

Savitribai Phule Pune University

Four Year B.Sc. Degree Program in Aviation (Faculty of Science & Technology) As per NEP 2020

Second Year B.Sc. (Aviation)

To be implemented from Academic Year 2025-2026

Course Structure:

Course Code	Title of Course	Credits		Lectures		Evaluation		on
				/ Week				
		Th.	Pr.	Th.	Pr.	CA	UE	Total
VSC-201-BAV-T	Aircraft Structure	4		4		30	70	100
VSC-202-BAV-T	Thermodynamics	2		4		15	35	50
BAV-201-P	Industrial Visit		2		2	50	00	50
BAV-202-T	Aircraft Hardware	2		2		15	35	50
OE-201-BAV-T Fundamentals of Computer		2		2		15	35	50
	& Programming Languages							
IKS-201-BAV-T	Human behaviour	2		2		15	35	50
BAV-203-T	Language Proficiency	2		2		15	35	50
BAV-204-P	Computer Programming Lab		2		2	15	35	50
BAV-205-P	Aircraft Structure Lab		2		4	15	35	50
BAV-206-P	Aircraft Hardware Lab		2		4	15	35	50
	Total=	14	8	16	12	200	350	550

B.Sc. (Aviation) Semester-III

B.Sc. (Aviation) Semester-IV

Course Code	Title of Course	Credits		Lectures / Week		Evaluation		on
		Th.	Pr.	7 W	Pr.	CA	UE	Total
BAV-251-T	Communication and	4		4		30	70	100
	Navigation System							
BAV-252-T	Digital Electronics	2		2		15	35	50
BAV-253-P	Industrial Visit		2		2	50	00	50
BAV-254-T	Propulsion-I	2		4		15	35	50
OE-251-BAV-T	251-BAV-T Professional			2		15	35	50
	Communication Skill							
AEC-251-BAV-T	AEC-251-BAV-T Basic Radar & Radio			2		15	35	50
	System							
BAV-255-P	Digital Electronics Lab		2		2	15	35	50
BAV-256-T	Soft Skills and	2		2		15	35	50
	Organisational Behaviour							
BAV-257-P Communication &			2		4	15	35	50
	Navigation Lab							
BAV-258-P	Propulsion-I Lab		2		4	15	35	50
	Total=	14	8	16	12	200	350	550

Semester-III

Course Code: VSC-201-BAV-T

Total Contact Hours: 50 hrsTotal Credits: 04Total Marks: 100Teaching Scheme: Theory – 04 Lectures/ Week

Course Objectives:

- 1. To study aircraft flight controls
- 2. To study the various concepts of aircraft structure
- 3. To study the Various airframe structural parts
- 4. To study bonding & lightning protection given in aircraft

Learning Outcomes:

After learning this course, the students will be able to:

- 1. Understand loads and stresses acting on the structural parts of aircraft
- 2. Compression, Tension, shear forces and stresses. Bending, Torsional forces and stresses
- 3. Learn about the construction of Airframe Structures
- 4. Identify various aircraft structural parts
- 5. Safe and fail safe philosophy of aircraft structures

Sl.	Description	Allotted
No.		hours
Unit	-I: Aeroplane Flight Controls	
1.	• Operation and effect of:	20 hrs
	 Roll control: ailerons and spoilers, 	
	> Pitch control: elevators, stabilators, variable incidence stabilisers and canards,	
	 Yaw control, rudder limiters; 	
	• Control using elevons, ruddervators;	
	• High lift devices: slots, slats, flaps;	
	• Drag inducing devices: spoilers, lift dumpers, speed brakes;	
	• Operation and effect of trim tabs, servo tabs, control surface bias;	
Unit	-II: High Speed Flight	L
2.	• Speed of sound, subsonic flight, transonic flight,	10 hrs
	• supersonic flight, Mach number, critical Mach number,	
Unit	-III: Airframe Structures	•
3.	• Fundamentals of structural systems;	20 hrs
	• Zonal and station identification systems;	
	• Electrical bonding;	
	• Lightning strike protection provision.	
	• Primary controls: aileron, elevator, rudder, spoiler;	
	• Trim control;	
	• System operation: manual, hydraulic, pneumatic;	
	• Artificial feel, Yaw damper, Mach trim, rudder limiter, gust locks.	
	• Stall protection systems;	

Sl.	Author / Publisher	Nomenclature of Book
No.		
1.	AC Kermode	Mechanics of Flight
2.	Aircraft Tech Book Co.	EASA Module-11A: Turbine Aero Plane Structures & Systems
3.	Aircraft Tech Book Co.	EASA Module-13: Aircraft Aerodynamics Structures & Systems
4.	Clancey	Aerodynamics
5.	FAA	Aviation Maintenance Technician Hand Book- General
6.	FAA H- 8083-31	Aviation Maintenance Technician Handbook-Airframe (Vol-I)
7.	FAA H- 8083-31	Aviation Maintenance Technician Handbook-Airframe (Vol-II)

Semester-III

Course Code: VSC-202-BAV-T

Total Contact Hours: 50 hrs Total Credits: 02 Teaching Scheme: Theory – 04 Lectures/ Week

Course Objectives:

- 1. To acquire the basic ideas and understanding of Concepts and First Law of Thermodynamics.
- 2. To understand the concept of Second Law and Entropy.
- 3. To acquire the basic ideas and understanding of definitions and Laws pertaining to Ideal Gas Properties and process.
- 4. To acquire the Knowledge and understanding of Gas Power Cycles.

Learning Outcomes:

Students who successfully complete this course will be able to:

- 1. Demonstrate knowledge on Fundamentals concepts of thermodynamic.
- 2. Apply the First Law of Thermodynamics to Closed and Open system with steady flow.
- 3. Apply the Second Law and Entropy to various thermodynamics systems.
- 4. Evaluate heat and Work transfer for Ideal Gas Processes.

Unit-I: The first Law of thermodynamics:

- a. Basic Ideas and definitions: Thermodynamic system, Boundary, Types of systems, State of systems, Properties of system
- b. Classification of properties, Thermodynamic Process & cycle, Work transfer and Heat Transfer
- c. The first Law of thermodynamics: Application of First law to Closed system, Application of First law to Open system with Steady Flow, S.F.E.E., Application of SFEE, PPM-I
- d. Concept of steady flow, unsteady flow, control volume & control mass.

Unit-II: The second Law of Entropy:

- a. Limitations of First Law, H.E., H.P. and refrigerator
- b. Kelvin Plank and Clausis Statements and their equivalence
- c. Reversible process, cycle, Carnot theorem for Heat Engine
- d. Efficiency of reversible cycle, PMM-II
- e. Introduction to Entropy, Enthalpy, Carnot Cycle (T-s Diagram).

Unit-III: Ideal Gas Properties and process

- a. Definition, Laws pertaining to Ideal Gas, Specific Heats
- b. Various process (Const P/T/V/H and Polytrophic, p-v diagrams)
- c. Evaluation of Work transfer, Heat transfer, P-v diagram of Carnot Cycle with Ideal Gas
- d. Introduction to Gas Power Cycle. Working & regeneration of Brayton cycle.

Course Title: Thermodynamics

Total Marks: 50

(18 hrs)

(16 hrs)

(16 hrs)

Sl.	Author / Publisher	Nomenclature of Book
No.		
1.	Y. Cengel & Boles, Tata Mc Graw-Hill	Thermodynamics- An Engineering Approach
	Publications	
2.	P. K. Nag, Tata Mc Graw- Hill Publications	Engineering Thermodynamics
3.	Mahesh M. Rathore, Tata Mc Graw-Hill	Thermal Engineering
	Publications	

Semester-III

Course Code: BAV-201-P

Course Title: Industrial Visit

Total Contact Hours: 30 hrs Total Credits: 02 Teaching Scheme: Theory – 02 Lectures/ Week

Total Marks: 50

Learning Outcomes:

After completion of technical visit, the students will be able to:

- 1. Understand report writing & presentation skills.
- 2. Understand the overall operation of the organization.
- 3. Understand the working culture of aviation establishment.

1. Technical visit to any one of the nearby establishment and submit individual report:

- a) Visit to CAMO/ AMO or any other aviation establishment.
- b) Visit to manufacturing industries.
- c) Visit to any aerodrome/ Flying Training Organization.
- 2. Students have to give a presentation on the technical visit.

Semester-III

Course Code: BAV-202-T

Course Title: Aircraft Hardware

Total Contact Hours: 40 hrs Total Credits: 02

Total Marks: 50

Teaching Scheme: Theory – 02 Lectures/ Week

Course Objectives:

1. To study aircraft fasteners

2. To study aircraft plumbing

3. To study aircraft mechanism

Learning Outcomes:

Students who successfully complete this course will be able to:

- 1. Identify aircraft fasteners
- 2. Identification of aircraft plumbing
- 3. Understand aircraft mechanism

Sl.	Description	Allotted	
No.		hours	
Unit	it-I: Aircraft Fasteners		
1.	Screw Threads	20 hrs	
	• Screw nomenclature;		
	• Thread forms, dimensions and tolerances for standard threads used in aircraft;		
	• Measuring screw threads;		
2.	Bolts, Studs and Screws		
	• Bolt types: specification, identification and marking of aircraft bolts, international standards;		
	• Nuts: self-locking, anchor, standard types;		
	• Machine screws: aircraft specifications;		
	• Studs: types and uses, insertion and removal;		
	• Self-tapping screws, dowels.		
3.	Locking Devices		
	• Tab and spring washers, locking plates, split pins, palnuts, wire locking, quick release fasteners, keys, circlips, cotter pins.		
4.	Aircraft Rivets		
	• Types of solid and blind rivets: specifications and identification, heat treatment.		
Unit	-II: Aircraft Plumbing		
5.	Pipes and Unions	10 hrs	
	• Identification of, and types of rigid and flexible pipes and their connectors used in		
	aircraft;		
	• Standard unions for aircraft hydraulic, fuel, oil, pneumatic and air system pipes.		

Sl.	Description	Allotted
No.		hours
Unit	-III: Aircraft Mechanism	•
6.	Springs	10 hrs
	• Types of springs, materials, characteristics and applications.	
7.	Bearings	
	• Purpose of bearings, loads, material, construction;	
	• Types of bearings and their application.	
8.	Transmissions	
	• Gear types and their application;	
	• Gear ratios, reduction and multiplication gear systems, driven and driving gears,	
	idler gears, mesh patterns;	
	• Belts and pulleys, chains and sprockets.	

Sl.	Author / Publisher	Nomenclature of Book	
No.			
1.	Aircraft Tech Book Co	EASA Module-06 Hardware and Materials	
2.	FAA H 8083-30	Aviation Maintenance Technician Handbook-General	
3.	George F. Titterton	Aircraft Materials and Processes	
4.	J. A Enderson & Tatro	Shop Theory	

Semester-III

Course Code: OE-201-BAV-T Course Title: Fundamentals of Computer & Programming Languages

Total Contact Hours: 30 hrsTotal Credits: 02Total Marks: 50Teaching Scheme: Theory – 02 Lectures/ Week

Course Objectives:

- 1. To acquire the fundamental principles, concepts and constructs of computer.
- 2. To build the programming skill using 'C.
- 3. To study & understand the basic computer terminology of Aircraft.

Learning Outcomes:

Students who successfully complete this course will be able to:

- 1. To acquire concept of computer fundamentals.
- 2. To acquire knowledge of microprocessor.
- 3. Apply basic 'C' language constructs for programme development.

Unit-I: Basic Computer Structure

- a. Introduction, characteristics of computers, Basic computer structure- ALU, CU & CPU.
- b. Applications of Computers.
- c. Computer terminology (including bit, byte, software, hardware, CPU, IC, and various memory devices such as RAM, ROM, PROM);
- d. Aircraft Computer technology- FMC, CDU, DTS.

Unit-II: Basics of Microprocessor

- a. Layout & block diagram of the major components in a microcomputer including their associated bus systems (data bus, address buss & control bus).
- b. Working of microprocessor- fetch, decode, execute.
- c. Instructions and its types of 8085 microprocessor.
- d. Register array- PC, SP, Flag & general purpose register.

Unit-III: Programming Language 'C'

- a. Feature of C, Basic concepts, structure of a C program, declarations, variables, data types & operators.
- b. Operators, Input and Output functions- Scanf and printf. Decision control structure: if else, nested if else, cascaded if else and switch statement.

Reference Books:

Sl.	Author / Publisher	Nomenclature of Book
No.		
1.	Malvino Leech	Digital Principles and Applications
2.	Nasib Sing Gill, Khanna Publishers	Computing Fundamentals and Programming in C

(10 hrs)

(10 hrs)

(10 hrs)

Semester-III

Course Code: IKS-201-BAV-T

Total Contact Hours: 30 hrs Total Credits: 02 Teaching Scheme: Theory – 02 Lectures/ Week

Total Marks: 50

Course Title: Human Behaviour

Course Objectives:

- 1. To understand the concepts of human behaviour and error.
- 2. To study human performance criteria and limitations
- 3. To understand various factors affecting human performance and identify the requirement in Aviation
- 4. To know the hazards in the workplace and identify the causes and take re medical measures.

Learning Outcomes:

Students will be able to:

- 1. Understand and analyse the causes of accidents and incidents attributable to human factor.
- 2. Learn about various factors affecting human performance.
- 3. Learn about the side effects of Alcohol, wrong medication, drug abuse, substance abuse

Sl.	Description	Allotted
No.		hours
Unit	-I: Human Factors & Errors	
1.	General	10 hrs
	• The need to take human factors into account;	
	• Incidents attributable to human factors/human error;	
	• 'Murphy's' law.	
2.	Human Performance and Limitations	
	• Vision;	
	• Hearing;	
	• Information processing;	
	• Attention and perception;	
	• Memory;	
	Claustrophobia and physical access.	
Unit	-II: Factors Affecting Performance	
3.	Social Psychology	10 hrs
	Responsibility: individual and group;	
	• Motivation and de-motivation;	
	• Peer pressure;	
	• 'Culture' issues;	
	• Team working;	
	Management, supervision and leadership	
4.	Factors Affecting Performance	
	• Fitness/ health;	
	• Stress: domestic and work related;	
	• Time pressure and deadlines;	

Page 11 of 28

Sl.	Description	Allotted	
No.		hours	
	• Workload: overload and underload;		
	• Sleep and fatigue, shiftwork;		
	• Alcohol, medication, drug abuse.		
Unit	Unit-III: Human Error, Hazards in Workplace & Aviation Eco System		
5.	Human Error	10 hrs	
	• Error models and theories;		
	• Types of error in maintenance tasks;		
	• Implications of errors (i.e accidents)		
	• Avoiding and managing errors.		
6.	Hazards in the Workplace		
	• Recognizing and avoiding hazards;		
	• Dealing with emergencies.		

Sl.	Author / Publisher	Nomenclature of Book
No.		
1.	Aircraft Tech Book Co	EASA Module-09 Human Factors
2.	CAA	CAP 715 - An Introduction to Aircraft Maintenance Engineering
		Human Factors for CAR 66
3.	CAA	CAP 716 - Aviation Maintenance Human Factors (EASA Part-145)
4.	CAA	CAP 718 - Human Factors in Aircraft Maintenance and Inspection
5.	ICAO DOC 9683	Human Factors Training Manual

Semester-III

Course Code: BAV-203-T	Course Title: Language Proficiency
Total Contact Hours: 30 hrs Total Credits: Teaching Scheme: Theor	
Objectives:	
 To encourage the students to speak English. To enable students to use English in day-to-day cor To expose them to light prose and poetry. To prepare them for competitive exams. To develop their sensibility towards correctness and To make them aware of the various type of fiction. 	
 Unit-I: Grammar and vocabulary Parts of speech Tenses- 	(8 hrs)
 a. Present tense- Simple, Continuous, Perfect, Per b. Past tense- Simple, Continuous, Perfect, Perfec c. Future tense- Simple, Continuous, Perfect, Perf Word formation process- Affixation, Borrowing, Co Sentences and its types Subject- verb- concord 	t continuous tense ect continuous tense
 Unit-II: Writing skill Writing a letter Application letter Complaint letter Enquiry letter Writing a Resume 	(6 hrs)
 Unit-III: Communication skill Introduction to communication skill and its types, Importance and principles of effective communication Important aspects and ways of self-introduction. 	(6 hrs)
 Unit-IV: Poetry (Any one) The felling of the Banyan tree- Dilip Chitre The Indian Women- Shiv K Kumar Abou Ben Adhem- James Leigh Hunt 	(3 hrs)
 Unit-V: Prose (Any One) The gift of the Magi- O' Henry The Bet- Anton Checkhov 	(3 hrs)

Unit-VI: Short stories (Any One)

- The Axe- R.K. Narayan
- Luck- Mark Jwain

Sl.	Author / Publisher	Nomenclature of Book
No.		
1.	S.K. Tarafder, A P H Publishing corporation	How to write better letter
2.	Krishna swami	Modern English - A book of grammar, usage
		& composition
3.	Dover Thrift Editions, O'. Henry. ies.,	The Gift of the Magi and Other short stor
	Macmillan India Ltd	
4.	Jaico Publishing House	Best short stories of Anton Chekhov
5.	Keval J. Kumar	Mass Communication In India
6.	Hewings, M.1999, Cambridge University press	Advanced English Grammar
7.	Mark Twain, Cosimo Classics	Marry Tales
8.	R K Narayan, Indian Thought Publication	Malgudi Days

Semester-III

Course Code: BAV-204-P

Course Title: Computer Programming Lab

Total Contact Hours: 40 hrs

s Total Credits: 02 Teaching Scheme: Practical – 02/ Week **Total Marks: 50**

Learning Outcomes:

- 1. Student will develop a vocabulary of key terms related to the computer.
- 2. Student will be able to demonstrate mouse and keyboard functions.
- 3. Student will be able to demonstrate window and menu commands and how they are used.
- 4. Student will be able to compose, format and edit a word document.

Sl.	Basic Practical Tasks
No.	
1.	To Identify various Input/ output devices, connections and peripherals of computer system
2.	To Create, edit and save document: apply formatting features on the text-line, paragraph
3.	To Use bullets, numbering, page formatting
4.	To Insert and edit images and shapes, sizing, cropping, color background, group/ ungroup
5.	To Insert and apply various table formatting features on it.
6.	To Apply page layout features
	a. Themes, page background, paragraph, page setup
	b. Create multicolumn page
	c. Use different options to print the documents
7.	Create slide presentation:
	a. Apply design themes to the given presentation
	b. Add new slides and insert pictures/images, shapes
8.	Create slide presentation
	a. Add tables and charts in the slides.
	b. Run slide presentation in different modes
	c. Print slide presentation as handouts
9.	Apply animation effects to the text and slides.
10.	Write a simple program in C.

Semester-III

Course Code: BAV-205-P

Course Title: Aircraft Structure Lab

Total Contact Hours: 40 hrs

Total Credits: 02 Teaching Scheme: Practical – 04/ Week **Total Marks: 50**

Learning Outcomes:

After successful completion, the students will be able to:

- 1. Carry out visual inspection of structural members.
- 2. Learns about the basic aircraft structures.
- 3. Carry out inspection by removing inspection panels of different structures.
- 4. Carry out inspection of aircraft seats & seat belts.
- 5. Learns the operational check of aircraft structures.

Sl.	Basic Practical Tasks
No.	
1.	Identification of flight control surfaces of aircraft. Check for freedom of movement of all flight
	controls
2.	Control columns (including control wheels and boots) for condition, proper operation, and
	clearances
3.	Crew seats and seat belts for operation, security of mounting, and general condition
4.	Associated with flap operational check. Inspect flap upper and lower surfaces for skin cracks,
	loose rivets, and other damage
5.	Associated with spoiler & aileron operational check
6.	Check exterior of aircraft, including fillets and fairings, for security and general condition.
	Inspect lower surface of fuselage for oil or fuel leakage
7.	Check radome for general condition, finish, and security. Check upper and lower entry doors
8.	Inspect aileron trim tab for general condition and security. Check static wicks for security and
	condition
9.	Remove access panels of horizontal stabilizer and wings and inspect. Check all aircraft panels for
	their fitment, safety and security of attachment

Semester-III

Course Code: BAV-206-P

Course Title: Aircraft Hardware Lab

Total Contact Hours: 40 hrs

Total Credits: 02 Teaching Scheme: Practical – 04/ Week **Total Marks: 50**

Learning Outcomes:

After learning this course, students will be able to:

- 1. Identify wide range of fasteners & their application.
- 2. Identify different types of rivets.
- 3. Identify tube fittings & their application.
- 4. Identify different types of bearings & gears.
- 5. Perform corrosion inspection.

Sl.	Basic Practical Tasks	
No.		
1.	Identify a wide range of fasteners	
2.	Removal and installation of various nut, bolt & washers	
3.	Removal and installation of various head of screw by using various screw drivers. Perform the	
	measurement of screw thread	
4.	Removal and installation of circlips, use of cotter pins	
5.	Different type of rivets and their uses	
6.	Perform of the inspection of Riveted Joints	
7.	Identification of different type of tube fittings. Identification by reading on aircraft tube and	
	flexible hoses	
8.	Identification of different types of gears	
9.	Perform the inspection of control cables for corrosion. Conversant with pulleys and its uses	
10.	Identification of different types of electrical cables and connectors	

Semester-IV

Course Code: BAV-251-T

Course Title: Communication and Navigation System

Total Contact Hours: 50 hrs	Total Credits: 04	Total Marks: 100
Teaching Scheme: Theory – 04 Lectures/ Week		

Objectives:

1. To get familiar with basics of V.H.F. Communications, H.F. Communications

2. To understand basics of V.H.F. omnidirectional range

3. To familiarize with ELT & CVR.

Learning outcomes:

After learning this course, students will be able to:

- 1. Understand V.H.F and H.F communication.
- 2. Understand the operation of ELT & CVR.
- 3. Understand automatic direction finder & instrument landing system.

Sl.	Description	Allotted
No.		hours
Unit	-I: Communication Systems	·
1.	Fundamentals of system lay-outs and operation of:	20 hrs
	 Very High Frequency (VHF) communication 	
	 High Frequency (HF) communication 	
Unit	-II: ELT, CVR & VOR	·
2.	Fundamentals of system lay-outs and operation of:	15 hrs
	Emergency Locator Transmitters	
	 Cockpit Voice Recorder 	
	 Very High Frequency unidirectional range (VOR) 	
Unit	-III: Navigation Systems	·
3.	Fundamentals of system lay-outs and operation of:	15 hrs
	 Automatic Direction Finding (ADF) 	
	Instrument Landing System (ILS)	

Sl.	Author / Publisher	Nomenclature of Book	
No.			
1.	Aircraft Tech Book Co.	EASA Module-11A: Turbine Aeroplane Aerodynamics,	
		Structures & Systems	
2.	Aircraft Tech Book Co.	EASA Module-13: Aircraft Aerodynamics, Structures & Systems	
3.	FAA H- 8083-31	Aviation Maintenance Technician Hand Book- Airframe (Vol-II)	
4.	George Kennedy	Electronic Communication System	
5.	J. Powell	Aircraft Radio System	

Semester-IV

Course Code: BAV-252-T

Course Title: Digital Electronics

Total Contact Hours: 50 hrs	Total Credits: 02	Total Marks: 50
Teac	hing Scheme: Theory – 02 Lectures/ Week	

Course Objectives:

- 1. To understand number representation in digital electronics circuit.
- 2. To acquire basic knowledge of digital logic levels.
- 3. To study fiber optics used in digital circuits.

Learning Outcomes:

After learning this course, the students will be able to:

- 1. Understand the common form of number representation and to convert data in one number system to another.
- 2. Contrast and compare digital representation of information with the Analog representation.
- 3. Simplify digital circuits.

SI.	Description	Allotted
No.		hours
Unit	-I: Number Systems and Logic Circuits	
1.	Electronic Instrument Systems	15 hrs
	• Typical systems arrangements and cockpit layout of electronic instrument systems.	
2.	Numbering Systems	
	• Decimal & Binary,	
	• Octal and hexadecimal;	
	• Demonstration of conversions between the decimal and binary, octal and	
	hexadecimal systems and vice versa.	
3.	Data Conversion	
	Analogue Data,	
	• Digital Data;	
	• Operation and application of analogue to digital, and digital to analogue converters,	
	Inputs and outputs, limitations of various types.	
4.	Logic Circuits	
	• Identification of common logic gate symbols, tables and equivalent circuits;	
	• Logic gates, their Boolean expressions and truth tables: AND, OR, EXOR, NOT,	
	NOR, NAND.	
	• Representation of other gates in terms of Universal gates.	
	• Applications used for aircraft systems, schematic diagrams.	

Sl.	Description	Allotted
No.		hours
Unit	-II: Fiber Optics & ESDs	1
5.	 Fibre Optics Advantages and disadvantages of fibre optic data transmission over electrical wire propagation; Fibre optic data bus; Fibre optic related terms; Terminations; Couplers, control terminals, remote terminals; Application of fibre optics in aircraft systems. 	15 hrs
6.	 Electronic Displays Principles of operation of common types of displays used in modern aircraft, including Cathode Ray Tubes, Light Emitting Diodes and Liquid Crystal Display. 	
7.	 Electrostatic Sensitive Devices Special handling of components sensitive to electrostatic discharges; Awareness of risks and possible damage, component and personnel anti-static protection devices. 	
Unit	-III: Electronic/ Digital Aircraft Systems	
8.	 General arrangement of typical electronic/digital aircraft systems and associated BITE (Built In Test Equipment) testing such as: ACARS-ARINC Communication and Addressing and Reporting System EICAS-Engine Indication and Crew Alerting System FBW-Fly by Wire FMS-Flight Management System IRS-Inertial reference system ECAM-Electronic Centralized Aircraft Monitoring EFIS-Electronic Flight Instrument System GPS-Global Positioning System TCAS-Traffic Collision Avoidance system 	20 hrs

Sl.	Author / Publisher	Nomenclature of Book
No.		
1.	Aircraft Tech Book Co.	EASA Module-05 Electronic Instrument System
2.	B.L. Theraja	Electrical Technology
3.	E.H.J. Pallett	Aircraft Instruments
4.	Malvino and Leech	Digital Principle and Applications

Semester-IV

Course Code: BAV-253-P

Course Title: Industrial Visit

Total Contact Hours: 30 hrs Total Credits: 02 Teaching Scheme: Theory – 02 Lectures/ Week

Total Marks: 50

Learning Outcomes:

After completion of technical visit, the students will be able to:

- 1. Understand the overall operation of the organization.
- 2. Understand the basic structure of any organization.
- 3. Understand the working culture of the organization.

1. Technical visit to any one of the nearby establishment and submit individual report:

- a) Visit to MRO/ Airline or any other aviation establishment.
- b) Visit to Civil/ Defense Airport to know the operation and organizational set up.
- c) Visit to Aerospace industries.
- 2. Students have to give a presentation on the technical visit.

Semester-IV

Course Code: BAV-254-T

Course Title: Propulsion-I

Total Contact Hours: 30 hrs Total Credits: 02 Teaching Scheme: Theory – 04 Lectures/ Week

Total Marks: 50

Course Objectives:

- 1. To study Propulsion and fundamentals
- 2. To study various types of turbine engines
- 3. To get familiar with the concepts of engine performance

Learning Outcomes:

After learning this course, the students will be able to:

- 1. Understand the propulsion & fundamentals.
- 2. Understand the constructional arrangement & operation of various gas turbine engines.
- 3. Understand the engine performance.

Sl.	Description	Allotted	
No.		hours	
Unit	-I: Introduction to Propulsion and Fundamentals		
1.	• Potential energy, kinetic energy, Newton's laws of motion, Brayton cycle;	10 hrs	
	• The relationship between force, work, power, energy, velocity, acceleration;		
Unit-II: Turbine Engines			
2.	Constructional arrangement and operation of turbojet, turbofan, turbo shaft and turbo	10 hrs	
	propeller engines.		
Unit	Unit-III: Engine Performance		
3.	• Thrust horsepower, specific fuel consumption;	10 hrs	
	• Engine efficiencies;		
	• Pressure, temperature and velocity of the gas flow;		
	• Engine ratings, static thrust, influence of speed, altitude and hot climate		

Sl.	Author / Publisher	Nomenclature of Book
No.		
1.	Aircraft Tech Book Co	EASA Module-15 Gas Turbine Engine
2.	FAA	Aviation Maintenance Technician Hand Book- Power Plant -12A
3.	FAA H- 8083-32	Aviation Maintenance Technician handbook- Power Plant (Vol-II)
4.	Irwine Treager	Aircraft Gas Turbine Technology

Semester-IV

Course Code: OE-251-BAV-T

Course Title: Professional Communication Skill

Total Contact Hours: 30 hrsTotal Credits: 02Total Marks: 50Teaching Scheme: Theory – 02 Lectures/ Week

Course Objectives:

- 1. To study communication skills
- 2. To study professional skills
- 3. To study presentation skill
- 4. To study how to prepare a CV or resume

Learning Outcomes:

After learning this course, the students will be able to:

- 1. Understand how to communicate verbally, nonverbally & written.
- 2. Understand how to develop professional skills.
- 3. Understand how to give presentation.
- 4. Understand how to make CV.

Sl.	Description	Allotted
No.		hours
Unit	-I: Verbal & Nonverbal Communication Skills	
1.	Ways to increase your vocabulary.	10 hrs
	• Verbal and nonverbal communication, including body language, facial expressions,	
	eye contact, and tone of voice.	
Unit	-II: Written Communication Skills	
2.	Written communication in the workplace	10 hrs
	• Email writing, and etiquettes	
	Proof reading and editing	
Unit	-III: Professional Skills	
3.	Prepare and deliver presentations	10 hrs
	• Team management skills	
	Curriculum Vitae or resume writing	
	• Interview skills	

Semester-IV

Course Code: AEC-251-BAV-T

Course Title: Basic Radar and Radio System

Total Contact Hours: 30 hrs	Total Credits: 02	Total Marks: 50
Teach	ing Scheme: Theory – 02 Lectures/ Week	

Course Objectives:

- 1. To study basic radio systems.
- 2. To study Radar theory and explain its development from its beginning.
- 3. To study auto flight.
- 4. To study Integrated Modular Avionics of aircraft.

Learning Outcomes:

After learning this course students will be able to:

- 1. Understand the basic radio systems used in aircraft.
- 2. Understand Radar theory and its development from its beginning.
- 3. Understand the use of auto flight.
- 4. Understand Integrated Modular Avionics of aircraft.

Sl.	Description	Allotted
No.		hours
Unit	-I: Basic Radio Systems	
1.	• Fundamentals of radio wave propagation, antennas, transmission lines,	7 hrs
	communication, receiver and transmitter	
	Modulation & Demodulation	
Unit	-II: Basic Principles of Radar System	
2.	• Introduction, the Origin of Radar, Block Diagram and Operation.	7 hrs
	• Radar Frequencies, types of Radar, Radar performance factors, Maximum	
	Unambiguous Range, Radar Waveforms.	
Unit	-III: Auto Flight	•
3.	Fundamentals of system lay-outs and operation of Auto flight	6 hrs
Unit	-IV: Integrated Modular Avionics	
4.	Functions that may be typically integrated in the Integrated Modular Avionic (IMA)	10 hrs
	modules are, among others: Bleed Management, Air Pressure Control, Air Ventilation	
	and Control, Avionics and Cockpit Ventilation Control, Temperature Control, Air	
	Traffic Communication, Avionics Communication Router, Electrical Load	
	Management, Circuit Breaker Monitoring, Electrical System BITE, etc.	

Sl.	Author / Publisher	Nomenclature of Book	
No.			
1.	Aircraft Tech Book Co.	EASA Module-11A: Turbine Aeroplane Aerodynamics,	
		Structures & Systems	
2.	Aircraft Tech Book Co.	EASA Module-13: Aircraft Aerodynamics, Structures & Systems	
3.	J. Powell	Aircraft Radio System	

Semester-IV

Course Code: BAV-255-P

Course Title: Digital Electronics Lab

Total Contact Hours: 60 hrs

Total Credits: 02 Teaching Scheme: Practical – 02/ Week **Total Marks: 50**

Learning Outcomes:

After performing the practical students will be able to:

- 1. Identify the Digital IC's.
- 2. Understand the use and application of Combinational Ic's.
- 3. Understand the use and application of logic gates.

Sl.	Basic Practical Tasks
No.	
1.	Practice code conversion (binary to grey and grey to binary) by using trainer kit
2.	Practice by using analogue to digital and digital to analogue converter trainer kit
3.	Verify the truth table of various logic gates by using IC trainer kit
4.	Practice basic logic gates by using diodes
5.	Practice logic circuit from a simple Boolean expression using logic gate IC
6.	Practice by using Half adder trainer kit
7.	Practice by using Full adder trainer kit
8.	Demonstrate Light Emitting Diodes display
9.	Implement universal gates using basic gates on trainer kit
10.	Practice by using encoder circuit trainer kit
11.	Practice by using decoder circuit trainer kit
12.	Verify truth table of multiplexer, demultiplexer

Semester-IV

Course Code: BAV-256-T

Course Title: Soft Skills and Organizational Behaviour

Total Contact Hours: 30 hrsTotal Credits: 02Total Marks: 50Teaching Scheme: Theory – 02 Lectures/ Week

Objectives:

- 1. To understand the need of soft skills in Aviation.
- 2. To discuss the fundamentals Organizational Behavior as applicable to working in aviation field
- 3. To know types of soft skills used in work place
- 4. Introduction the concept of study of organizational culture and tools to improve Interpersonal effectiveness

Learning Outcomes:

After learning this course, students will be able to:

- 1. Understand the importance of soft skills development and its application.
- 2. Understand the personal attributes that enhances an individual's interactions, job Performance and career prospects
- 3. Understand the basic of organizational Behavior and importance of its learning.
- 4. Students are able to provide hands on skills to work practically in aviation field and its basic terms.

Unit-I: Introduction to Soft Skills at Work Place: (Min 1 case Study)

- a. Definition of soft skills and synonym to People Skills, Interpersonal skills And transferable skills
- b. Soft skills development and its types and its application.

Unit-II: Key Soft Skills: (Min 01 Case Study)

- a. Communication, Team work and Professional Ethics.
- b. Interpersonal skills and Leadership.
- c. Critical thinking, problem solving, and Creativity.
- d. Self-introduction.

Unit-III: Organizational Behavior Model: (Min 01 Case Study)

- a. Learning objectives and definition and need to study O B Model.
- b. Study of O B attributes like Personality, Perception and Motivation at work Place.
- c. Introduction an application of Herzberg's. Two Factor theory and Maslow's Need Hierarchy Theory in aviation field.

Reference Books:

Sl.	Author / Publisher	Nomenclature of Book
No.		
1.	Prashant Sharma	Soft Skills: Personality Development for Life Success
2.	Aswathapp	Organizational behavior
3.	Stephen P. Robbins	Organizational behavior

(10 hrs)

(10 hrs)

(10 hrs)

Semester-IV

Course Code: BAV-257-P

Course Title: Communication & Navigation Lab

Total Contact Hours: 60 hrs

Total Credits: 02 Teaching Scheme: Practical – 04/ Week **Total Marks: 50**

Learning Outcomes:

After performing the practical students will be able to:

- 1. Understand the fundamentals of different radio equipment used in aircraft.
- 2. Understand the application of Antennas used in aircraft.
- 3. Understand HF & VHF communication system.
- 4. Understand VOR, ADF, ILS & CVR used in aircraft.

Sl.	Basic Practical Tasks
No.	
1.	Fundamentals of system lay-outs of navigational and communication equipment
2.	Identification of different type of Antennas and their uses
3.	Fundamentals of system lay-outs of instrument control panel
4.	Familiarization of Radio altimeter system & identification of its components
5.	Familiarization of GPS system & identification of its components
6.	Familiarization of Weather Radar system & identification of its components
7.	Familiarization of HF / VHF system & identification of its components
8.	Identification of ELT and ELT antenna & its components. Demonstration of ELT Battery
9.	Identification of VOR, ADF, ILS system & its components
10.	Identification of CVR system & its components
11.	Identification of primary & secondary glide slope antennas
12.	Identification of marker beacon antenna and receiver

Semester-IV

Course Code: BAV-258-P

Course Title: Propulsion-I Lab

Total Contact Hours: 60 hrs

Total Credits: 02 Teaching Scheme: Practical – 04/ Week **Total Marks: 50**

Learning Outcomes:

After performing the practical students will be able to:

- 1. Understand the constructional arrangement of different gas turbine engines.
- 2. Understand the removal & fitment of engine cowling.
- 3. Understand the inspection procedure of the gas turbine engine.

Sl.	Basic Practical Tasks
No.	
1.	Familiarization with constructional arrangement of turbojet engines
2.	Familiarization with constructional arrangement of turbofan / turbo shaft / turboprop engines
3.	Associated with inspection procedure of fan blades of jet engine
4.	Associated with removal & installation of turbine blades
5.	Associated with removal and fitment of engine cowling
6.	Associated with engine accessory section
7.	Associated with Engine Mount Inspection
8.	Perform visual inspection of all bleed air ducts, lines, hoses, and electrical wiring located in the
	engine nacelle
9.	Inspect engine for security, clamping, routing, clearance, evidence of leaks, and general
	condition
10.	Check engine oil quantity and familiarize with the engine oil servicing