, E. D., Beck, E., Buchmann, N., Clemens, S., Müller-Hohenstein, K. and Scherer-Lorenzen (2019). *Plant Ecology*. Springer
- 13. Misra R and Puri GS (2018). *Indian Manual of Plant Ecology*. Scientific Publishers (India)
- 14. Jose, S., Singh, H. P., Batish D. R. and Kohli, R.K. (2013). *Invasive Plant Ecology*. CRC Press.
- 15. Pugnaire, F.I. and Valladares, F. (2007). Functional Plant Ecology. CRC Press
- 16. Hasanuzzaman, M., Fujita, M., Oku, H, and Tofazzal Islam, M. (2019). *Plant Tolerance to Environmental Stress*. CRC Press
- 17. Dighton, J. (2018). Fungi in Ecosystem Processes. CRC Press
- 18. Cronk, J. K. and Siobhan Fennessy, M. (2001). Wetland Plants. CRC Press

- 19. Lemon, E. R. (2019). *CO2 and Plants*. The Response of Plants to Rising Levels of Atmospheric Carbon Dioxide. CRC Press
- 20. Davet, P. (2004). Microbial Ecology of Soil and Plant Growth. CRC Press
- 21. Schulze, E.D., Beck, E. and Muller-Hohenstein, K. (2002). Plant Ecology. Springer

]	BOT-661-MJP(D) Practicals based on BOT-660-MJ(D) Plant Ecology – II (2 Credits: 15 Practicals)	2C
1	Preparation of landscape map based on topography	2P
2	Measuring vegetation of landscape through stratified random sampling	3P
3	Monitoring landscape dynamics through GIS data	2P
4	Studying soil respiration responses at different elevations	2P
5	Isolation of soil borne microbes and decomposition	3P
6	Analysis of texture and water holding capacity of soil	2P
7	Studying phytoremediation potential of plants grown in polluted areas	2P
8	Visit to different landscape areas and preparation of report	2P
9	Visit to different restoration sites and preparation of report	2P

BOT-660-MJ(E) Advanced Plant Physiology-II (2 Credits: 30 Lectures)		2C
Cr	edit 1: Abiotic stresses	15L
1	Water stress - Effects on growth and metabolism in plants. Acclimation responses to water stress at physiological and molecular level, stress signaling. Avoidance, escape and tolerance	5L
2	Salinity stress - Osmotic and ionic effects on growth and metabolism, acclimation responses to salinity stress at physiological and molecular level, stress signaling.	5L
3	Temperature stress - Effects on growth and metabolism. Adaptive responses of plants to low and high temperature stress	3L
4	Heavy metal stress - Effects on growth and metabolism, strategies of heavy metal tolerance	2L
Cr	edit II: Biotic stresses	15L

1	Plants interacting with herbivores - Plant immunity responses, plants defense mechanisms, defense signaling pathways, hormonal cross-talk, growth defense trade-off,	6L
2	Plants interacting with pathogens - Plant immunity responses, Flor's Gene for Gene hypothesis, plants defense mechanisms, defense signaling pathways, hormonal cross-talk, growth defense trade-off	7L
3	Plants' responses against plant parasites - hemiparasites and holoparasite, intra kingdom parasitism mechanisms	2L

1.Fahad, S., Hasanuzzaman, M., Alam, M., Ullah, H., Saeed, M., Khan, I. A., & Adnan, M. (Eds.). (2020). *Environment, climate, plant and vegetation growth*. Springer International Publishing.

- 2. Pessarakli, M. (Ed.). (2021). Handbook of plant and crop physiology. CRC press.
- 3. Rao, N. S., Shivashankara, K. S., & Laxman, R. H. (Eds.). (2016). *Abiotic stress physiology of horticultural crops* (Vol. 311). India: Springer.
- 4. Rout, G. R., & Das, A. B. (Eds.). (2013). *Molecular stress physiology of plants*. Springer Science & Business Media.
- 5. Rao, K. M., Raghavendra, A. S., & Reddy, K. J. (Eds.). (2006). *Physiology and molecular biology of stress tolerance in plants*. Springer Science & Business Media.
- 6. Hossain, A. (Ed.). (2021). Plant stress physiology. BoD–Books on Demand.

	BOT-661-MJP(E) Practicals based on BOT-660-MJ(E) Advanced Plant	2C
	Physiology – II	
	(2 Credits: 15 Practicals)	
1	Study of transpiration and stomatal physiology under abiotic stress	2P
2	siological effect of water/ salinity stress on crop plant/s	2P
3	Studies on superoxide dismutase/ catalase/ peroxidase activity in response to drought/ salinity/ heavy metal/ pathogen application	2P
4	Effect of abiotic/ biotic stress priming agent on plant growth	3P
5	Determining the effect of drought on accumulation of abscisic acid	3P
6	Determining the effect of heat stress on activity of RuBPCase	2P
7	Studies on depletion of mineral elements from media and accumulation in <i>in vitro</i> cultured plant tissues using Atomic absorption spectrometry	2P

8	In situ localization of superoxide and hydrogen peroxide in pathogen tolerant and	2P
	susceptible genotypes in response to pathogen application	
9	Effect of herbivory on plant growth and accumulation of defense molecules	4P
10	Determining the expression of stress/ defense-responsive genes	4P

	BOT-660-MJ(F): Pharmacognosy – II (2 Credits: 30 Lectures)	2C
Cro	edit I: Biotechnological approaches for phytochemicals production	15L
1	Micropropagation of medicinal plants- culture media, explants, incubation conditions, stages of micropropagation, acclimatization and field trials	2L
2	Organized growth in cultures: using pre-existing meristems, organogenesis and embryogenesis	2L
3	Types of culture systems used for secondary metabolite production	2L
4	Screening and selection of high secondary metabolite producing cell lines	1L
5	 Manipulations of secondary metabolite production in cultures a. Manipulation of culture media b. Immobilization of cells c. Elicitation using biotic and abiotic elicitors d. Biotransformation e. Precursors 	5L
6	Scaling up and use of Bioreactors a. Strategies used for mass cultivation for hyper-production of secondary metabolites b. Types of bioreactors	3L
Cro	edit II: Phytochemicals screening, activity and management	15L
1	Overview of chemical and biological activities of plant drugs reported in literature	2L
2	Pharmacological screening methods of drugs: Antimicrobial, anticancer, antidiabetic and antimalarial- mechanism of action and properties	6L
3	Import and export scenario of medicinal plants / crude drugs	3L
4	Intellectual property right (IPR) in relation to pharmacognosy	4L
Ref	Perences Per	

- 1. Bajaj, Y.P.S., Ed. (1988) Biotechnology in Agriculture and Forestry vol. 4, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo.
- 2. Buchanan B. B., Gruissem W. and Jones R. L. (2015) Biochemistry and Molecular Biology of Plants. Second Edition. Wiley Blackwell.
- 3. Chandra S., Lata H. and Varma A. (2013) Biotechnology for Medicinal Plants. Micropropagation and Improvement. Springer-Verlag, Berlin, Heidelberg.
- 4. Charlwood B.V. and Rhodes MV.Edt (1999), Secondary products from plant tissue culture. Clarendon Press, Oxford.
- 5. Cseke L. J., Kirakosyan A., Kaufman P. B., Warber S., Duke J. A. and Brielman H. L. (2006) Natural Products from Plants. 2nd Edition, CRC Press, Taylor & Francis Group.
- 6. Das H. K. (Editor) (2007) Textbook of Biotechnology. 3rd Edition. Wiley India (P) Ltd.
- 7. Dewick Paul M. (2002) Medicinal Natural Products (A Biosynthetic Approach), 2nd Edition, John Wiley and Sons Ltd., England.
- 8. DiCosmo F. and Misawa M. (Editors) (1996), Plant Cell Culture Secondary Metabolism Toward Industrial Application. CRC Press, Boca Raton, New York.
- 9. European Pharmacopoeia. 9th Edition. (2017). 3 Volume Set.
- 10. Evans W. C. (2009) Trease and Evans' Pharmacognosy. Elsevier Health Sciences.
- 11. Farooqi A. A. and Sreeramu B.S. (2004) Cultivation of Medicinal and Aromatic Crops. Revised Edition. Universities Press (India) Pvt. Ltd.
- 12. Fu T.-J., Singh G. and Curtis W. R. (2000) Plant Cell and Tissue Culture for the Production of Food Ingredients. Springer International Edition. Springer (India) Pvt. Ltd., New Delhi.
- 13. Greene J. J. and Rao V. B. (1998) Recombinant DNA Principles and Methodologies. CRC Press.
- 14. Harborne A. J. (1998) Phytochemical Methods A Guide to Modern Techniques of Plant Analysis. Third Edition. Chapman and Hall.
- 15. Indian Pharmacopoeia 7th Edition (2014). 4 Volume Set.
- 16. Jain S. M. and Saxena P. K. (2009) Protocols for in vitro Cultures and Secondary Metabolite Analysis of Aromatic and Medicinal Plants. Humana Press.
- 17. Kurz W.G.W., Ed. (1989) Primary and Secondary Metabolism of Plant and Cell Cultures, Springer Verlag, Berlin.
- 18. Morris, A.H. et al., Eds (1986) Secondary Metabolism in Plant Cell Cultures, Cambridge Univ. Press, Cambridge, U.K.
- 19. Primrose S. B. and Twyman R. (2006). Principles of Gene Manipulation and Genomics. 7th Edition, Wiley-Blackwell.
- 20. Pushpangadan P., Nyman U. L. F., George V. (1995) Glimpses of Indian Ethanopharmacology. Tropical Botanic Garden and Research Centre Thiruvananthapuram, India and The Royal Danish School of Pharmacy, Copenhagen, Denmark..
- 21. Rai M. and Carpinella M. C. (2006) Naturally Occurring Bioactive Compounds. Elsevier B. V.
- 22. Raman N. (2006) Phytochemical Techniques. New India Publishing Agency, New Delhi, India.
- 23. Ramawat K. G. and Merillon J-M. (Editors) (1999) Biotechnology: Secondary metabolites, Oxford IBH Publishing Co., New Delhi
- 24. Ramawat K. G. and Merillon J-M. (Editors) (2008) Bioactive Molecules and Medicinal Plants. Springer Verlag, Berlin, Heidelberg.
- 25. Schirmer, R.E., (2000), Modern Methods of Pharmaceutical Analysis, Vol. 1, 2. CRC Press, Boca Raton, Florida.

- 26. Sensen C. W. (Editor) (2002) Essentials of Genomics and Bioinformatics, Wiley-VCH, Germany.
- 27. Smith, P. M. (1976) The Chemotaxonomy of Plants. Edward Arnold, UK
- 28. Staba, E.J. (Editor) (1980) Plant Tissue Culture as a Source of Biochemicals. CRC Press, Boca Raton, Florida.
- 29. Tyler, V. E., Brady, L. R. and Robbers J. E. (1976) Pharmacognosy, Balliere Tindall, Calcutta.
- 30. Vasil I. K. (Editor) (1986) Cell culture and somatic cell genetics of plants. Vol. 4. Academic Press, New York.
- 31. Verpoorte R. and Alferman H. W. (Editors) (2003) Metabolic engineering of plant secondary metabolites. Kluwar Academic Publishing.
- 32. Wagner H. and Bladt S. (1996) Plant Drug Analysis A Thin Layer Chromatography Atlas. 2nd Edition. Springer.
- 33. Wagner, H. and Wolff P. (Editors) (1977) New Natural Products and Plant Drugs with Pharmacological, Biological or Therapeutical Acitvity. Springer Verlag, Berlin, Heidelberg, New York.

]	BOT-661-MJP(F) Practicals based on BOT-660-MJ(F) Pharmacognosy II (2 Credits: 15 Practicals)	2C
1	Micropropagation of a plant through multiplication of pre-existing meristems	3P
2	Micropropagation of a plant through organogenesis	4P
3	Initiation of callus culture, detection and estimation of alkaloids	4P
4	Initiation of root/ hairy root culture, detection and estimation of alkaloids	4P
5	Study of growth and secondary metabolite production in cell suspension cultures	3P
6	Elicitation of plant cells for enhancement of secondary metabolites	2P
7	Antibacterial screening of herbal drugs / extracts	2P
8	Antifungal screening of herbal drugs / extracts	2P
9	Anticancer activity of herbal drugs / extracts by MTT assay	2P
10	Antioxidant activity of herbal drugs/extracts	1P

	BOT-660-MJ(G): Advanced Plant Genetics and Breeding-II	2 C
	(2 Credits: 30 Lectures)	
Cre	edit 1: Functional genomics	15L
1	Introduction to functional genomics, relationship of genotype and phenotype,	1L
	reverse genetics and forward genetics	
2	Expression profiling approaches: DDRT-PCR, cDNA-AFLP, SSH, SAGE,	6L
	Microarray, NGS	

3	Reverse genetic tools for understanding gene functions: Gene silencing by RNA interference (RNAi), artificial microRNA, VIGS	3L
4	Insertional mutagenesis: T-DNA and transposon mediated mutagenesis, TILLING	2L
5	Genome editing for targeted improvement of plants: Engineered meganucleases (EMNs), zinc finger nucleases (ZFNs), transcription activator-like effector nuclease (TALENs)	3L
Cre	edit 2: Advances in genome editing and sequencing	15L
1	CRISPR-Cas based editing : Introduction, CRISPR and Cas types, modifications of Cas, guide RNA designing, cloning vectors and methods	3L
2	CRISPR-Cas applications : knock-out, knock-in, promoter studies, large genomic deletions, localization studies, etc.	4L
3	Long read sequencing platforms : ONT, PacBio, methodology, library preparation, applications- genome sequencing, RNAseq, transcriptome analysis, resequencing, variant calling, structural variant analysis, epigenetics	6L
4	Biosafety concerns and regulations regarding transgenic crops : Biosafety concerns with transgenic crops, gene containment, safer selectable markers and strategies to remove antibiotic resistance markers from transformed plants	2L

- 1. Burnham, C.R. (1962) Discussions in cytogenetics. Burgess Pub. Co., Minnesota.
- 2. Hartl, D.L., Jones E.W.(2001). Genetics: Principle and analysis (4th edn) Jones and Barlett Pub., USA.
- 3. 3.Khush, G S (1973) Cytogenetics of Aneuploids. Academic press New York, London.
- 4. Lewin, B. Genes VIII. Oxford, University press. New York, USA.
- 5. Russel, P.J. 1998. Genetics (5th edn). The Benjamin/ Cummins Pub. Co., Inc. USA.
- 6. Snustad, D.P. and Simmons, M.J. ,2000. Principles of genetics (4th edn). John Wiley and Sons, Inc., USA.
- 7. Strickberger, M.W: Genetics (4th edn). Mcmillan Publishing Company, New York.
- 8. Griffiths, A.J.F and Gilbert, W.M (2nd edn). Modern genetic analysis. W.H. Freeman and Company, New york.
- 9. Singh, B.D.(2005). Plant breeding: principles and methods. 7th edn.
- 10. Allard, R.W.(1960), principles of plant breeding. John Wiley and sons, Inc., New York.
- 11. Chopra, V.L. (2000) Plant breeding: Theory and practice 2nd edn. Oxford & IBH Pub., Co., ltd. New Delhi.
- 12. Sharma, J.R. 1994. Principles and practices of plant breeding. Tata Mcgraw Hill. Pub. Co. Ltd. New Delhi.

- 13. Simmonds, N.W. 1979 Principles of crop improvement. Longman, London and New York.
- 14. VL Chopra, Plant Breeding: Theory & Practice.
- 15. D.Roy, Plant Breeding: Analysis & exploitation of variation. Narosa publication.
- 16. DK Kar & S. Haldar, Plant Breeding & Biometery.

	BOT-661-MJP(G) Practicals based on BOT-660-MJ(G) Advanced Plant Genetics and Breeding-II (2 Credits: 15 Practicals)	2C
1	RNA isolation, purification, quantification, electrophoresis of RNA and cDNA synthesis from plant tissues	2P
2	Comparing gene expression profile in two or more treatments	2P
3	Cloning of gene / DNA fragment in plasmid vector and selection of recombinant clones	4P
4	Transformation of <i>Agrobacterium tumefaciens</i> with binary vector using freeze thaw method and selection for transformants	3P
5	Transformation of plant tissues using Agrobacterium tumefaciens based vectors.	4P
6	Detection of transformants using GUS/GFP/gene specific PCR	2P
7	Transformation of plant tissues using Agrobacterium rhizogenes	4P
8	Agroinfiltration and transient expression of gene of interest	3P
9	Construction of vectors for functional genomics studies	3P
10	Designing, evaluation and cloning of guide RNA for CRISPR-Cas based genome editing	4P
11	Basic linux commands for handling next generation sequencing data	2P
12	Next generation sequencing file formats, quality control and removal of low-quality reads	2P

	BOT-660-MJ(H) Plant Biotechnology – II (2 Credits: 30 Lectures)	2C
Credit 1- Tools for understanding gene expression and molecular interactions		15L
1	Techniques used to study gene expression at transcription level:	4L
	Northern hybridization, reverse northern hybridization, differential screening	

	and Subtractive hybridization, differential display of mRNA, ESTs, SAGE, cDNA-AFLP, DNA microarrays		
2	Studies on alterations in gene expression: Site-directed mutagenesis, Insertional mutagenesis, knock-out mutants, targeting induced local lesions in genomes (TILLING), plant genome editing using CRISPR-CAS system	5L	
3	Gene silencing - Gene inhibition at RNA level - antisense, co-suppression, miRNAs and siRNAs. Silencing mechanisms	2L	
4	Protein-DNA and protein-protein interactions: Chromatin immunoprecipitation assays, gel mobility shift assays, yeast 2-hybrid system, GST-pull down, BiFC, Split luciferase assay, Co-IP	4L	
Credit 2: Advances in genome editing		15L	
1	CRISPR-Cas based editing: Introduction, CRISPR and Cas types, modifications of Cas, guide RNA designing, cloning vectors and methods	3L	
2	CRISPR-Cas applications : knock-out, knock-in, promoter studies, large genomic deletions, localization studies, etc.	5L	
3	Molecular markers: Different types of molecular markers, Hybridization and PCR based techniques - RAPD, AFLP, SSR polymorphism, microsatellite-primed PCR, sequence-based polymorphism, single nucleotide polymorphism (SNP), Applications of molecular markers: Diversity studies, DNA fingerprinting, population structure studies, phylogenetic relationships	4L	
4	Biosafety concerns and regulations regarding transgenic crops: Biosafety concerns with transgenic crops, gene containment, safer selectable markers and strategies to remove antibiotic resistance markers from transformed plants	3L	
References			

- 1. Recombinant DNA Principles and Methodologies. Greene JJ and Rao VS, Marcel Dekker, New York, 1998.
- 2. Principles of gene manipulation. Primrose SB, Twyman RM and Old RW, 6th Edition, Blackwell Science, Oxford, 2001
- 3. Differentially expressed gene in plants. Hansen and Harper, Taylor and Francis Ltd. London, 1997.
- 4. Engineering plants for commercial products and applications. Eds. Collins GB and Shepherd RJ, NY Acad. Of Science Publishers 1996
- 5.DNA markers.Eds. Caetano-Anolles and Gresshoff, Wiley-VCH Publishers, NY, 1998
- 6. Introduction to Bioinformatics. Attwood, T.K., Parry-Smith, DJ, Addison Wesley Longman, Harlow, Essex, 1999
- 7. Bioinformatics. Westhead, DR, Parish JH and Twyman, RM, BIOS Scientific Publishers

Ltd., Oxford, 2003

- 8. Bioinformatics Sequence and genome analysis. D.W. Mount, CBS Publishers, NewDelhi, 2003
- 9. Collins GB and Shepherd RJ Eds., 1996, Engineering plants for commercial products and application. , NY Acad. Of Science Publishers
- 10. Senson CW Edt, 2002, Essentials of Genomics and Bioinformatics, Wiley-VCH Publishers, NY,
- 11. Charlwood B.V. and Rhodes MV Edt. 1999, Secondary products from plant tissue culture. Clarendon Press, Oxford.
- 12. Dicosmo F and Misawa M, Edt 1996, Plant cell culture: Secondary metabolism towards industrial application, CRC press, Boca Raton ,N.Y.
- 13. Ramawat K G and Merillon J M, Edt.,1999 Biotechnology: Secondary metabolites, Oxford IBH Publishing Co., New Delhi
- 14. Verapoorte R and Alferman HW Eds ,2002 Metabolic engineering of plant secondary metabolites. Kluwar Academic Publ., Netherlands

BOT-661-MJP(H) Practicals based on BOT-660-MJ(H) Plant Biotechnology –		
II		
(2 Credits: 15 Practicals)		
1	RNA isolation, purification, quantification, electrophoresis of RNA and cDNA	2P
	synthesis from plant tissues	
2	Comparing gene expression profile in two or more treatments	2P
4	Comparing gene expression profile in two of more treatments	21
3	Cloning of gene / DNA fragment in plasmid vector and selection of	4P
	recombinant clones	
4	PCR-based detection of polymorphism using molecular markers-	4P
	RAPD/ISSR/AFLP/SSR, Construction of phylogenetic tree and analysis of	
	polymorphism	
5	Making linkage maps from given data using map making software	1P
6	QTL analysis using given data	1P
7	Restriction and electrophoresis of plant genomic DNA and labelling of DNA	3P
	fragment using DIG- DNA labelling technique	
8	Southern blotting and Southern hybridization	3P
9	Construction of de novo RNA-Seq assembly and its analysis using Trinity	3P
10	Genome/reference-based RNA-Seq analysis using HiSat2 tool	3P
