

Savitribai Phule Pune University

Pune, Maharashtra India

Structure and Syllabus of Three Years B.Sc. Program in Geology with Multiple Entry and Exit Option

THREE YEAR BACHLORS PROGRAMME IN SCIENCE

Subject: **GEOLOGY**

Under the Faculty of Science and Technology

Effective from Academic year 2025–2026 (As per NEP-2020) Title of the Program: S.Y.B.Sc. Geology Syllabus.

Program Level: Second year of 3-years/4 years B.Sc. Geology Degree

Program

Syllabus to be implemented from the Academic year: 2025-26

Introduction

The present syllabus is to meet the needs of students for building up their careers in Geology. Changing scenarios at local and global levels, and the very existence of the earth which has been threatened by calamities like earthquakes, volcanic eruptions, landslides, floods, tsunamis or droughts, are directly or indirectly related to geological action on the surface or subsurface. Awareness related to the modern concepts of Plate Tectonics, Remote Sensing, and Geographical Information System (GIS) etc. is a must for all Geology graduate students. Theoretical knowledge supplemented with extensive laboratory expertise and field training will help the students, to avail all opportunities available and even start their own consultancy firms. Therefore, revision and updating of the curriculum is an essential component and a continuous process of any university system.

A flexible curriculum with necessary re-orientations, additions and modifications introduced in it from time to time by the experienced teachers and experts. It should be able to provide placement opportunities for the students and also good avenues for research activities. Introduction of innovative concepts, providing a multidisciplinary profile in the concerned subject and an updated education to the students at large is the prime aim. In addition, field training will have a priority since geology being the field science and more practical exposure will benefit the student community at large and produce good geologists for the nation.

Course Learning Outcomes to be achieved:

- 1. To help students' build-up a progressive and successful career in Geology
- 2. To enrich students' knowledge and train them in the pure geological sciences.
- 3. To Provide an updated education.
- 4. To impart more field-oriented knowledge.
- 5. To inculcate sense of scientific, social responsibilities and environment awareness.
- 6. To introduce the concepts of application and research in Geology.
- 7. Create a sense of preservation and conservation of natural resources.
- 8. To study structural dynamics of the earth.
- 9. To study Stratigraphy and Palaeontology that encompasses the aspects of the age of the earth, chronological arrangement of rocks and appearance and evolution of life through the geologic time.
- 10. To study the changes that occurred in the history of the earth and relate them to their field observations and, in understanding the framework of the stratigraphy of India
- 11. To study basics of mineralogy and crystallography, which helps in understanding and building the overall knowledge in Geology.
- 12. To study the processes involved in the formation of igneous, sedimentary, and metamorphic rocks, their textures, structures, classifications and their importance.
- 13. To study the dynamic nature of the Earth processes.
- 14. To study the geodynamics of the lithosphere and concept of isostacy, ocean floor spreading,

continental drift and plate tectonics.

Faculty of the Program: Science

Credit Framework

Lovel	Qualification Title Credit Re		quirement	Compator	Voor
Level	Quantication Title	Minimum	Maximum	Semester	Year
4.5	Undergraduate Certificate in Geology	40	44	2	1
5.0	Undergraduate Diploma in Geology	80	88	4	2
5.5	Bachelor of Science in Geology	120	132	6	3

Credit Framework for Undergraduate (UG) (2025-26) for GEOLOGY in faculty of Science and Technology (SPPU)

B. Sc. in Geology

				5. 3c. iii Geology	•	,	
Leve	Se	Course Type	Course	Course Title (Brief on contents/levels)	Theory/	Cred	Hrs
1/	m.		Code		Practical	it	
Diffi							
4.5/1	I	Subject -1, 2 or	GL-101-T	Mineralogy and Crystallography	Theory	2	30
00	1	3					
00			GL-102-P	Practicals related to GL-101-T	Practical	2	60
		Generic	OE-101-	Minerals and Gems	Practical	2	60
		Elective (GE) /	GL-P		-		20
		Open Elective (OE) -	OE-102- GL-T	Introduction to Earth Science	Theory	2	30
		(Any one from	OE-103-	Introduction to Geohazards	Theory	2	30
		basket)	GL-T	Introduction to Geonazarus	Theory	2	30
		Skill	SEC-101-	Earth System Science	Theory	2	30
		Enhancement	GL-T			_	
		Courses (SEC)					
		Indian		Generic	Theory	2	30
		Knowledge					
		System					
		Ability	AEC 101	English Language	Theory	2	30
		Enhancement Course (AEC)					
		Value	VEC-101-T	Environmental Education I	Theory	2	30
		Education	VEC-101-1	Environmental Education 1	Theory	2	30
		Courses (VEC)					
		,					
4.5/1	II	Subject	GL-151-T	Petrology	Theory	2	30
00			GL-152-P	Practicals related to GL-151-T	Practical	2	60
		Generic	OE-151-	Introduction to Rocks	Practical	2	60
		Elective (GE) /	GL-P				
		Open Elective	OE-152-	Study of Landforms	Theory	2	30
		(OE) -	GL-T				
		(Any one from basket)					
		Skill	SEC-151-	Gemmology	Practical	2	60
		Enhancement	GL-P	Committee	Tactical		
		Courses (SEC)	-2.1				
		Ability	AEC- 102	English Language	Theory	2	30
		enhancement					
		Course (AEC)					

		Value Education Courses (VEC)	VEC-151-T	Environmental Education II	Theory	2	30
		Curricular Course (CC)		Select any one from Basket			
Exit O	_	Award of UG Certif	ficate in Major	with 44 credits core NSQF course/internship	OR continue v	with Maj	or and
	nue Op	otion: Student will se	elect one subject	t (Subject1, 2 or 3) as major and another as m	inor and third	subject v	will be
5.0/2	III	Major Core	GL 201 T	Introduction to Stratigraphy	Theory	2	30
UU			GL 202 T	Structural Geology	Theory	2	30
			GL 203-P	Practicals related to GL 201 T & 202 T	Practical	2	60
		Vocational Skill Courses (VSC)	VSC 201 GL - T	Hydrogeology	Theory	2	30
		Field Project (FP)	FP 201 GL- P	Mapping, Surveying and Field Project	Practical	2	60
		Minor	MN 201 GL-T	Introduction to Structural Geology	Theory	2	30
			MN 202 GL-P	Practicals related to MN 201 GL-T	Practical	2	60
		Generic Elective (GE) /	OE-201- GL-P	Gemmology	Practical	2	60
		Open Elective (OE) (Any one from basket)	OE-202- GL-T	Introduction to Natural Resources	Theory	2	30
		IKS (Major Subject Specific)	IKS 201 GL T	Ancient Knowledge System in Geosciences	Theory	2	30
		AEC (Ability Enhancement Course)	AEC 201	Modern Indian Languages	Practical	2	30
		Curricular Course (CC)	CC	NCC/NSS/Sports/Cultural/Yoga Study	T/P	2	30
5/20 0	IV	Major Core	GL 251 T	Advance Petrology	Theory	2	30
			GL 252 T	Geotectonics	Theory	2	30
			GL 253-P	Practicals related to GL 251 T and GL 252 T	Practical	2	60
		VSC	VSC 251 GL - T	Optical Mineralogy	Theory	2	30
		FP	CEP	CEP	T/P	2	30
		Minor Courses	MN 251 GL-T	Dynamics of the Earth	Theory	2	30
			MN 252 GL-P	Practicals related to MN 251 GL-T	Practical	2	60
		Skill Enhancement Courses (SEC)	SEC 251 GL - T	Geophysical Prospecting	Theory	2	30
		Curricular Course (CC)	CC	NCC/NSS/Sports/Cultural/Yoga Study			
		Ability Enhancement Program (AEC)	AEC	Languages	Theory	2	30
		Generic Elective (GE) /	OE-251- GL-P	Introduction to GIS	Practical	2	60
		Open Elective (OE) - (Any one from	OE-252- GL-P	Water Resource Management	Theory	_	30
		basket)					

Exit	t Opti o			r and Minor with 88 credits and an addition ip OR continue with Major and Minor	onal 4 credits	core NS	QF
5.5/3	V	Major Core	GL 301 MJ	Geology of India	Theory	4	60
00			GL 302 MJ	Engineering Geology	Theory	2	30
			GL 303 MJ	Palaeontology	Theory	2	30
			GL 304 MJP	Practicals related to GL 301 to GL 303 MJ	Practical	4	120
		Major Elective	GL 311 ME	Micropalaeontology	Theory	2	30
		Courses	GL 312 ME	Oceanography and Marine Geology	(Select any One elective	2	30
			GL 313 ME	Geomorphology	from the	2	30
			GL 314 ME	Quaternary Geology	Basket)	2	30
		GL 315 MEP	Elective Practical related to GL 311 MJ/ GL 312 MJ/ GL 313 MJ/ GL 314 MJ	Practical	2	60	
		Vocational Skill Courses (VSC)	GL 321 VSC	Natural Disaster Management	T/P	2	30
		FP/CEP	GL 331 FP	Field Project and Scientific Report Writing	T/P	2	30
		Minor	GL 341 M	Petroleum Geology	Т	2	30
5.5/3 00	VI	Major Core	GL 351 MJ	Remote Sensing in Geosciences	Theory	2	30
			GL 352 MJ	Economic Geology and Mineral Economics	Theory	2	30
			GL 353 MJ	Climatology	Theory	2	30
			GL 354 MJ	Petroleum and Coal Geology	Theory	2	30
			GL 355 MJP	Practicals related to GL 351 MJ & GL 352 MJ	Practical	4	120
		Major Elective Courses	GL 361 ME	Geotechnical Studies	Theory (Select	2	30
			GL 362 ME	Watershed Management	any One from the	2	30
			GL 363 ME	Analytical Methods in Geology	Basket)	2	30
			GL 364 ME	Introduction to GIS- Open Source		2	30
			GL 365 MEP	Elective Practical related to GL 361 to 365	Practical	2	60
		VSC	GL 371 MN	GIS and Geoinformatics	T/P	2	30
		OJT	GL 375 OJT	ON Job Training		4	
	Ev:4	Ontion: Award of	IIC Dograe in a	Major with 132 credits OR Continue with	Major and I	Minor	
6.0/4	VII	Major Core	GL 401 MJ	Theory 1, Theory 2, Theory 3	Tviajor and I	6	90
00	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	wiajor Core	GL 401	Practicals related to theory		4	120
		Major Elective	MJP GL 411 ME	Theory		2	-
		Courses - (0C)	GL 412 P	Practical		2	+
		FP/OJT/CEP/R	GL 421 FP	Research Project		4	
		P Research Methodology	GL 431 RM	Research Methodology		4	†
		Major Core	GL 451 MJ	Theory 1, Theory 2, Theory 3		6	90
6.0/4 00	VII I		GL 452 MJP	Practical		4	120
	_			Theory		2	

Major Elective		Practical	2	
Courses - (0C)				
FP/OJT/CEP/R	GL 461	Research Project	0	
P		-	8	

Four Year UG Honours Degree in Major and Minor with 176 credits

Notes: OE to be compulsorily chosen from faculty other than that of Major

Abbreviations

OE: Open Elective IKS: Indian Knowledge System

AEC: Ability Enhancement Course

OJT: On Job Training

VEC: value Education Courses

FP: Field Project

CC: Co-Curricular Courses VSC: Vocational Skill Courses

CEP: Community Engagement Project

Semester III

GL 201 T- Introduction to Stratigraphy

Title of t	the Course and	Introduction to Stratigraphy	Credits:2
Course (Code	GL 201 T	
Course L	earning Outcomes (Cl	LOs) On completion of the course, the students will be	e able to:
CLO 1	The study of Stratigr	aphy encompasses the aspects of the age of the earth,	
	chronological arrang	ement of rocks and appearance.	
CLO 2	To acquire the know	edge of the concepts in Stratigraphy and correlation	
CLO 3	To study evolution o	f life through the geologic time	
CLO 4	Stratigraphers study	the composition and arrangement of layered or stratif	ied rocks.
CLO 5	To understand physic	ography of India	
CLO 6	To study Tectonic El	ements	
CLO 7	To study World Histo	ory with reference to Geological Time	

Unit/	Course Contents	No of
Hour		Lectures
I/15	Principles of Stratigraphy and Stratification	15
	A) Introduction: Definition, Development of stratigraphic concepts,	
	Importance of Stratigraphy, Various principles of Stratigraphy	
	B) Stratigraphic Classification & Nomenclature: Study of stratigraphic	
	elements, Lithostratigraphy, Chronostratigraphy, Biostratigraphy, Inter-	
	relationship between lithostratigraphic, Chronostratigraphic and	
	Biostratigraphic units.	
	C) Methods of Collecting Stratigraphic Data: Outcrop and Subsurface	
	procedures. D) Stratification: Introduction to concept of basin, Processes	
	of stratification, Controlling factors-physical, chemical and biological,	
	Vertical succession, alternations, varves, cycles.	
	E) Stratigraphic Correlation: Definition and evidence for correlation-	
	physical and palaeontological	
	F) Geological Time Scale	
II/15	Introduction to Indian and World Precambrian History	15
	A) Physiographic / Tectonic divisions of India and their comparisons	
	B) a) Definition of Tectonic Elements of continents (cratons, shield,	
	folded mountain belts) and oceans (mid oceanic ridges, trenches and	
	transform faults)	
	b) Cratons of India and associated Proterozoic basins	
	c) General review of Indian Stratigraphy & Classification of the Indian	
	litho-stratigraphic units, according to the Geological time scale.	
	d) Earlier and current classification of Precambrian formations of India	
	by- SirT.H.Holland, Sarkar et al(1976) and Ramkrishna and	
	Vaidhyanathan (ICS, 2014)	
	C) a) World Precambrian history in brief	
	b) Cratons and mobile belts of the World	
	Precambrian – Cambrian boundary	
	Study of following Geological systems: Cambrian, Ordovician, Silurian,	
	Devonian, Carboniferous, Permian, Triassic, Jurassic, Cretaceous &	
	Tertiary	

Suggested Readings: Books Recommended:

- 1. Thornbury W. D., (1997) Principles of Geomorphology Wiley Eastern Ltd., New Delhi.
- 2. K.S. Valdiya, The Making of India Geodynamic evolution. Springer
- 3. Fundamentals of historical geology and Stratigraphy of India, Ravindra Kumar
- 4. Geology of India Volume I & II- Vaidyanathan and Ramakrishnan

GL 202 T Structural Geology

Title of	the Course and	Structural Geology	Credits:2
Course	Code	GL 202 T	
Course	Outcomes (COs) On co	mpletion of the course, the students will be able to:	
CLO1	Understand geologica	structures resulting from the action of various forces	on rocks.
CLO2	To gain the knowledg	e of the geometry of the rock structures	
CLO3	To understand the me	chanism of the evolution of rock structures	
CLO4	Analyze the mechanis	m of the tectonic activities with reference deformation	n of rocks
CLO5	Deliver the application	ns of Structural Geology in the field	

Unit/	Contents	No of
Hour		Lectures
I/15	Fundamental Principles of Structures	15
	Attitude of a planar feature:	
	a) Strike and dip (true dip and apparent dip).	
	b) Strike-dip symbols for inclined, horizontal and vertical strata.	
	c) Rake and plunge	
	Brunton Compass, Clinometer Compass and GPS.	
	a) Elements of a Brunton Compass and Clinometer Compass.	
	b) Use of GPS.	
	c) Strike direction, dip direction and dip amount, Fore-bearing and back-	
	bearing.	
	Stress and Strain.	
	a) Definition and concept of stress and strain.	
	b) Three stages of deformation (Hooke's Law).	
	c) Understanding stress and strain with reference to elastic and plastic	
	deformation.	
	d) Brittle and ductile deformation.	
	Factors controlling rock deformation.	
	a) Factors controlling behaviour of materials such as – temperature time,	
	pressure (confining pressure and pore pressure), solution and strain rate.	
	Introduction to rock deformation and its mechanics.	
	a) Definition of rock deformation.	
	b) Components of rock deformation (Translation and Rotation)	
	c) Definition and examples of plastic deformation.	

	d) Mechanism of plastic deformation: Intergranular and intragranular	
	movements, recrystallization with and without change in shape (Reckie's	
	principle).	
	Unconformity:	
	Definition, development stages, structural classification, Recognition in	
	the field	
II/15	Deformation Structures:	15
	Folds.	
	a) Definition and parts of a fold.	
	b) Nomenclature of folds.	
	c) Plunging and non-plunging folds.	
	d) Types of folds and mechanism (Flexure, shear and flow).	
	e) Recognition of folds and plotting attitude of beds on a map.	
	f) Determination of top of beds by Primary sedimentary structures.	
	g) Classification of folds (Geometric and Genetic).	
	h) Introduction to Flutey's Classification	
	Faults.	
	a) Terminologies associated with fault plane.	
	b) Nature of movement along faults (Translational and Rotational).	
	c) Effects on disrupted strata.	
	d) Calculation of net slip.	
	e) Concept of throw and heave.	
	f) Classification of faults (Geometric and Genetic)	
	g) Concept of mechanics of faulting	
	h) Faulting along tension & shear fractures	
	i) Direction of displacement along shear fractures	
	Fractures.	
	a) Concept of fracture.	
	b) Genetic types of fracture (tension and shear fracture).	
	c) Fracturing under differential forces.	
	Joints.	
	a) Definition and types of joints.	
	b) Geometric and Genetic classification of Joints.	

Books Recommended:

- 1. Jain, A.K., (2014) An introduction to structural geology. Text Book series in Geological Sciences for Graduate Students. Geological Society of India, Bangalore.
- 2. Billings, M.P., (1972) Structural Geology. Prentice Hall. Fossen, H., (2010) Structural Geology. Cambridge University Press.
- 3. Davis, G.R., (1984) Structural Geology of Rocks and Region. John Wiley
- 4. Singh, R. P., (1995) Structural Geology: A Practical Approach. Ganga Kaveri Publ., Varanasi
- 5. Hills, E.S., (1963) Elements of Structural Geology. Farrold and Sons, London.

GL 203-P -Practicals related to GL 201 T & GL 202 T

Title of the Course and	Practicals related to GL 201 T & GL 202 T	Credits:2
Course Code	GL 203-P	

Course Lear	Course Learning Outcomes (CLOs) On completion of the course, the students will be able to:		
CLO 1	Understand Structural features in the field		
CLO 2	Gain knowledge about geometry of rock structure		
CLO 3	Analyze graphical representation of rock Structures of subsurface		
	areas		
CLO 4	Understand the stratigraphic correlation		

Topics	No. of Practicals
Reading of toposheets with reference to toposheet number, latitude and	1
longitude, state/districts, scale, adjacent toposheet number and conventional	
signs.	
Study of Topographical and Geological Maps involving:	4
Study of topographical maps involving topographical features like hill, valley, spur,	
saddle, etc. Study of Geological Maps involving one conformable series (horizontal	
and inclined beds) - Describing topography, geology and drawing vertical section	
along the given direction. (4 Maps – 1 topographic map involving all features; 1	
geological map with horizontal beds; 1 geological map with inclined beds; 1	
geological map horizontal/inclined beds with dyke).	
Study of Geological Maps - involving two conformable series beds with	3
unconformity (2 maps) - 1 with combination of inclined series of conformable	
beds and horizontal series of conformable beds and 1 map with both conformable	
series of inclined beds.	
Study of Geological Maps - involving two conformable series beds with	
unconformity (2 maps) - with combination of inclined series of conformable beds	
and horizontal series of conformable beds	
Completion of outcrops: (At least 3 maps)	2
Completion of an outcrop with the help of given topographic & lithological data	
Structural problems	2
A) Graphical problems- (To be solved by using method of descriptive geometry)	
Type I - Hill slope, attitude of the exposures of top & bottom of the bed on the hill	
slope along with true thickness of the bed given, finding out true dip direction, true	
dip amount & other geometrical parameters of the bed. With comment on normal or	
overturned bed.	
Type II - Problems involving a single planar feature containing a linear feature: a)	
Attitude of planar feature along with the bearing of a linear feature contained in it	
given, finding out plunge & rake of a linear feature in the given planar feature.	
Three-point problems: Drill hole data for a hidden planar feature at three non-	1
collinear points given in the form of location, elevation & absolute depth of planar	
feature, finding out strike, true dip direction & true dip amount of the planar	
feature. Also determining one of the three parameters (location, elevation &	
absolute depth) where the other two parameters are known.	
Stratigraphy related practicals	2
Stratigraphic correlation:	
Lithostratigraphy: Correlating rock units based on lithological characteristics	
helps establish the continuity of strata across different locations.	
Biostratigraphy: Correlating rock units using fossil content helps link and	
compare stratigraphic sequences. Data for minimum of three boreholes to be given.	

Marking on outline map of India/world: Marking of Craton/ Mobile belts/ Platforms/ Sedimentary Basins of India	
Total No. of Practicals	15

VSC 201 GL – T - Hydrogeology

Title of t	he Course and	Hydrogeology	Credits:02
Course Code		VSC 201 GL - T	
Course L	Course Learning Outcomes (CLOs) On completion of the course, the students will be able to:		
CLO 1	1 To understand the basic principles in hydro-geology		
CLO 2	To study aquifers and related aspects		
CLO 3	O 3 To study hydrogeology chemistry, systematically hydrogeological survey		
CLO 4	CLO 4 To study water quality monitoring		

Unit/ Hour	Contents	No of Lectures
I/15	Introduction and basic concepts in Hydrogeology Definitions:	15
1/13	Hydrology, Geo-hydrology, Hydrogeology Water bearing properties of	13
	rocks:	
	a) Interstices and porosity, permeability, specific yield and specific	
	retention, storativity, transmisivity and Hydraulic conductivity	
	b) Aquifers, Geologic formations as aquifers- Aquicludes, Aquitard and	
	Aquifuge.	
	c) Vertical distribution of subsurface water-zone of saturation and zone	
	of aeration.	
	d) Types of aquifers – unconfined, confined, Perched.	
	Groundwater Flow:	
	a) Darcy's law and its validity	
	b) Aquifer parameters-transmissivity, storage coefficient, hydraulic	
	conductivity, Intrinsic permeability	
	c) Groundwater flow rates and flow direction	
	d) Laminar and turbulent groundwater flow	
	Field and laboratory methods used to characterize aquifer	
	properties and hydrogeology of rocks	
	a) Field methods: Pumping tests and slug test - Principles - types of	
	pumping tests, procedures, Determination of aquifer properties and	
	well; Characteristics by Methods of Theim's equilibrium method.	
	b) Laboratory methods: Grain sixe Analysis method (GSA) consolidated	
	and unconsolidated sediments; Permeameter	
	method.	
	c) Well inventory: Water Well Construction – Selection of suitable site	
	for well construction, Water well design criteria and specifications,	
	maintenance of production wells and types of well.	

	d) Hydrogeology of rocks	
II/15	Groundwater chemistry	15
	Groundwater chemistry:	
	a) Chemical standards for drinking, and irrigational water	
	b) Major ion and isotope analyses, chemical tracers in groundwater	
	c) Physical and chemical properties of water and water quality.	
	BIS, WHO standard;	
	d) Groundwater contamination; natural (geogenic) and anthropogenic contaminants;	
	e) Saline water intrusion in coastal aquifers-Ghyben Herzberg relation	
	Groundwater Resources of India, Groundwater Quality Hotspots	
	in India	
	Groundwater Resources i.e. aquifers of India	
	a) Unconsolidated sedimentary	
	b) Consolidated sedimentary	
	c) Sedimentary Aquitards	
	d) Folded metamorphic	
	e) Jointed Crystalline	
	f) Fractured Crystalline	
	1) Tractarea Crystainine	
	Groundwater quality hotspots in India	
	a) Hydrogeology in Maharashtra	
	Groundwater quality hotspots in India- TDS, F, Ar, U, Fe	

Books Recommended:

- 1) Brassington, R. (2017) Field Hydrogeology, Wiley Blackwell
- 2) Pawar N.J, Das, S. And Duraiswami R.A (2012) Hydrogeology of Deccan Traps and associated Formations in Peninsular India, Geol. Soc. India, Bangalore
- 3) Hiscock, K. M. (2005) Hydrogeology: Principles and Practice, Blackwell Publishing
- 4) Todd, D.K. and Mays, L.W. (2004) Groundwater Hydrology, John Wiley & Sons.
- 5) Raghunath, H.M. (1987) Groundwater, New Age International
- 6) Freeze, R. A. and Cherry, J. A. (1979) Groundwater, Prentice Hall

FP 201 GL-P- Mapping, Surveying and Field Project

Title of t	the Course and	Mapping, Surveying and Field Project	Credits:02
Course (Code	FP 201 GL-P	
Course C	Outcomes (COs) On co	mpletion of the course, the students will be able to:	
CLO 1	CLO 1 To provide field experience about studying and identifying different geological		ological
	features		
CLO 2	To study effectively collect and analyze data, demonstrate professional conduct in a		nduct in a
	field setting		
CLO 3	To foster collaboration and communication skills		
CLO 4	To build self-awareness through reflection on experiences within the field environment		environment,
	structures and rocks		

Topic of Practical	No of Practicals
To study Field equipment	1
Measure readings using Brunton compass or clinometer compass(Fore bearing, Back bearing, Strike, Dip etc)	1
A Geological field tour to be conducted in an area of geological interest for	10
at least 3 to 4 days and geological report to be submitted for the same. In addition to the requisite number of lectures and practicals, students are	
required to undertake geological excursion to study at first hand geological	
structures and lithology under the guidance of a teacher. The fieldwork helps	
in developing individual skills of observation, description and interpretation of geological features. Each student shall maintain a field – diary for this	
purpose and shall write area-wise report.	
Total Practicals:	12

MN 201 GL-T- Introduction to Structural Geology

Title of	the Course and	Introduction to Structural Geology	Credits:2
Course Code		MN 201 GL-T	
Course	Outcomes (COs) On co	mpletion of the course, the students will be able to:	
CLO1	Understand geological structures resulting from the action of various forces on rocks.		
CLO2	To gain the knowledge	e of the geometry of the rock structures	
CLO3	To understand the med	chanism of the evolution of rock structures	
CLO4	Analyze the mechanis	m of the tectonic activities with reference deformation	of rocks
CLO5	Deliver the application	ns of Structural Geology in the field	
Unit/	Contents		No of
Hour			Lectures
I/15		ciples of Structures	15
	Attitude of a planar		
	- 1	ue dip and apparent dip).	
	b) Strike-dip symbols for inclined, horizontal and vertical strata.		
	c) Rake and plunge		
	Brunton Compass, Clinometer Compass and GPS.		
	a) Elements of a Brunton Compass and Clinometer Compass.		
	b) Use of GPS.		
c) Strike direction, dip direction and dip amount, Fore-bearing		dip direction and dip amount, Fore-bearing and back-	
	bearing.		
	Stress and Strain.	naant of strass and strain	
		ncept of stress and strain. eformation (Hooke's Law).	
	,	,	
	c) Understanding stress and strain with reference to elastic and plastic deformation.		
	d) Brittle and ductile deformation.		
	Factors controlling		
		ng behaviour of materials such as – temperature time,	
		pressure and pore pressure), solution and strain rate.	
	1 -	deformation and its mechanics.	

	a) Definition of rock deformation.	
	b) Components of rock deformation (Translation and Rotation)	
	c) Definition and examples of plastic deformation.	
	d) Mechanism of plastic deformation: Intergranular and intragranular	
	movements, recrystallization with and without change in shape (Reckie's	
	principle).	
	Unconformity:	
	Definition, development stages, structural classification, Recognition in	
	the field	
II/15	Deformation Structures:	15
	Folds.	
	a) Definition and parts of a fold.	
	b) Nomenclature of folds.	
	c) Plunging and non-plunging folds.	
	d) Types of folds and mechanism (Flexure, shear and flow).	
	e) Recognition of folds and plotting attitude of beds on a map.	
	f) Determination of top of beds by Primary sedimentary structures.	
	g) Classification of folds (Geometric and Genetic).	
	h) Introduction to Flutey's Classification	
	Faults.	
	a) Terminologies associated with fault plane.	
	b) Nature of movement along faults (Translational and Rotational).	
	c) Effects on disrupted strata.	
	d) Calculation of net slip.	
	e) Concept of throw and heave.	
	f) Classification of faults (Geometric and Genetic)	
	g) Concept of mechanics of faulting	
	h) Faulting along tension & shear fractures	
	i) Direction of displacement along shear fractures	
	Fractures.	
	a) Concept of fracture.	
	b) Genetic types of fracture (tension and shear fracture).	
	c) Fracturing under differential forces.	
	Joints.	

oomes.

- a) Definition and types of joints.
- b) Geometric and Genetic classification of Joints.

Suggested Readings:

Books Recommended:

- 6. Jain, A.K., (2014) An introduction to structural geology. Text Book series in Geological Sciences for Graduate Students. Geological Society of India, Bangalore.
- 7. Billings, M.P., (1972) Structural Geology. Prentice Hall. Fossen, H., (2010) Structural Geology. Cambridge University Press.
- 8. Davis, G.R., (1984) Structural Geology of Rocks and Region. John Wiley
- 9. Singh, R. P., (1995) Structural Geology: A Practical Approach. Ganga Kaveri Publ., Varanasi
- 10. Hills, E.S., (1963) Elements of Structural Geology. Farrold and Sons, London.

MN 202 GL-P - Practicals related to MN 201 GL-T

Title of t	ne Course and	Practicals related to MN 201 GL- T	Credits:2
Course Cod	le	MN 202 GL-P	
Course Lear	Course Learning Outcomes (CLOs) On completion of the course, the students will be able to:		
CLO 1	Understand Structu	ural features in the field	
CLO 2	Gain knowledge al	bout geometry of rock structure	
CLO 3	Analyze graphical	representation of rock Structures of subsurface	
	areas		
CLO 4	Understand the str	atigraphic correlation	

Topics	No. of Practicals
Reading of toposheets with reference to toposheet number, latitude and	1
longitude, state/districts, scale, adjacent toposheet number and conventional	
signs.	
Study of Topographical and Geological Maps involving:	4
Study of topographical maps involving topographical features like hill, valley, spur,	
saddle, etc. Study of Geological Maps involving one conformable series (horizontal	
and inclined beds) - Describing topography, geology and drawing vertical section	
along the given direction. (4 Maps – 1 topographic map involving all features; 1	
geological map with horizontal beds; 1 geological map with inclined beds; 1	
geological map horizontal/inclined beds with dyke).	
Study of Geological Maps - involving two conformable series beds with	2
unconformity (2 maps) - 1 with combination of inclined series of conformable	
beds and horizontal series of conformable beds and 1 map with both conformable	
series of inclined beds.	
Completion of outcrops: (At least 3 maps)	2
Completion of an outcrop with the help of given topographic & lithological data	
Structural problems	2
A) Graphical problems- (To be solved by using method of descriptive geometry)	
Type I - Hill slope, attitude of the exposures of top & bottom of the bed on the hill	
slope along with true thickness of the bed given, finding out true dip direction, true	
dip amount & other geometrical parameters of the bed. With comment on normal or	
overturned bed.	_
Three-point problems: Drill hole data for a hidden planar feature at three non-	2
collinear points given in the form of location, elevation & absolute depth of planar	
feature, finding out strike, true dip direction & true dip amount of the planar	
feature. Also determining one of the three parameters (location, elevation &	
absolute depth) where the other two parameters are known.	1.2
Total No. of Practicals	13

OE 201 GL-P- Gemology

Title of t	the Course and	Gemology	Credits:02
Course (Code	OE 201 GL-P	
Course Outcomes (COs) On completion of the course, the students will be able to:			
CLO 1	Understand the fundamentals of various precious and semiprecious gemstones		
CLO 2	Know their formation, classifications, basic qualities of gemstones, description of their		
	various physical proj	perties	-

CLO 3	Learn about the different techniques involved in identification of natural and synthetic
	gemstones
CLO 4	To learn Gem instruments and their use in gemstone identification

Topics	No. of Practicals
1) Study of Physical properties of gemstones (Colour, Lustre, Diaphaneity, Sheen)	1
2) Study of different types of cuts used for gemstones	1
3) Description of following gem species with respect to their varieties (colour wise), Chemical composition, Crystal system, Physical and optical properties, Characteristic inclusions and Geographical Occurrences. Corundum, Beryl, Garnet, Felspar, Silica, Tourmaline, Topaz	3
4) Detection of double refraction, by observing pleochroic colours with the Dichroscope (at least 5) Garnet, Sapphire, Kyanite, Iolite, Paste, Emerald, Peridot	1
5) Study of the fluorescent colour exhibited by various gemstones under Ultraviolet (long wave and short wave) light (at least 5) Fluorite, Citrine, Natural Ruby, Synthetic Ruby, Almandine Garnet, Iolite, Natural Sapphire, Synthetic Sapphire	1
6) Study of Inclusions in Gemstones under microscope (at least 5) Sapphire, Ruby, Amber, Peridot, Rock Crystal, Amethyst, Topaz, Iolite, Citrine, Tourmaline, Kyanite, Paste, Almandine Garnet, Aquamarine	1
7) Study of Organic Gemstones: Pearl, Coral and Amber	1
8) Study of Opaque Gem varieties: Turquoise, Lapis Lazuli, Jade, Malachite	1
9) Study of Rare Gem varieties: Peridot, Kyanite, Iolite, Sphene, Zircon, Apatite	1
10) Study of Imitations and Synthetic Gemstones	1
Total No. of Practicals	12

Title of t	the Course and	Introduction to Natural Resources	Credits:02
Course (Code	OE 202 GL-T	
Course L	earning Outcomes (C	LOs) On completion of the course, the students will b	e able to:
CLO 1	To classify the natur	al resources.	
CLO 2	To describe Polices and legislation concerning natural resources		
CLO 3	Discuss various natural resources and their conservation and management		
CLO 4	Explain the climate changes and its impact on humans and environment.		
CLO 5	Evaluate the targets and indicators, challenges and strategies for Sustainable		
	Development Goals		

OE 202 GL-T Introduction to Natural Resources

Unit/ Hour	Contents	No of Lectures
I/15	Introduction to natural resources: Definition, types of natural resources:	15

	soil, water, minerals, Land, Floral and Faunal Resources		
	Sustainable use of economically important deposits- metallic and non-		
	metallic deposits with relevant case studies		
	Introduction to water as a resource and its sustainability with prominent		
	case studies		
II/15	Classification and types of resources: Renewable and	15	
	Nonrenewable		
	Conservation and development of Natural Resources		
	Energy crises and Man: Crises faces by mankind with regards to		
	conventional and non-conventional resources		
	Conservation and development of resources		
	Potential resources of energy: Solar, Tidal, Bio mass, Geothermal		
Suggested Readings:			
00	ecommended:		

IKS 201 GL T- Ancient Knowledge System in Geosciences

	of the Course and Course Code	Ancient Knowledge System in Geosciences IKS 201 GL T	Credits:02
	Course Outcomes (COs) On completion of the course, the students will be able		ole to:
CLO 1	,		
CLO 2			
CLO 3			
CLO 4			

Lectures
15
15
L

SEMESTER IV

GL 251 T Advance Petrology

Title of the Course and		Advance Petrology	Credits:2
Course Code		GL 251 T	
Course C	Course Outcomes (COs) On completion of the course, the students will be able to:		
CLO 1	To understand the process of evolution of magma & its types.		
CLO 2	Study of textures, structures & classification of rocks		
CLO 3	To study Sedimentary environments		
CLO 4	Understanding the co	oncept of metamorphism	

Unit/ Hour	Contents	No of Lectures
I/15	Magma:	
	A) Characteristics and generation of magmas	
	a) Role of magma in geological processes: melting of rocks and generation	15
	of magmas, temperature- pressure conditions and volatile constituents. Generation of magmas in different tectonic settings.	
	B) Types of magma: Primary and derivative	
	C) Crystallization of magmas: Binary magma with an incongruent	
	melting compound: Leucite – silica system	
	Igneous Petrology:	
	A) Textures/structures in igneous rocks & their significance	
	Textures: Granitic, porphyritic, glomero-porphyritic, poikilitic, ophitic &	
	sub-ophitic, inter-granular, inter-sertal, graphic, cummulate, glassy, corona/ reaction rim, myrmekitic,	
	Structures: Orbicular, flow, expansion cracks, pyroclastic, xenolithic	
	B) Classification of igneous rocks	
	a) Complexity in classification	
	b) Types of classification,	
	ii) CIPW classification	
	iii) IUGS (plutonic, volcanic) classifications	
II/15	SEDIMENTARY PETROLOGY	15
	Sedimentary Environments	
	A) Sedimentary environments: Depositional & Erosional	
	B) Physical & Chemical parameters of depositional sedimentary environments	
	C) Classification of depositional sedimentary environments	
	C)Texture & Structures of Sedimentary Rocks	
	Chemical structures: stylolites, concretions, nodules	
	7. Penecontemporaneous sedimentary Structures: Load-cast, flute-cast,	
	mud-cracks, ball & pillow, clastic dykes, slump folds, Dewatering folds	
	g) Study of organic sedimentary structures (in brief)	
	D) Classification of sandstones & limestones:	
	a) Dot's Classification of sandstones	
	b) Dunham's classification of limestones	
	METAMORPHIC PETROLOGY	

A) Definition & Characteristics of metamorphism
The concept of metamorphic facies: Diagrammatic representation of
pressure temperature conditions (with depth) of the different facies of
contact, regional & Plutonic metamorphism
B) Introduction to phase diagrams of metamorphic rocks- ACF, A'KF
and AFM diagrams
B) Thermal Metamorphism
Thermal metamorphism of Pure and Impure Limestone
C)Dynamic/Catalastic metamorphism:

- C)Dynamic/ Cataclastic metamorphism:
- e) Mechanics of the formation of slaty cleavages
- D) Regional Metamorphism & its products
- d) Barrovian zones of regional metamorphism.

Books Recommended:

- 1) Igneous Petrology: Anthony Hall
- 2) Igneous rocks: McBirney
- 3) Igneous and Metamorphic Petrology: Myron Best
- 4) Principles of Petrology: GW Tyrrell.
- 5) Igneous, metamorphic and sedimentary Rocks: Elher and Blatt
- 6) Igneous and metamorphic Petrology: Turner and Verhoogen
- 7) Principles of Igneous & metamorphic Petrology: Philpotts and Ague
- 8) Petrology of the Igneous rocks: Hatch, Wells and Wells
- 9) Sedimentary Petrology by Pettijohn
- 10) Introduction to Sedimentology by Sengupta
- 11) Stratigraphy & Sedimentation by Krumbein & Sloss
- 12) Applied Sedimentology by R.K. Sukhatankar
- 13) J.D Winter- Igneous and Metamorphic Petrology

GL 252 T - Geotectonics

Title of	the Course and	Geotectonics	Credits:02
Course Code		GL 252 T	
Course C	Outcomes (COs) O	n completion of the course, the students will be able to:	
CLO 1	To understand th	e dynamic nature of the Earth processes.	
CLO 2	To understand the geodynamics of the lithosphere and concept of isostacy, ocean floor		y, ocean floor
	spreading, contin	nental drift, plate tectonics.	
CLO 3	To develop the c	oncepts of plate tectonics on a global scale	
CLO 4	To analyses the physical processes responsible for the formation and destruction of the		
	plates		
CLO 5	To understand the structure of the continental crust vs. oceanic crust and their		
	geodynamic.		
CLO 6	To analyze the n	nodern concept of plate tectonics and its implications.	

Unit/	Contents	No of
Hour		Lectures
I/15	Global Tectonics:	
	a) Concept of Shield and Platform	15
	b) Early crustal evolution of the earth and Introduction to concepts of	
	Cratons, Shields, Platform, Mobile belt with suitable Indian examples	

	c)Concept of Continental drift d) Morphology of Ocean floor a) Ocean floor spreading b) Magnetic anomalies & sea floor Spreading- Mechanics & applications e) Plate tectonics a) Introduction to Wilson's cycle & Concept of plate tectonics b) Characteristic features of plate boundaries f) tectonic settings on Earth-Mid Oceanic Ridges, Rift valleys and Island arcs (compressional and extensional)	
II/15	Geodynamics of the lithosphere: a) Evolution of earth Composition, physical properties & characteristics of three spherical zones of the Earth namely crust, mantle and core b) Structure of the lithosphere lithosphere-asthenosphere interactions Concept of Lithosphere, Asthenosphere & Mesosphere c) Low Velocity Zone (LVZ) d) Continental crust and Oceanic crust e) Geotherms f) Concepts of isostacy g) Direct & indirect observations in exploration of Earth's interior	15

Books Recommended:

- 1. Patwardhan, A.M. (2012) The dynamic Earth System, PHI Learning Pvt. Ltd.,
- 2. Moores E.M. and Twiss R.J. (1995) Tectonics, W. H. Freeman
- 3. Valdiya, K.S., (1984) Aspects of Tectonics: Focus on Southcentral Asia, Tata-McGraw Hill, New Delhi,
- 4. Beloussov, V.V. (1980) Geotectonics, Springer-Verlag Berlin Heidelberg
- 5. Condie, K.C. (1989) Plate Tectonics & Crustal Evolution, Butterworth-Heinemann
- 6. Billings, M.P. (1942) Structural Geology, Prentice Hall,
- 7. Badgley, P. C. (1965) Structural & Tectonic Principles, Harper & Row
- 8. Valdiya K.S. (2014) Making of India, Springer.
- 9. Valdiya K.S. (1984) Aspects of tectonics, Tata McGrath Hill.

GL 253 -P- Practicals related to GL 251 T & GL 252 T

Title of t	he Course and	Practicals related to GL 251 T & GL 252 T	Credits:02
Course (Code	GL 253 -P	
Course C	Outcomes (COs) On co	impletion of the course, the students will be able to:	
CLO 1	Identify different tex	tures and structures in rocks.	
CLO 2	Classify various rock	s using megascopic and microscopic properties.	
CLO 3	Examine different ro	cks in hand specimens.	
CLO 4	Distinguish different	optical properties in minerals under microscope.	
CLO 5	Determine different	minerals in micro-sections.	

Topics	No. of
•	Practicals
Igneous Petrology:	2
Identification of the following megascopic rocks with respect to their texture/structure,	,
mineral composition, and classification	
a) Igneous: Varieties of gabbro (anorthosite, troctolite, norite), felsites, peridotite,	
lamprophyre, serpentinite, varieties of basalt, carbonatite, granite, rhyolite.	
Description, genesis and significance of the following microscopic textures and structures	1
Granitic, porphyritic, intergranular/intersertal, poikilitic, ophitic and sub-ophitic,	
graphic, glassy, flow, vitrophyric, microlitic, spherulitic, orbicular, reaction rims,	
expansion cracks, perlitic cracks, myrmekitic (any 5)	
c) study of Microscopic of Igneous rocks with regard to their texture, mineral	1
composition, identification and classification:	
Norite, troctolite, anorthosite, peridotite lamprophyre, olivine basalt, granite, carbonatite,	
rhyolite, andesite (Any 5)	
d)Problems related to CIPW Norm calculation for silica saturated igneous rocks	1
Sedimentary Petrology:	1
a) Study of Megascopic sedimentary rocks with regard to their texture / structure, mineral	
composition, identification, classification and sedimentological significance: Laterite,	
bauxite, Conglomerate, breccias, grit, arkose, speckled sandstone, sandstone with dendritic	
markings, ferruginous and carbonaceous shale, limestone (Chemical and Organic), calc-	
tuffa.	
b) Thin section study of the following sedimentary rocks: Sandstone, arkose, greywacke,	1
nummulitic and oolitic limestones.	
c)Interpretation of the sedimentary structures giving their geological significance:	1
Sandstone showing tracks and trails, Ball & Pillow, Flame, Load cast, Flute marks	
Metamorphic Petrology:	2
a) Study of the following metamorphic megascopic rocks with regard to their texture /	
structure, mineral composition, colour, type of metamorphism, grade facies and the	:
original rocks:	
Slate, phyllite, chlorite schist, mica (Biotite) schist, hornblende schist, staurolite	
schist, Kyanite schist, talc – tremolite schists, mica gneiss, hornblende gneiss,	
sillimanite gneiss, augen gneiss, eclogite, charnockite, fuschite quartzite, banded	
haematite quartzite, marbles (any 8)	
b) Study of the thin sections of the following metamorphic rocks about their / structure,	1
mineral composition, colour, type of metamorphism, grade, facies and the original rock:	
Chlorite schist, staurolite schist, kyanite schist, mica gneiss, sillimanite gneiss, augen	Į
gneiss, eclogite, charnockite, khondalite, banded haematite quartzite. (any 5)	
c)Plotting of Chemical Composition of Metamorphic rocks on ACF diagrams.	1
Geodynamics of Lithosphere:	1
a) Marking of Mid Oceanic Ridges and Tectonic Plate Boundaries	
b) Problems related to P & S waves – Interior of the Earth	
c) Mathematical problems related to Geotherm/ Isostacy	
Total No. of Practicals	13

VSC 251 GL-T - Optical Mineralogy

	the Course and	Optical Mineralogy VSC 251 GL-T	Credits:02
Course			
Course C	Outcomes (COs) On co	impletion of the course, the students will be able to:	
CLO 1	Describe various pro	perties and laws of light.	
CLO 2	Compare optical properties of minerals in Plane Polarised Light and in Between		
	Crossed Nicols.	·	
CLO 3	Determine the refrac	tive indices and optical sign of minerals.	
CLO 4	Explain interference	figures.	
CLO 5	Compare uniaxial an	d biaxial minerals.	

Unit/	Contents	No of
Hour		Lectures
I/15	Introduction:	15
	Light and the properties of light, Interference of light, Velocity of light in	
	crystals and refractive index, Snell's Law and refraction of light,	
	Polarized light and Crossed polars	
	Petrological microscope	
	Introduction to optical properties:	
	Opaque and Non opaque Minerals	
	Properties in plane polarized light: Color, form, cleavage, cracks, relief,	
	twinkling, pleochroism and scheme of pleochroism	
	Refractive indices and their comparison with Becke line	
II/15	Properties in between crossed nicols: Isotropism and anisotropism,	15
	extinction positions and determination of extinction angle, twinning,	
	zoning, and undulatory extinction, interference colors and Michel-Lévy	
	color chart	
	Introduction to Uniaxial and biaxial minerals	
	Introduction to Interference figures of Uniaxial MInerals	
	Accessory plates: mica plate, gypsum plate and quartz wedge	
	Preparation of Geological Thin Section	

Suggested Readings:

Books Recommended:

- 1. Dexter Perkins, 1998, Mineralogy, 3rd Edition, Pearson Education
- 2. Kevin Hefferan and John O'Brien, 2010 Earth Materials, A John Wiley & Sons, Ltd., Publication
- 3. Gribble, C. D., 1988, Rutley's Elements of Mineralogy, 27th Edition, Unwin Hyman, London
- 4. Deer, W. A., Howie, R. A. and Zussman, J., 2013, An Introduction to Rock Forming Minerals, Essex: Longman Scientific and Technical; New York
- 5. Berry, L. G., Dietrich, R. V., and Mason, B., 1985, Mineralogy, CBS Publishers & Distributors, India,
- 6. Kerr, P.F, Rogers, A.F.,1959, Optical Mineralogy, McGraw-Hill Inc.

MN 251 GL-T - Dynamics of Earth

Title of t	he Course and Dynamics of Earth	Credits:02	
Course (he Course and Dynamics of Earth Code MN 251 GL-T	Credits:02	
		ha abla ta	
	Learning Outcomes (CLOs) On completion of the course, the students will	be able to:	
CLO 1	To learn different branches of Geology and its Scope.		
CLO 2	To learn Solar system in relation to the evolution of the earth, as		
	overall idea about cosmology in context to the evolution of plan	etary	
CT O A	system		
CLO 3	Student will know the applications of the physical and chemical	properties	
CT 0 4	in understanding the evolution of the earth with the interior.		
CLO 4	Student will learn about the magnetic field of the earth.		
CLO 5	origin, history and evolution of the Earth		
CLO 6	Familiarize with the structure, composition and general characteristics of	the	
	lithosphere, hydrosphere, atmosphere and biosphere.		
CLO 7	Students will learn the interior structure of the earth and plate m		
Unit/	Contents	No of	
Hour		Lectures	
I/15	Introduction to Geology:		
	Definition of Geology, its divisions, sub-divisions and scope		
	Planet Earth	15	
	Origin of the Universe (Big Bang Theory), Origin of the Solar System		
	(Nebular, Encounter and Tidal Hypothesis)		
	a. Earth: Its size, shape and density. Temperature, pressure and		
	magnetism within the Earth, Present day Hypsographic curve		
	b. Age of the Earth: A brief account of the historical methods.		
	Determination of age by U/Pb, Th/Pb, K/Ar and Carbon method of		
	Dating.		
	c. Meteorites (Definition, types and origin)		
	Geological time scale: Concept and Criteria		
	Earth's Atmosphere: (Introduction, Classification of Atmosphere,		
	Introduction to Atmospheric circulation, land-air-sea interactions),		
	Hydrosphere (Introduction to ocean currents, types, causes and		
	significance), Lithosphere (Structure and composition) and Biosphere		
	(Ecology and food chain)		
		1-	
II/15	Dynamics of earth:	15	
	Interior of Earth: Earth's Crust, Mantle and Core		
	Plate Tectonics- Historical Overview, Different types of plate		
	movements with their salient characters, Various plates of the world and		
	their movements		
	Concept of Isostacy		
	Volcanoes : Genesis of volcanoes, Central and fissure type of eruptions.		
	Products of volcanoes, effects of volcanoes, earth's volcanic belts.		
	Earthquakes: Definition, terminology, causes, intensity and magnitude.		
	Recording of earthquakes (Modern recording method). Use of seismic		
	waves and their importance in interpreting the earth's internal structure.		
	Seismic zones. History and susceptibility of the Indian subcontinent to		
	earthquakes.		

Types of Mountains: Fold, fault block, volcanic and residual.

Geomorphic processes and landformsWeathering, erosion and denudation

Types of weathering: Mechanical and Chemical
Study of various erosional and depositional landforms resulting from the

Suggested Readings: Books Recommended:

- 1. Holmes' Principles of Physical Geology: Edited by P. McL. D. Duff
- 2. Plate tectonics and Crustal evolution: Condie
- 3. Our evolving planet: Bergen, Alma Mater Fortag

action of: River, Wind, Sea and Glaciers

- 4. Geomorphology and Global Tectonics: Summerfield M. A.
- 5. Geomorphology: Thornburry
- 6. Concepts of Geomorphology: Gupta and Kale

MN 252 GL-P- Practicals related to MN 251 GL-T

Title of t	the Course and	Practicals related to MN 251 GL-T	Credits:02
Course (Code	MN 252 GL-P	
Course C	Outcomes (COs) On co	impletion of the course, the students will be able to:	
CLO 1	Identify different tex	tures and structures in rocks.	
CLO 2	Classify various rock	s using megascopic and microscopic properties.	
CLO 3	Examine different ro	cks in hand specimens.	
CLO 4	Distinguish different	optical properties in minerals under microscope.	
CLO 5	Determine different	minerals in micro-sections.	

Topics	No. of
	Practicals
Study of the Interior of the Earth with respect to its Chemical and Rheological	1
Classification	
Sketch and label the Global circulation patterns	1
Polar cell, Ferrel cell, Hadley cell	
Sketch and label the warm and cold Ocean Currents	1
Preparation of Hazard zonation maps for India and World: Earthquake	1
Marking of Mid Oceanic Ridges and Tectonic Plate Boundaries	1
Tracing of Drainage from Satellite Imageries/Aerial Photos	1
Study of Landform Models Any 2 from each environment:	3
Fluvial ,Dessert, Coastal, Glacial	
Problems related to Isostay	1
Total No. of Practicals	10

SEC 251 GL- Geophysical Prospecting

Title of the Course and Course Code	Geophysical Prospecting SEC 251 GL	Credits:02
Course Outcomes (COs) On co		

CLO 1	To understand the methodologies for extracting geological information out of
	geophysical datasets generated from different petrophysical properties
CLO 2	the student will gain first-hand knowledge dealing with the principles and their
	significance
CLO 3	To understand geophysical techniques for geophysical prospecting
CLO 4	To understand gravity methods and its applications
CLO 5	To understand magnetic methods and its applications
CLO 6	To understand seismic methods and its applications

Unit/ Hour	Contents	No of Lectures
I/15	A) Objectives, stages & types of prospecting B) Geological Prospecting: a) Geological Criteria: Climatic, Stratigraphic, Lithological, Structural, Geochemical, - Magmagene and - Geomorphological. b) Physiographic Guides: Topographic expressions, Physiographic environment of the ore deposits, physiography in relation to oxidation & environment c) Mineralogical Guides: Rock alteration, Target rings of mineral distribution, Significance of accessory & gangue minerals. Stratigraphic & lithologic guides for Syngenetic & Epigenetic deposits, Fracture pattern as guides, Contacts & folds as guides	15
II/15	A) Gravity Method: a. Introduction, Principles, Types of Gravimeters, Concept of Free Air & Bouguer Anomaly b. Airborne surveys in Gravity methods b. Applications & Generalized interpretation of Gravity data- Case Study. B) Magnetic Method: a. Introduction, Principles, Types of magnetometers- Magnetic anomalies and their interpretation. b. Air borne surveys in Magnetic Methods c. Gravity and magnetics for the exploration of the minerals, oil /gas and groundwater d. Processing, interpretation & applications. C) Seismic Method: a. Introduction and Principles b. Seismic Reflection Method and Seismic Refraction Method c. Seismic instruments and Field procedures d. Processing of Seismic data, applications and Case Study	15

Books Recommended:

- 1. Dobrin, M B and Savit C H. (1988) Introduction to Geophysical Prospecting, McGraw Hill Inc.
- 2. Ramachandra Rao and Prasaranga, M B. (1975) Outlines of Geophysical Prospecting A Manual for Geologists by University of Mysore, Mysore.

- 3. Bhimasarikaram V.L.S., (1990) Exploration Geophysics An Outline by Association of Exploration Geophysicists, Osmania University, Hyderabad.
- 4. Telford, W. M., Geldart, L. P., and Sheriff, R. E., (1990) Applied geophysics (vol. 1). Cambridge University Press.
- 5. Lowrie, W., (2007) Fundamentals of Geophysics. Cambridge University Press

OE 251 GL P - GIS

Title of t	the Course and	GIS	Credits:02
Course (Code	OEP 251 GL	
Course C	Outcomes (COs) On co	empletion of the course, the students will be able to:	
CLO 1	Understand the fundament	nentals of geospatial data	
CLO 2	To study Open-source	Software and installation	
CLO 3	To study Vetor Data		
CLO 4	To Study Raster data	l	

Topics	No. of Practicals
Introduction to GIS: Definitions, Evolution, Components and Objectives Overview of GIS Software Packages	2
Open-Source GIS: Basic Concepts, Introduction to Open-Source Software	1
Introduction to QGIS, Interface of the software	1
Plugins - Installing and Managing Plugins, Useful QGIS Plugins	1
Data visualization: Import data layers, add labels, and design layouts for maps	1
Georeferencing of map in QGIS	1
Working with Vector data - Generation of Vector Layers, Vector Analysis, Spatial and Attribute Queries	2
Working with Raster data - Symbology, Terrain analysis, Raster Analysis	2
Editing Data: Selecting Features, Simple Editing Functions, Creating New Features, Modifying, Schema Changes	2
Total No. of Practicals	13

OE 252 GL T- Water Resource Management

Title of t	the Course and	Water Resource Management	Credits:02	
Course (Code	OE 252 GL T		
Course Outcomes (COs) On completion of the course, the students will be able to:				
CLO 1	Understanding the di	stribution of Water on Earth		
CLO 2	Study availability an	d Consumption of water		
CLO 3	Study concept of WF	RM		
CLO 4	Understanding Sustai	nable Development Goal 6 (SDG)		
CLO 5	Study of Best comm	unity water management practice		

Unit/	Contents	No of
Hour		Lectures
I/15	Water as a resource, Concept of valuing water, Types of water resources	15
	Hydrological Cycle	
	Surface water distribution and importance	
	Ground water distribution and importance.	
	Cryosphere: Distribution and importance	
	Marine waters: Distribution and importance	
	Distribution of water, Availability and consumption patterns in domestic,	
	industrial, and agricultural sectors	
	Concept of water stress and scarcity,	
	Domestic water demand and consumption in urban and rural India	
II/15	Nature and scope of Water Resource Management	
	Global Water resource	
	Concept of sustainable water resource development	15
	Need of water resource development in India	
	Sustainable Development Goal 6 (SDG)	
	Best community water management practice in India	
	Water Resource Management: Case study of Maharashtra	

Books Recommended:

- 1. Raghunath H.M. (2003) Groundwater, New age education.
- 2. Karanth K.R. (1987) Groundwater assessment development and management, Tata Mcgrath Hill education.
- 3. Todd, D. K. and Mayo, L. W. (2004) Groundwater hydrology, Wiley.
- 4. Belsare and Kolhe, (2019) Water Resource Development and Management in Maharashtra: Issues, inetiatives and way forward, Water Resource Department, Government of Maharashtra.