DEPARTMENT OF COMPUTER SCIENCE
SAVITRIBAI PHULE PUNE UNIVERSITY

Syllabus for
2 Years Master of Computer Applications (M.C.A.)
(Under NEP guidelines)

Wef Academic year 2024 - 2025

Department of Computer Science,
Savitribai Phule Pune University,
Pune-411 007.

Department: Department of Computer Science, SPPU

Course: M.C.A. (Master in Computer Applications)

Duration: 2 Years
Total Number of Credits: 96

1. Preamble of the syllabus:
This program is offered at the Department of Corap8tience, Savitribai Phule Pune University,

Pune.

Master of Computer Applications (M.C.A.) maog is of 96 credits. The objective of the

M.CA. programme is to train the students to meetdhallenges of the Software Industry and
R&D Sector with computational techniques. The dtriteeof the program is as follows:

a)
b)

c)

d)
e)

f)

g)

h)

)
j)

k)

b)
c)

In semesters I, there will be 16 credits of mandatoajor courses, 4 credits for a major
elective and Research Methodology of 4 credits,ingp& total of 24 credits.

In semester Il, there will be 18 credits of mandatoajor courses and 2 major electives
of 4 credits each, making a total of 26 credits.

The student can accumulate a total of 50 creditgear |, out of which 34 credits towards
mandatory major subjects, 12 credits for majorteles and 4 credits are for Research
Methodology.

If the student decides to exit, he/she will be al@drPG Diploma (after 3-year UG degree
course), after completion of additional 4 credas®JT.

In semester lll, there will be 8 credits of mandgptmajor courses, 3 major electives of 4
credits each and a research project of 6 credagjng a total of 26 credits.

Semester IV will be full time Industrial trainingternship (12 credits) and 2 major
electives of 4 credits each, which can be run enbin can be completed on MOOC
platforms. The total credits in the semester is 20.

To earn a 2-year PG degree, student will havero &#otal of 96 credits, out of which 42
credits for mandatory major subjects, 32 creditsni@jor electives and 4 credits are for
Research Methodology, 12 credits of OJT/FP ana@its of research project.

A student cannot register for the third semestdreishe fails to complete 50% credits of
the total credits expected to be completed withim $emesters. In this case, a student can
seek admission to first or second semester in daleomplete the requisite number of
credits and to be able to seek admission in tiid #@mester.

A student will obtain non-zero credits only on abiag a pass grade in a course.

In addition to CBCS guidelines for classroom delywkours, 2 hours per subject across
the course will be devoted towards outside clasarmberactions.

The modus-operandi for the conduct and evaluatianResearch Project Course will be
decided by the Departmental Committee from timinb@ as per the needs.

The Departmental Committee in its meeting with thejority may introduce/design
additional course(s) and include/exclude/modifydkisting course(s) to accommodate the
then developments from time to time.

Evaluation Rules:
50% of marks as semester-end examination of minid0mminutes to maximum 45
minutes per credit and
50% marks for internal (i.e. in-semester) assestme
Each credit will have an internal (continuous) assgent of 50% of marks and a teacher
must select a variety of procedures for examinagioch as:

» Written Test and/or Mid Term Test (not more thae for each course);

 Term Paper,

» Journal/Lecture/Library notes;

Seminar presentation;

Short Quizzes;

Assignments;

Extension Work;

Research Project by individual students or grdugtwdents; or

An Open Book Test (with the concerned teacher degidshat books are to be

allowed for this purpose.)

d) To pass a course, the student has to obtain fergept marks in the combined examination
of in-semester assessment and semester-end assesstne minimum of thirty percent
in both these separately.

e) A student will be rewarded by a grade/marks foednship/Industrial Training upon the
submission of certificate of completion, duly signend sealed from the mentor from
Industry/Research Organization/Academic Institutoynrating between 1 to 6, where 1
being lowest and 6 being highest .

3. Completion of Degree Programme:

a) In order to earn two-year degree of Master of CaiepApplications (M.C.A.) course
a student has to obtain 96 credit points and camplee audit courses floated by the
University time to time.

b) If a student fails in a course then the said cowienot be taken into account for
calculating GPA and overall grade. Only those cesiis which the student has passed
will be taken into account for calculating the GBAd overall grade.

C) The policies and procedures determined by the Wsityewill be followed for the
conduct of examinations and declaration of thelteguhe candidate.

Course Structure

MCA (Computer Scienc

Duration: 02 Yeal

Year

Level|Semeste

Subject
Code

Subject Title

Major

Mandatory

Elective

RM

OJT/FH

RP

Cum.

Cr.

Degree

CA-501
MJ

Programming from First
Principle:

4

CA-502
MJ

Processor Architecture an
Desigr

4

CA-503
MJ

Computational Mathemati

CA-504
MJ

Persistent Data
Managemer

CA-510*
MJ

Elective

CA-531
RM

Research Methodology

24

CA-551
MJ

Data Organization for
Program Constructio

CA-552
MJ

Software Sub-systems for
Hardware Virtualizatio

CA-553
MJ

Computational Thinking

CA-554
MJ

Foundations of Data
Analytics

CA-555
MJ

Foundations of Software
Developmer

CA-560*
MJ

Elective 1

CA-561*
MJ

Elective 2

4

26

Cumulative Credits for PG Diplon

34

12

4

5C

PG
Diploma
(after 3
Year
Degree)

Exit option: PG

Diploma 4-52 Credits after Three Yea

r UG Degree (with additichaledits of OJ1

CA-601 MJ

Communication
Protocol:

4

CA-602 MJ

Software Component
Engineerin

4

CA-610* MJ

Elective 1

CA-611* MJ

Elective ¢

6.5

CA-612* MJ

Elective ¢

CA-631 RF

Research Proje

26

CA-681 OJ

Internshig

12

CA-660* MJ

Online Elective 1/
MOOC-1

CA-661* MJ

Online Elective 2 /
MOOC -2

20

Cumulative Credits for 1 Yr PGiplome

34

12

46

Cumulative Credits for 2 Yr PG Degr

42

32

12

96

PG
Degree
(after 3

Year
Degree)

* canrange from 0 to 9.

Semester |

CA-501 MJ Programming from First Principles (4 Credits)

Objective: Two paradigms are used as vehicles to carry thasidor this course: the functional
and the imperativel.he central issue here is to be able to use th@etanas a high-level tool for
problem solving. The paradigm conveyed may be singppressed as: A modern non-strict
functional language with a polymorphic type systisrthe medium for this part. Important ideas
that are to be covered include:

Standard Constructs: Function and type definition, block structure, Gleal equations,
pattern matching, Special syntax for lists, compnson.

Standard Data Types:Fluency is to be achieved in the standard datastypumbers,
Boolean, character, tuple, list, List programs madgebraic vein, lists in the context of
general collections sets, bags, lists, and tuples.

Calculus: A direct way for denoting functions.

First-Class-nessAll values are uniformly treated and conceptualize

Higher Order Functions: Use of first class, higher order functions to ceptarge classes
of computations in a simple way, an understandirnf® benefits that accrue modularity,
flexibility, brevity, elegance.

Laziness: The use of infinite data structures to separaté&@oinom action.

Type discipline

Polymorphism: The use of generic types to model and capturee latgsses of data
structures by factorizing common patterns.

Inference: The types of expressions may be determined bylsigpamination of the
program text, understanding such rules.

User defined types:User defined types as a means to model, a meaestéad the
language, a means to understand the built-in typasuniform framework.

Concrete types Types are concrete. i.e. values that are readribien by the system
correspond directly to the abstractions that thegresent. More specifically, unlike
abstract types which are defined in terms of adblesperations, concrete types are
defined by directly specifying the set of possildéues.

Recursion: Recursive definitions as: a means of looping indefin a structural
counterpart to recursive data type definition; amsda understand induction in a more
general framework than just for natural numbers.

Operational Semantics: Functional programs execute by rewriting, Calcuas a
rewriting system, Reduction, confluence, reasongifeierring normal order reduction.
Type ClassesValues are to types as types are to classes.d&artyentary ideas

The Imperative Paradigm: The imperative paradigm is smoothly introducefbdews:

Worlds The Timeless worlds World of Time
Domair Mathematic Programmin
Synta Expression Statemen
Semantics Values Objects

Explicit Data Structur Control Structur
Thinking witk Input— Output relation State Chanc
Abstraction Function: Procedure

Relatior Denote Progran ImplementFunction:

In the following we spell out some of the pointshofw FP translates into Imp P. The examples
may be analogized from say how one would teachhasiydanguage to someone who understands
structured programming.

Semantic relations: The central relation is thapenative programming’s denotational
semantics is FP, FP’s operational semantics isnatipe programming.

Operational Thinking: In FP data dependency imgiadetermines sequencing whereas
in Imp P it is done explicitly. Advantages and digantages of operational thinking.
Environment: In imperative programming there israle implicit environment memory.
In FP there are multiple environments; which cdudexplicit to the point of first class-
ness (the value of variables bound in environmeotdd be other environments). Use of
environments to model data abstraction, variousatlffameworks, module systems.
Recursion iteration equivalence: General principles

Type Issues: Monomorphic, polymorphic and lateptirty: translating one into another.

Language(s) to convey these two paradigms couleldfer (or Haskell), Python, Scheme, etc. and
can be expected to vary across time as better éggguare developed for pedagogic purpose.

References:

Introduction to Functional Programming, Bird and di¢at.

1.
2. Algebra of Programs, Bird

3. Structure and Interpretation of Computer Prograhhbglson and Sussman
4. Scheme and the Art of Programming, Friedman ancheay

5.
6
7
8
9.
1

Equations Models and Programs, Thomas Myers

. Algorithms +Data Structures = Programs, N Wirth
. Functional Programming, Reade
. Programming from First Principles, Bornat

Discrete Math with a computer, Hall and Donnell

0.Learning Python, Mark Lutz

CA-502 MJ Processor Architecture and Design (4 Cuts)

Objective: This course is aims at getting an understandsgoawhat constitutes the various
hardware subsystems of a (simple) modern compdgnge as well as software subsystems that
are imperative in order to make effective (and &ffip use of a computing system.

« From a calculator to a stored-program computer:Internal structure of a calculator that
leads to this functionality. Machine language amdgpams writing a sequence of
instructions to evaluate arithmetic expression®rfireting the computer’s behavior when
instructions are carried out: the fetch- decodeceteecycle as the basic or atomic unit of
a computer’s function. Control unit: that perforthe fetch-decode-execute cycle.

« Basic Electronics:combinational functions and their implementatiathvgates and with
ROM'’s; edge-triggered D flip-flops and sequentiatwits; Implementation of data-path
and control, using the basic ideas developed so far

« Parts of a computer:Processor (CPU), memory subsystem, and it's ited, peripheral
subsystem. and it's interfaces. Parts of thesefaues integrated with the processor, and
the remainder contained in the chip-set that supeids the processor. Two main parts of
the processor apart from these interfaces: datagrat control (which supervises the data-
path) .

« Introductory Machine : Modern computer design, dating back to the 198@iarks a
radical shift from the traditional variety. The netyle has given rise to reduced instruction
set computers (RISC), as opposed to the older aompstruction set computers (CISC).
The ISA of one of the ARM family of processors vibkk examined. Assembly Language
structure, syntax, macros, assembling and disassgmnbtlock cycle counting.

« Pipelining: Improving the performance of a computer and irgirepthe usage of its
subsystems by executing several instructions sanatiusly. Analogy to assembly line
manufacture of cars. Influence of instruction saigleon ease of pipelining. Difficulties
with pipelining: structural, data and branch hagzaRfanch prediction.

« Memory hierarchy: Performance trade-offs: fast, small, expensive oras (static
RAM); slower, larger inexpensive memories (DRAMEgry slow, very large and very
cheap memories (magnetic and optical disks). lehemhory: fast, inexpensive, unbounded
size. Ways of creating illusions or approximatiohgdeal memory. On-chip and off-chip
cache memories.

« Software subsystemAbstraction of the physical computing device vio#tter properties
in order to use it more effectively. Multiplex miple programs giving an illusion that each
having view of their own processor, memory, etc.

« Memory abstraction

References

Computer Organization and Design, Patterson anchétsey

Computer Structures, Ward and Halstead

Digital Design: Principles and Practices, Wakerley

Modern Assembly language Programming with the ARBEtpssor, Larry Pyeatt
Guide to Assembly Language Programming, S P Dandar8pringer

Art of Assembly, Randy Hyde

Modern Operating systems, Andrew Tanenbaum

Intel® 64 and IA-32 Architectures

ONOOAWNE

CA-503 MJ Computational Mathematics (4 Credits)

Objective: Build the mathematical foundation towards reasgrahout the correctness issues in
general and towards construction of programs wlmgput has accuracy issues or issues of
uncertainty. These outputs are a common consequétice models used in engineering, physical
and biological sciences as well as inaccurate.

CoNooGhrwWNE

Logic: Propositional Calculus: Alternative styles: Boaledlgebra, truth tables,
equational, deduction, Formal systems, Syntax a&amdastics, Proof theory and Model
theory, consistency and Completeness of differgstess.

Well-formed formulae: Ordinary definition, refinement to types, necessitg limitation

of computable type checking.

Graphs & Trees: Definition and examples of graphs, Incidence amptesls Handshaking
lemma, Isomorphism, Sub-graphs, Weighted Graphterian Graphs, Definition and
properties of trees, Pendent vertices, centre todegg Rooted and binary tree, spanning
trees, minimum spanning tree algorithms, Matrix fieepntation of Graphs

Matrices: Matrix notation, matrix algebra, matrix operatioasid their geometric
significance, inverse, transpose.

Vector Spaces and subspaceslinear independence, basis, dimension, linear
transformations, orthogonal vectors and subspacegctions, orthogonal bases,
Eigenvalues and eigenvectorsTheir significance, geometric interpretation, samty
transformation and eigenvalues

Computing and floating-point arithmetic, truncation error, round-off error and it's
propagation

(Numerical) solution of differential equation(s)

Numerical solution of linear equations using diractl iterative methods, computation of
eigenvalues and eigenvectors

References:

Logic for CS by Gallier

Discrete Math by Tremblay Manohar

Discrete Math by Stanat

Laws of Logical Calculi by Morgan

Computer modelling of mathematical reasoning bydun

Predicate Calculus and Program Semantics by Dégkstr

A Logical Approach to Discrete Math by Gries andhiSzider

Practical Foundations of Mathematics by Paul Taylor

Logic in Computer Science: Modelling and Reasorshgut Systems, by Michael Huth ,
Mark Ryan Cambridge University Press

10.Introduction to Graph Theory, Douglas West

11.Graph Theory, Robin Wilson

12.Graph Theory with Applications, Bondy, J. A. & U. . Murty [1976], MacMillan
13.Graph, Networks and Algorithms, Swamy, M. N. S. &IKilsiraman [1981], John Willey
14. Unified introduction to Linear Algebra, Alan Tucker

15.Linear Algebra, Serge Lang

16.Elementary Linear Algebra, Howard Anton and ChrsrBs

17.Numerical Methods for Scientists and Engineers,p@har MH

18.Elements of Numerical Analysis, Peter Henrici, Jutitey & Sons.

19.Numerical Linear Algebra, Leslie Fox, Oxford Unisiy Press.

CA-504 MJ Persistent Data Management (4 Credits)

Objective: Enable the student to appreciate the theoretiadnmnnings of the relational model
and hence enable them to excel in database ddsiyg&ith the basis which leads to the effective
use of SQL.

Objectives and architectures.

Data Models: Conceptual model, ER model, object-oriented mod®&iL Logical data
model, Relational, object oriented, object relagion

Physical data models:Clustered, unclustered files, indices (sparsederte), B+ tree,
join indices, hash and inverted files, grid fildsulk loading, external sort, time
complexities and file selection criteria.

Relational database design: Schema design, Normalization theory, functional
dependencies, higher normal forms, integrity ruReational operators.

Object oriented database designObjects, methods, query languages, implementation
Comparison with Relational systems, Object oriémtatn relational database systems,
Object support in current relational database 8ystecomplex object model,
implementation techniques.

Mapping mechanism: Gnceptual to logical schema, Key issues relatddntphysical
schema mapping.

DBMS concepts: ACID Property, Concurrency control, Recovery medtiais, case
study Integrity, Views & Security, Integrity conatnts, views management, data security.
Query processing, Query optimization: Heuristic and rule-based optimizers, cost
estimates, Transaction Management.

Case Study:Case study for Understanding the transaction gsicg Concurrency and
recovery protocols, query processing and optinorathechanisms through appropriate
gueries in SQL and PLSQL using one or more of @rd@bstgreSQL, MySQL, some other
Open Source Database Package.

Web based data model: XML, DTD, query languages.

Advanced topics: Other database systems, distributed, parallel mathory resident,
temporal and spatial databases. Introduction ta @arehousing, On-Line Analytical
Processing, Data Mining. Bench marking related t8BM3 packages, database
administration. Introduction to Big Data. Recedtvances in Database Management.

References:

a kr 0N

An introduction to database systems, C. J. Date

Database Management Systems, Raghu Ramakrishiremnés Gehrke

Principles of Database Systems Vol. | & Vol [ID]l.Ullman

Relational Database Index Design and the OptimizgfBapio Lahdenm, Michael Leach.
Database System Concepts, Silberschatz, Korth addr§han, McGraw Hill

10

CA-531 RM Research Methodology (4 Credits)

Objective: This course aims at making students aware andidamwith the standard methods of
research in the field of computer science.

History of research, research methodology

Literature search, selection of research topicg(caisdy based), maintaining records
(case study based).

Ethical considerations, effective verbal and norbakécommunication,

Data collection, data safety, data integrity

Implementing research methodology in the field@hputer science

Statistical analysis: The module will consist ofeatudies of the research performed in
various subjects using statistical methods, Emak rmoise analysis, curve fitting,
regression analysis etc.

Qualitative and Quantitative Research

Writing research paper and/or project report, mglapresentation (seminar/poster)

References:

John Mandel: The Statistical Analysis of Experinaéiiata ISBN: 9780486646664
Research Methodology: A Step-by-Step Guide for Begis, Kumar, Pearson Education.
Research Methodology Methods and Techniques, KiothaR., Wiley Eastern Ltd.

The Research Methods Knowledge Base, by WilliankKMIrochim, James P. Donnelly
Introducing Research Methodology: A Beginner's @uio Doing a Research Project ,
by Uwe Flick

A Guide to Research and Publication Ethics by RaPitatim Ray, New Delhi Publishers
RESEARCH & PUBLICATION ETHICS by Wakil kumar YadaMOTION PRESS
Practical Research Methods, Dawson, C., UBSPDLRu1.

11

Semester I
CA-551 MJ Data Organization for Program Construction (4 Credits)

Objective: Constructing of programs by effective use of aatgnization while building on ideas
picked up in the first course in this sequence.cthese is woven with the idea of the dual worlds:
algebraic and algorithmic, which leads to a smaoiti powerful way to develop programs.

« ADTs and Views: (Algebraic) Formulation as recursive data typeatadstructure
invariants, principles of interface design and itsflection (algorithmic) storage
representations, addressing semantics, maximinsigaction using language features like
macros, etc.

« Code: (Algebraic) Pattern matching based recursive defim wherein exhaustive set of
disjoint patterns correspond to total functionsdieg to runtime bug free programs,
recursive code structures follow recursive datacstires and it's reflection (Algorithmic)
refinement of recursive definitions into iterativgaithms, techniques for improving
algorithms like sentinel, double pointers, etc.

* [Control as data, loops], [Co-routines vs. subroegj functions], [General framework for
error handling, escape procedures, stack-basedasefairchitecture]

» The case studies/examples for the above includedrd not be limited to the following:
Lists: Various types of representations. Applicasiosymbol tables, polynomials, OS task
gueues etc., Trees: Search, Balanced, Red Blackregsion, and Hash Tables
Applications: Parsers and Parser generators, mafiens, syntax extenders, Disciplines:
Stack, queue etc and uses Polymorphic structurgdeimentations.

References:

1. Data Structures and Algorithms, Aho, Hopcrofil &Hlman

2. Data Structures, Kruse

3. Structure and Interpretation of Computer Prografiinelson Sussman
4. Functional Programming Henderson

5. The Art of Programming Vol. 1. & Vol. 3, D. Enkith

12

CA-552 MJ Software Sub-systems for Hardware Virtuaization (4 Credits)

Objective: This course is the sequel to course CA-102 andehdiscgoal is dovetailed in the
same direction as CA-101.

Simple computer systems made up of a single processl single core memory spaces
and their management strategies.

Processes as programs with interpolation enviromsneMultiprocessing without and
with IPC. Synchronization problems and their salns for simple computer systems.

Memory management: segmentation, swapping, virtmaémory and paging.
Bootstrapping issues. Protection mechanisms.

Abstract 1/0 devices in Operating Systems. Notiohsnterrupt handlers and device
drivers. Virtual and physical devices and their agament.

Introduction to Distributed Operating Systems. Atetture designs for computer systems
with multiple processors, memories and communioatietworks. Clocking problem and
Lamport's solution.

lllustrative implementation of bootstrap codeg Blystems, memory management policies
etc

Reference:

1. S. Tanenbaum, Modern Operating Systems, Pearsaratoiu

2. Abraham Silberschatz, Peter B. Galvin, Greg Ga@perating Systems Concepts,
Wiley Nutt, Operating System, Pearson Education

3. S. Tanenbaum, Distributed Operating Systems, Reshiall

4. M. Singhal & N. Shivaratri, Advanced Concepts inetgiing Systems, McGraw Hill
Understanding the Linux Kernel, 2nd Edition By Delri?. Bovet, Oreilly

5. The Design of Unix Operating System Maurice BaagrBon

13

CA-553 MJ Computational Thinking (4 Credits)

Objective: A student is exposed to the notion that a colyacthning program is not the be all
and end all for an effective programmer and compstgentist. At the end of the course, a
successful student should be able to design, anagd prove termination and correctness of
(efficient) algorithms to previously unseen/unknopnoblem specifications using the general
principles covered including being able to modeMvia new problem as one of the previously
solved problems. In addition, the student shouldab& to appreciate the value/power of
randomness/uncertainty in achieving effective/effitisolutions.

Probability as a model of mathematical uncertail@gmple space, events, probabilities on
events, conditional probability, independent eveRts/es’ theorem.

Random variable, or function defined on a sampéeespExpectation of a random variable.,
expectation of a function of random variable, vaci, notion of a probability distribution,
(cumulative)distribution function, some standarscdete and continuous random variables.
Jointly distributed random variables, Conditionadlgability and conditional expectation.
Notion of efficiency, Big-Oh notation, it's use iRgFessing the efficiency of an algorithm, its
calculation for a given algorithm.

Divide and Conquer as an effective paradigm t@oogiose a given problem into problems of
smaller size and then obtaining the solution tootiginal one as a composition of the solutions
of the subproblems.

Sorting, Searching, Selection.

String processing: Knuth-Morris-Pratt Algorithmoyer-Moore Algorithm, pattern Matching.

Graph Algorithms: DFS, BFS, Biconnectivity, allifgashortest paths, strongly connected
components, network flow: Edge Saturation and Nodtir&tion Algorithms, Maximum
Matching on Graphs.

Backtracking, Dynamic Programming, Branch & Bou@Gdeedy: Use of three paradigms for
the solution of problems which involve optimizationexploration of a search space with some
specific property of the desired solution.

Computation steps being decided by the toss obia, @r randomized algorithms: An
introduction with a few examples and analysis.

Introduction to the theory of NP-Completeness: Nhmterministic Algorithms, Cook’s
Theorem, clique decision Problem, Node cover degiproblem, chromatic number, directed
Hamiltonian cycle, travelling salesman problem esttiling problems.

References:

1. Introduction to Probability, John Freund

2. Introduction to probability theory and its Apgdtions, William Feller

3. Afirst course in Probability, Sheldon Ross

4. Introduction to Algorithms, Thomas Cormen, Chsailleiserson, Ronald Rivest, Clifford
Stein,

5. Algorithms, Robert Sedgwick

6. The Design and Analysis of Computer AlgorithrAs,V. Aho, J. E. Hopcroft, J. D.

Uliman

7. Algorithm Design: Foundations, Analysis, ancenet Examples, Michael T. Goodrich,
Roberto Tamassia

8. Algorithm Design, Kleinbergand Tardos

9. Combinatorial Algorithms (Theory and Practic&). M. Reingold, J. Nievrgelt and N.
Deo

14

CA-554 MJ Foundations of Data Analytics (4 Credits)

Objective: Build the mathematical foundation towards congiamcof programs that are
supposed to handle huge amounts of data. Thereaams issues inherent in data that
need to be handled effectively and efficiently befoomputers can be deployed to help
us.

Descriptive and Predictive Analytics, Measures ehttal Tendency

Probabilistic methods: probability, probability wlibutions, moments, Sampling
Distribution and Hypothesis Testing

Numerical methods: numerical linear algebra foadatalysis

Data cleanup: missing value analysis, interpolaéiod extrapolation, outlier analysis,
Multidimensional data: handling higher dimensiodata, techniques like Support Vector
Machines for classification and regression of ndiriensional data

Teacher may use free and open-source softwareltk®lscipy, numpy, scilab, and so on
to help students apply the theoretical knowledgehmllenging applications.

References:

Statistics and Data Analysis: From Elementary terinediate. Prentice Hall, 1999, by
Tamhane and Dunlop. ISBN: 9780137444267.

Statistical Learning Theory (1998), by Vladimir \fak

The Nature of Statistical Learning Theory, 1995Mbgdimir Vapnik

The Deep Learning textbook, MIT presss, by Yosheadto et.el. [Freely available at:
https://www.deeplearningbook.org]

Foundations of the Theory of Probability: Secondylish Edition (Dover Books on
Mathematics), by A. N. Kolmogorov

https://www.scilab.org

15

CA-555 MJ Foundations of Software Development (2 Credits)

Objective: Inculcate the discipline and build skills reqaire® handle complexities of modern
software development involving intricate interanBobetween large teams. To introduce the
engineering issues of software development anceafgte the role of state of the art programming
science we have at our disposal.

« Team Communication issues: communication issueslvmg various stakeholders,
specifications, requirement analysis, design docuat®n, coding and final builds,
feedback loops involving stakeholders

» Software Interfaces: structural typing to help 8uibmplex leak-proof interfaces, theorem
provers to rescue, interface analysis using typer#tical concepts

« From requirements to blobs: issues in building cemsoftware, reproducible builds,
challenges in meaningful versioning

» Software complexity: cyclomatic complexity, the mmyaf LoC, coupling and cohesion,
software metrics

» Software reliability: concepts of Mean Time Betwedealure (MTBF), Mean Time To
Failure (MTTF), Mean Time To Repair (MTTR), softwanaintainability

» Teacher may use free and open-source softwareltk®ldaskell [ghc], scala, PVR, GNU-
Linux/Unix, make, git, gitlab, and so on to helpdgnts apply the software engineering
skills in challenging situations

References:

e Software Engineering Foundations: A Software Sa@eRerspective, by Yingxu Wang,
ISBN 9780849319310

¢ The Mythical Man-Month: Essays on Software Engimegrl995, by Fred Brooks ISBN
978-0-201-83595-3

¢ A Discipline of Programming, by Edsger W. Dijkstra

e Type Theory and Formal Proof: An Introduction, bgtRNederpelt

e Types and Programming Languages, MIT Press, byaBanjPierce, ISBN 978-0-262-
16209-8.

16

The departmental faculty will decide on the syllabs for the following subjects which may be
offered as electives in first year and Second yeas per the need and demands of the current
industry/research institutes' requirements. Each active will be of 4 credits.

Title

Foundations of Artificial Intelligence
Foundations of Machine Learning
Foundations of Human Software Interface
Foundations of Software Security
Foundations of Pervasive Computing
Foundations of Natural Language Processing
Foundations of Computational Text Processing
Foundations of Computational Finance
Foundations of Data Science

Foundations of Big Data

Introduction to Database syste

Title (to be offered in later semesters)
Artificial Intelligence and Machine Learning
Block-chain technology

Parallel Algorithms

Natural Language Processing
Computational Finance

Data Science

Quantum Computing

Advanced Typing

Typing for better programs
Advanced data structures
Advanced algorithms

File system implementation
Advanced Numerical Methods
Advanced Low Level Programming
Advanced Database Systems
Higher order logic

Software Engineering

Pragmatic Software Construction
Problem Solving

Modern Web Programmil

17

