

साि ःवñबाईफलेपुणेि ःव0ः ापठ

Savitribai Phule Pune University, Pune, Maharashtra, India Faculty of Science and Technology

National Education Policy (NEP)-2020

Compliant Curriculum

Second Year Engineering (2024 Pattern) Electronics and Computer Engineering

(With effect from Academic Year 2025-26)

Contents

Abbreviations	
Preface by Board of Studies	1
Knowledge and Attitude Profile	3
Program Outcomes	4
General Rules	5
Guidelines for Examination Scheme	6
Curriculum Structure-Semester III	10
Curriculum Structure-Semester IV	11
Analog and Digital Electronic Circuits	13
Data Structures & Algorithms	16
Discrete Mathematics	19
Analog and Digital Electronic Circuits Lab	21
Data Structure & Algorithms Lab	24
Statistical Data Analysis & Visualization	27
Engineering Economics & Application	30
Universal Human Values and Professional Ethics	32
Community Engagement Project	38
Communication Systems	43
Signals and Systems	45
Object Oriented Programming	48
Communication Systems Lab	50
Signals & Systems and Object-oriented Programming Lab	52

AI & Machine learning fundamentals	54
Critical thinking & Programming Lab	57
Modern Indian Languages (Marathi/Hindi)	60
Entrepreneurship skill Development	64
Environment Awareness	66
Acknowledgement	68

Nomenclature

- AEC Ability Enhancement Course
- CEP Community Engagement Project
- MDM Multidisciplinary Minor
- OE Open Elective
- PCC Program Core Course
- VEC Value Education Course
- VSE Vocational and Skill Enhancement
- Course WK Knowledge and Attitude

Preface by Board of Studies

Dear Students and Teachers,

We, the members of Board of Studies Electronics and Telecommunication Engineering, are very happy to present Second Year Electronics and Computer Engineering (ECE) syllabus effective from the AY Year 2025-26. Subsequently this will be carried forward for TE and BE in the AY 2026-27, 2027-28, respectively.

Electronics and Computer Engineering have emerged as transformative forces reshaping industries, driving innovation, and impacting our daily lives. Recognizing the growing importance and pervasive nature of these fields, we have designed this comprehensive syllabus to equip students with the foundational knowledge, practical skills. This curriculum is meticulously crafted to provide a holistic learning experience, blending theoretical concepts with hands-on applications. It aims to foster critical thinking, problem-solving abilities, enabling graduates to contribute meaningfully to the advancement and responsible deployment of technologies. The revised syllabus falls in line with the objectives of NEP-2020, Savitribai Phule Pune University, AICTE New Delhi, UGC, and various accreditation agencies by keeping an eye on the technological developments, innovations, and industry requirements.

Learners are now getting sufficient time for self-learning either through online courses or additional projects for enhancing their knowledge and skill sets. Learners can be advised to take up online courses, on successful completion they are required to submit certification for the same. We believe that this well-structured and comprehensive syllabus will serve as a robust foundation for aspiring Electronics and Computer Engineering professionals, enabling them to contribute significantly to the techno-logical progress and address the challenges of the 21st century.

We would like to place on record our gratitude to the faculty, students, industry experts and stakeholders for having helped us in the formulation of this syllabus.

Dr. S. D. Shirbahadurkar Chairman, Electronics and Telecommunication Engineering

Men	nbers of Board of Studies,				
Electronics &	Telecommunication Engineering,				
Savitribai Phule Pune University, Pune					
Dr. Aaditya Abhyankar	Department of Technology, SPPU, Pune				
Dr. Prachi Mukherji	MKSSS Cummins College of Engineering, Pune				
Dr. S. K. Moon	Pune Institute of Computer Technology, Pune				
Dr. R. P. Pawase	Amrutvahini College of Engineering, Sangamner				
Dr. B. D. Jadhav	Rajarshi Shahu College of Engineering, Pune				
Dr. Shailesh Kulkarni	Vishwakarma Institute of Information Technology, Pune				
Dr. S. S. Musale	MKSSS Cummins College of Engineering, Pune				
Dr. M. B. Mali	Sinhgad College of Engineering, Pune				
Dr. B. S. Agarkar	Sanjivani College of Engineering, Kopargaon				
Dr. R. N Awale	Veermata Jijabai Technological Institute (VJTI), Mumbai				
Dr. Kishor Vikhe	Vice-president, Capgemini Technology Services India				
Dr. Manisha Dale	Modern Education Society's College of Engineering, Pune				
Dr. P. Malathi	Dr.D.Y. Patil College of Engineering, Akurdi, Pune				
Dr. Urmila Patil	Dr. D. Y. Patil Institute of Technology, Pimpri, Pune				

Second Year Electronics and Computer Engineering

Knowledge and Attitude Profile (WK)

A Knowledge and Attitude Profile (KAP), often represented as WK (Knowledge and Attitude Profile) in some contexts, is a framework or assessment tool used to evaluate an individual's knowledge and attitudes related to a specific area, topic, or domain.

WK1	A systematic, theory-based understanding of the natural sciences applicable to the discipline and awareness of relevant social sciences.
WK2	Conceptually-based mathematics, numerical analysis, data analysis, statistics and formal aspects of computer and information science to Support detailed analysis and modeling applicable to the discipline.
WK3	A systematic, theory-based formulation of engineering fundamentals Required in the engineering discipline.
WK4	Engineering specialist knowledge that provides theoretical frameworks and bodies of knowledge for the accepted practice areas in the engineering discipline; much is at the forefront of the discipline.
WK5	Knowledge, including efficient resource use, environmental impacts, whole-life cost, re-use of resources, net zero carbon, and similar concepts, that supports engineering design and operations in a Practice area.
WK6	Knowledge of engineering practice(technology)in the practice areas In the engineering discipline.
WK7	Knowledge of the role of engineering in society and identified issues in engineering practice in the discipline, such as the professional responsibility of an engineer to public safety and sustainable development.
WK8	Engagement with selected knowledge in the current research literature of the discipline, awareness of the power of critical thinking and creative approaches to evaluate emerging issues.
WK9	Ethics, inclusive behavior and conduct. Knowledge of professional ethics, responsibilities, and norms of engineering practice. Awareness of the need for diversity by reason of ethnicity, gender, age, physical ability etc. with mutual understanding and respect, and of inclusive attitudes.

Reference: Self-Assessment Report (SAR) Format Undergraduate Engineering Programs Graduate Attributes and Professional Competencies Version 4.0 (GAPCV4.0)-(August2024) Page 55.

Programme Outcomes (PO)

Programme Outcomes are statements that describe what students are expected to know and be able to do upon graduating from the program. These relate to the skills, knowledge, attitude and behaviour that students acquire through the program. On successful completion of B.E. in Electronics and Telecommunication Engineering-Eletronics and Computer Engineering, graduating students/graduates will be able to:

P01	Engineering knowledge	Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization as specified in WK1 to WK4 respectively to develop to the solution of complex engineering problems.
P02	Problem analysis	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development.(WK1toWK4)
PO3	Design / Development of Solutions	Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required. (WK5)
PO4	Conduct Investigations of Complex Problems	Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modeling, analysis & interpretation of data to provide valid conclusions.(WK8).
PO5	Engineering Tool Usage	Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modeling recognizing their limitations to solve complex Engineering problems.(WK2andWK6)
P06	The Engineer and The World	Analyze and evaluate societal and environmental aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment.(WK1,WK5,andWK7).

PO7	Ethics	Apply ethical principles and commit to professional ethics, human values, diversity and inclusion; adhere to national & International laws.(WK9)
PO8	Individual and Collaborative Team work	Function effectively as an individual, and as a member or leader in diverse/multi-disciplinary teams.
P09	Communication	Communicate effectively and inclusively within the engineering community and society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations considering cultural, language, and learning differences
P010	Project Management and Finance	Apply knowledge and understanding of engineering management principles and economic decision-making and apply these to one's own work, as a member and leader in a team, and to manage projects and in multidisciplinary environments.
P011	Life-Long Learning	Recognize the need for, and have the preparation and ability for i) independent and life-long learning ii) adaptability to new and emerging technologies and iii) critical thinking in the broadest context of technological change. (WK8)

Reference: Self-Assessment Report (SAR) Format Undergraduate Engineering Programs Graduate Attributes and Professional Competencies Version 4.0 (GAPCV4.0)-(August2024) Page56.

General Rules and Guidelines

- Course Outcomes (CO): Course Outcomes are narrower statements that describe what students are expected to know, and are able to do at the end of each course. These relate to the skills, knowledge and behaviour that students acquire in their progress through the course.
- Assessment: Assessment is one or more processes, carried out by the institution, that identify, collect, and prepare data to evaluate the achievement of Program Educational Objectives and Program Outcomes.
- Evaluation: Evaluation is one or more processes, done by the Evaluation Team, for interpreting the data and evidence accumulated through assessment practices.

Evaluation determines the extent to which Program Educational Objectives or Program Outcomes are being achieved, and results in decisions and actions to improve the program

Guidelines for Examination Scheme

Theory Examination: The theory examination shall be conducted in two different parts Comprehensive Continuous Evaluation (CCE) and End-Semester Examination (ESE).

Comprehensive Continuous Evaluation (CCE) of 30marks based on all the Units of course syllabus to be scheduled and conducted at institute level. To design a Comprehensive Continuous Evaluation (CCE) scheme for a theory subject of 30 marks with the specified parameters, the allocation of marks and the structure can be detailed as follows:

Sr.	Parameters	Marks	Coverage of Units
1	Unit Test	12Marks	Units 1 & Unit 2 (6Marks/Unit)
2	Assignments/ Case Study	12Marks	Units 3 & Unit 4 (6Marks/Unit)
3	Seminar Presentation/ Open Book Test/ Quiz	06Marks	Unit 5

Comprehensive Continuous Evaluation (CCE) of 15 marks based on all the Units of course syllabus to be scheduled and conducted at institute level. To design a Comprehensive Continuous Evaluation (CCE) scheme for a theory subject of 15 marks with the specified parameters, the allocation of marks and the structure can be detailed as follows:

Sr.	Parameters	Marks	Coverage of Units
1	Unit Test	10 Marks	Unit 1 & Unit 2 (5 Marks/Unit)
2	Seminar Presentation / Open Book Test/ Assignments / Case Study	05 Marks	Unit 3 & Unit 4

Note: Students can opt for Open Electives offered by different faculty like Arts, Science, Commerce, Management, Humanities or Inter-Disciplinary studies.

Example Open Elective I- Financial Accounting, Digital Finance, Digital Marketing can be opted from Commerce and Management faculty.

And Elective II - Project Management, Business Analytical, Financial Management can be opted from Inter-Disciplinary studies, Commerce and Management faculty respectively.

Format and Implementation of Comprehensive Continuous Evaluation (CCE)Guidelines for

• Unit Test

- Format: Questions designed as per Bloom's Taxonomy guidelines to assess various cognitive levels (Remember, Understand, Apply, Analyze, Evaluate, Create).
- **Implementation**: Schedule the test after completing Units 1 and 2. Ensure the question paper is balanced and covers key concepts and applications.

• Sample Question Distribution

- Remembering (2Marks): Define key terms related to [Topic from Units 1 and 2].
- Understanding (2Marks): Explain the principle of [Concept] in [Context].
- Applying (2Marks): Demonstrate how [Concept]can be used in[Scenario].
- Analyzing (3Marks): Compare & contrast [Two related concepts] from Units 1and 2.
- Evaluating (3Marks): Evaluate the effectiveness of [Theory/Model] in [Situation].
- Assignments / Case Study : Students should submit one assignment or one Case Study Report based on Unit 3 and one assignment or one Case Study Report based on Unit4.
 - **Format:** Problem-solving tasks, theoretical questions, practical exercises, or case studies that require in-depth analysis and application of concepts.
 - Implementation: Distribute the assignments or case study after covering Units 3 and
 4. Provide clear guidelines and a rubric for evaluation.
 - Seminar / Presentation:
 - Format: Oral presentation on a topic from Unit 5, followed by a Q&A session.
 - **Deliverables:** Presentation slides, a summary report in 2 to 3 pages, and performance during the presentation.
 - Implementation: Schedule the seminar presentations towards the end of the course.
 Provide students with ample time to prepare and offer guidance on presentation skills.

• Open Book Test:

- Format: Analytical and application-based questions to assess depth of understanding.
- **Implementation:** Schedule the open book test towards the end of the course, ensuring it covers critical aspects of Unit 5.

• Quiz:

- **Format:** Quizzes can help your students practice existing knowledge while stimulating interest in learning about new topic in that course. You can set your quizzes to be completed individually or in small groups.
- Implementation: Online tools and software can be used create quiz. Each quiz is made up of a variety of question types including multiple choice, missing words, true or false etc

• Example Timeline for conducting CCE:

- Weeks1-4:Cover Units1 and 2
- Week5: Conduct Unit Test (12marks)
- Weeks6-8: Cover Units 3 and 4
- Week9: Distribute and collect Assignments/Case Study(12marks)
- Weeks10-12: Cover Unit 5
- Week13: Conduct Seminar Presentations or Open Book Test or Quiz (6marks)

• Evaluation and Feedback:

- Unit Test: Evaluate promptly and provide constructive feedback on strengths and areas for improvement.
- Assignments / Case Study: Assess the quality of submissions based on the provided rubric. Offer feedback to help students understand their performance.
- Seminar Presentation: Evaluate based on content, delivery, and engagement during the Q&A session. Provide feedback on presentation skills and comprehension of the topic.

Open Book Test: Evaluate based on the depth of analysis and application of concepts.
 Provide feedback on critical thinking and problem-solving skills.

End-Semester Examination (ESE)

End-Semester Examination (ESE) of 70 marks written theory examination based on all the unit of course syllabus scheduled by university. Question papers will be sent by the University through QPD (Question Paper Delivery). University will schedule and conduct ESE at the end of the semester.

• Format and Implementation:

- **Question Paper Design**: Below structure is to be followed to design an End-Semester Examination (ESE) for a theory subject of 70 marks on all 5 units of the syllabus with questions set as per Bloom's Taxonomy guidelines and 14 marks allocated per unit.
- **Balanced Coverage**: Ensure balanced coverage of all units with questions that assess different cognitive levels of Bloom's Taxonomy: Remember, Understand, Apply, Analyze,

Evaluate, and Create. The questions should be structured to cover:

- * Remembering: Basic recall of facts and concepts.
- * Understanding: Explanation of ideas or concepts.
- * Applying: Use of information in new situations.
- * Analyzing: Drawing connections among ideas.
- * Evaluating: Justifying a decision or course of action.
- * Creating: Producing new or original work (if applicable).
- Detailed Scheme for 70 Marks: Unit-Wise Allocation (14 Marks per Unit): Each unit will have a combination of questions designed to assess different cognitive levels. By following this scheme, you can ensure a comprehensive and fair assessment of students' understanding and application of the course material, adhering to Bloom's Taxonomy guidelines for cognitive skills evaluation.
- Detailed Scheme for 35 Marks : Unit wise Allocation (08 Marks for Unit 1, 09 Marks for Unit 2, Unit 3 and Unit 4 each). Each unit will have a combination of questions designed to assess different cognitive levels. By following this scheme, you can ensure a comprehensive and fair assessment of students' understanding and application of the course material, adhering to Bloom's Taxonomy guidelines for cognitive skills evaluation.

NEP 2020 Compliant Curriculum Structure Second Year Engineering (2024 Pattern) Electronics and Computer Engineering

Level 5.0														
			Teaching Scheme (Hrs./week)			Examination Scheme and Marks				•	Credits			
Course Code	Course Type	Course Name	Theory	Tutorial	Practical	CCE*	End-Sem	Term work	Practical	Oral	Theory	Tutorial	Practical	Total
		Seme	este	rI	Ι			•						
PCC-201-ECE	Program Core Course	Analog and Digital Electronic Circuits	3	-	-	30	70	-	-	-	3	-	-	3
PCC-202-ECE	Program Core Course	Data Structure & Algorithms	3	-	-	30	70	-	-	-	3	-		3
PCC-203-ECE	Program Core Course	Discrete Mathematics	3	-	-	30	70	-	-	-	3	-	-	3
PCC-204-ECE	Program Core Course Lab	Analog and Digital Electronic Circuits Lab	-	-	2	-	-	25	50	-	-	-	1	1
PCC-205-ECE	Program Core Course Lab	Data Structure & Algorithms Lab	-	-	2	-	-	25	25	-	-	-	1	1
	Open Elective	Open Elective-I**	2	-	-	15	35	-	-	-	2	-	-	2
MDM-230-ECE	Multidisciplinary Minor	Statistical Data Analysis & Visualization	3	-	-	30	70	-	-	-	3	-	-	3
EEM-240-ECE	Entrepreneurship / Economics/ Management	Engineering Economics & Application	-	1	2	-	-	25	-	-	-	1	1	2
VEC-250-ECE	Value Education	Universal Human Values & Professional ethics	2	-	-	15	35	-	-	-	2	-	-	2
CEP-260-ECE	Community Engagement Project	Community Engagement Project	-	-	4#	-	-	25	-	25	-	-	2	2
Total				01	10	150	350	100	75	25	16	01	05	22
				27 H	rs.		700 Ma	arks				22 C i	redit	S

*Comprehensive Continuous Evaluation

**Open Elective I - Courses like Financial Accounting, Supply chain management, Digital Finance, Digital Marketing and other courses students can be opted from faculty Commerce and Management, Humanities and Inter-disciplinary bucket.

#Note: For Community Engagement, the actual teaching load shall consider 2 Hrs/Week and rest 2 Hrs. society engagement for students

NEP 2020 Compliant Curriculum Structure Second Year Engineering (2024Pattern) Electronics and Computer Engineering

Level 5.0														
			Teaching Scheme (Hrs./week)			Examination Scheme and Marks				•	Credits			
Course Code	Course Type	Course Name	Theory	Tutorial	Practical	CCE*	End-Sem	Termwork	Practical	Oral	Theory	Tutorial	Practical	Total
		Seme	ste	r I	V									
PCC-206-ECE	Program Core Course	Communication Systems	3	-	-	30	70	-	-	-	2	-	-	2
PCC-207-ECE	Program core Course	Signals and Systems	3	-	-	30	70	-	-	-	3	-	-	3
PCC-208-ECE	Program Core Course	Object Oriented Programming	3	-	-	30	70	-	-	-	3	-	-	3
PCC-209-ECE	Program Core Course Lab	Communication Systems Lab	-	-	2	-	-	25	25	-	-	-	1	1
PCC-210-ECE	Program Core Course Lab	Signals & Systems and Object-oriented Programming Lab	-	-	2	-	-	25	-	25	-	-	1	1
	Open Elective	Open Elective-II**	2	-	-	15	35	-	-	-	2	-	-	2
MDM-231-ECE	Multidisciplinary Minor	AI & Machine learning fundamentals	3	-	-	30	70	-	-	-	2	-	-	2
VSE-270-ECE	Vocational and Skill Enhancement Course	Critical thinking & Programming Lab	-	1	2	-	-	25	25	-	-	1	1	2
AEC-281-ECE	Ability Enhancement Course	Modern Indian Languages (Marathi/Hindi)	-	1	2	-	-	25	-	-	-	1	1	2
EEM-241-ECE	Entrepreneurshi p/Economics/ Management	Entrepreneurship skill Development	-	1	2	-	-	25	-	-	-	1	1	2
VEC-251-ECE	Value Education Course	Environment Awareness	2	-	-	15	35	-	-	-	2	-	-	2
Total			16	03	10	150	350	125	50	25	14	03	05	22
				29 Hi	rs.		700	Mark	s			22 C	redi	t

*Comprehensive Continuous Evaluation

**Open Elective II - Courses like Project Management, Business Analytical, Product management Financial Management and other courses students can be opted from faculty Commerce and Management, Humanities and Inter-disciplinary bucket.

Savitribai Phule Pune University, Pune

Maharashtra, India

SE -Department of Electronics and Computer Engineering

2024 Pattern

Semester III

With effect from Academic Year 2025-26

Savitribai Phule Pune University Second Year of Electronics and Computer Engineering (2024Course)									
	PCC-201-ECE: Analog and Digital Electronic Circuits								
Teaching/	scheme	Credits	Examination	Scheme					
Theory: 03Hours/	'Week	03	CCE: 30 Marks						
End-Semester: 70 Marks									
Prerequisite Cou	rses, if any: Basic	Electronics Engineer	ing and Basic Electrical E	Engineering					
Companion Cour	<mark>se, if any:</mark> Labora	tory Practical							
Course Objectives	::								
The objective of	this course is to	provide students w	ith						
 An understand An understand An understand Combinational An understand 	ling of application ading of Combin l and Sequential d ding of use of analo	s of op-amp and ability ational and Sequer igital circuit og and digital circuits	ity to design the amplifier ch ity to design of opamp ba ntial digital ckt and s in real life applications	ased circuits ability to design					
Course Outcomes	:								
After successful co	ompletion of the c	ourse, students will	be able to:						
CO1: Design EMOS	FET amplifier circu	lits							
CO2 : Design operat	tional amplifier-ba	sed circuits for given	applications						
CO3:Design Combi	national and Seque	ntial digital circuits							
CO4 : Design digital	CO4 : Design digital circuits using state machines								
CO5 : Solve real life problems using digital and analog circuits									
		Course Conte	nts						
Unit I Design and Analysis of EMOSFET Amplifier (09 Hours)									

Non ideal characteristics of EMOSFET such as Finite output resistance, body effect, sub-threshold conduction, breakdown effects, temperature effect. Comparison of Common Source (CS), Common Drain (CD) and Common gate (CG) amplifier configurations. Concept of DC load line, two port model of EMOSFET, design and analysis of dc circuit for common source amplifier configuration, numerical. Concept of AC load line, AC equivalent circuit of a common source amplifier configuration, design & analysis of common source amplifier configuration with respect to input and output impedance, gain and frequency response, numerical.

#ExemplarPublic address system, transmitter and receiver of wired (telephone) and wireless
systems (satellite, mobile), computers etc.

Mapping of Course Outcomes for Unit I	apping of ourse Outcomes CO1 r Unit I								
Unit II	EMOSFET and OPAMP Applications	(09 Hours)							
EMOSFET Applica	EMOSFET Applications - CMOS inverter, resistor & diode, feedback amplifiers and its effects, design								
and analysis of vol	ltage series feedback amplifier and numerical. Concept of Bark	chausen criterion for							
oscillator, compar	ison of various oscillator such as Colpitts, Heartily, Wein bridg	e and RC phase shift,							
design and analys	is of RC phase shift oscillator and numerical. OPAMP application	ations circuit design							
and analysis such	$\mathbf n$ as voltage follower, summing and differential amplifier, j	practical integrator,							
comparator, Schm	itt trigger								
#Exemplar	Waveform and frequency generator for application such as rec	eiver and							
	transmitter in TV, mobile, telephone etc, electronic analog con	nputer							
Mapping of Course Outcomes for Unit II									
Unit III	Combinational and Sequential Logic Digital Circuits	(09Hours)							
Combinational log	ic Circuit – Decimal to binary and binary to decimal code cor	overtor, 2-bit adder							
and subtractor, 2-	bit digital comparator, 4:1 and 8:1 multiplexers and releva	nt de-multiplexers.							
Sequential logic	Circuit - 1 Bit memory cell, shift registers, synchronous	and asynchronous							
counters, ring and	twisted ring counters, up and down counters.								
#Exemplar	Digital computer, counting mechanism in industry etc								
Mapping of Course Outcomes for Unit III	C03								
Unit IV	State Machines and its Application	(09 Hours)							
State diagram, st	ate table, state reduction, state assignment, comparison o	of Mealy and Moore							
machines, Mealy	and Moore machine implementation, programmable logic	c devices and their							
architecture - PF	ROM, PAL, PLA, FPGA and CPLD, semiconductor memory	ies types and their							
characteristic para	ameters, performance parameters for a digital logic circuit s	uch as speed, power							
dissipation, figure of merit, fan in, fan out, current, voltage, noise immunity									
#Exemplar	Traffic light control, computer memory etc.								
Mapping of Course Outcomes for Unit IV	CO4								

Unit V	Customer Value	(09 Hours)				
Various types of	ADCs and DACs and their performance parameters, s	study of successive				
approximation ADC and R-2R ladder type of DAC, Square & triangular wave generator, electronic						
analog computer,	analog computer, traffic light controller using finite state machine, bottling plant counting					
mechanism using o	mechanism using counter					
#Exemplar	audio recording, data acquisition systems, and sensor interfa	aces, communication				
	systems such as TV receivers, analog computers, computer/ public traffic light system, industrial counting applications	pen drive memories,				
Mapping of	CO5					
for Unit V	203					
Learning Resource	ces					
Textbooks:						
1. Donald Neaman	, "Electronic Circuits – Analysis and Design" Third edition, Mc	Graw Hill.				
2. Ramakant Gaiky	wad, "Op amps & Linear Integrated Circuits", Pearson Educatio	n.				
3. R.P. Jain, "Mode	rn digital electronics", 3rd edition, 12th reprint Tata McGraw H	Iill Publication,2007.				
4. M. Morris Mano	o, "Digital Logic and Computer Design" 4the Edition, Prentice H	all of India				
Reference Books:						
1. Millman Halkias	s, "Integrated Electronics"					
2. David A. Bell, "E	lectronic Devices and Circuits", 5th Edition, Oxford press					
3. Anand Kumar, "	Fundamentals of Digital Circuits" 1st edition, Prentice Hall of I	ndia, 2001				
4. Digital Principle	4 Digital Principles and Applications (SIE) 8th Edition: Leach Malvino Saha					
1 https://ebooks.lr	ude in computer application /ad /DCAP108 DIGITAL CIPCILITS	AND LOCIC DESIG				
NS ndf	1.https://ebooks.lpude.in/computer_application/ad/DCAP108_DIGITAL_CIRCUITS_AND_LOGIC_DESIG					
2 https://mrco.in/	abooly (Apolog)(20) Integrated 0(20) Circuit 0(20) Design 0(20) and 0	420Ed ndf				
2.incips.//iii/ce.iii/	2.nttps://mrce.in/ebooks/Analog%20Integrated%20Circuit%20Design%202nd%20Ed.pdf					
MOOC / NPTEL/Y	ouTube Links:					
1. NPTEL Course "A	Analog Electronic Circuits" https://nptel.ac.in/courses/108105	158				
2.NPTEL Course on	"Analog Circuits": https://nptel.ac.in/courses/108101094	1				
3.NPTEL Course D	ngital Circuits' by Prof. Santanu Chattopadhyay (111 Kharagpur)	1				
4. INFIEL COUISE D	ngitai Circuits by Froi. Goutain Sana (111 Kharagpur)					
Virtual Labs Link	S					
http://vlabs.iitb.ac.in/vlabs/vlab_bootcamp/bootcamp/electronerds/index.html						
http://vlabs.iitkgp	.ernet.in/be/					
nttps://nptel.ac.in	/courses/108/105/108105113/					
https://nptel.ac.in	/ COULSES / 11 / / 100 / 11 / 100000/ / COULSES / 108 / 105 / 108 105 1 22 /					
https://ipiei.ac.iii	s ac in /eyn /generalized-simulator /					
https://dld-iitb.vla	bs.ac.in/					
[#Exemplar: These are the practical applications based on the contents of the particular unit						
and for informatio	on only. *Comprehensive Continuous Evaluation]	-				

Savitribai Phule Pune University Second Year of Electronics and Computer Engineering (2024Course)

PCC-202-ECE: Data Structures and Algorithms

Teaching/scheme	Credits	Examination Scheme	
Theory: 03Hours/Week	03	CCE: 30 Marks	
		End-Semester: 70 Marks	

Prerequisite Courses, if any: Basic mathematics, foundational knowledge of problem-solving and logic building, programming concepts using C language.

Companion Course, if any: Laboratory Practical

Course Objectives:

- To introduce students to the fundamentals of C++ programming with object-oriented concepts.
- To develop understanding of various searching and sorting algorithms and their performance.
- To understand the concepts and applications of linear and non-linear data structures.
- To implement and analyze data structures such as linked lists, stacks, queues, trees, and graphs using C++.
- To enable students to apply data structures and algorithms to solve real-world problems efficiently.

Course Outcomes:

After successful completion of the course, students will be able to:

CO1: Apply object-oriented programming concepts using C++ for problem solving.

CO2: Analyze searching and sorting algorithms for efficiency.

CO3: Implement various types of linked lists and understand their applications.

CO4: Implement stack and queue data structures and apply them in relevant problems.

CO5: Apply trees and graphs to represent and solve complex problems.

Course Contents					
Unit I	Introduction to C++ (09Hours)				
Basics of Object-	Driented Programming (OOP), C++ syntax and program st	tructure, data types,			
variables, operato	ors, Functions and parameter passing, Classes and object	s, Constructors and			
destructors, Funct	ion overloading and operator overloading.				
Case Study – Complex number arithmetic for scientific and engineering calculations, use of basic C++					
concepts — classe	concepts — classes, objects, constructors, and operator overloading for complex number arithmetic				
(Addition, Subtraction, Multiplication)					
*Exemplar System programming, operating systems, Game development, Embedded System, device drivers, scientific simulations, Artificial Intelligence/ Machine Learning Libraries.					

C01

for Unit I						
Unit II	Searching and Sorting Algorithms	(09 Hours)				
Algorithms: Analy	Algorithms: Analysis of Iterative and Recursive algorithms, Time and space complexity, Asymptotic					
notation- Big-O, Tl	neta and Omega notations.					
Searching methods: Linear, Binary and Fibonacci Search.						
Sorting methods: Bubble, Insertion, Selection, Merge, and Quick Sort.						
Implementation of	Implementation of searching and sorting algorithms using C++.					
Case Study - e-com	nmerce platform, searching products and sorting based on pric	e for a user query.				
Introduction to dy	namic programming, Top-Down Approach (Memoization), E	Bottom-Up Approach				
(Tabulation).						
#Exemplar	Voter search, roll number lookup, product search on e-comme sorting, merit list generation, sort employee records by salary	rce platform, price				
Mapping of Course Outcomes for Unit II	C02					
Unit III	Linked Lists (09 Hours)					
Definition and imp	portance of data structures, Classification of data structures,					
Singly Linked List:	Creation, insertion, deletion, traversal, searching, sorting.					
Doubly Linked Lis	t: Creation, insertion, deletion, traversal,					
Circular Linked Lis	st: Creation, insertion, deletion, traversal,					
Case Study – Polyr	nomial representation, Use of singly linked lists where each no	de stores coefficient				
and exponent of p	olynomial, polynomial addition.					
Case Study - Use	of doubly linked list to represent playlist with next and pre	evious track options.				
Songs can be adde	d/removed dynamically and navigated forward/backward					
#Exemplar	#Exemplar Managing a music playlist, Browser History Navigation, undo/redo operations, Round-Robin Scheduling					
Mapping of Course Outcomes for Unit III	Mapping of Course Outcomes For Unit III					
Unit IV	Stacks and Queues	(09 Hours)				
Stack: Concept, in	nplementation using arrays and linked lists, Stack operation	is: push, pop, peek,				
Stack Applications	S,					
Case Study - parsing logic in compilers and calculators - conversion of infix to postfix expressions						
using stack, followed by evaluation.						
Queue: Implementation using arrays and linked lists, Queue operations- enqueue, dequeue, peek.						
Types of queues: Circular queue, Priority Queue, Queue Applications,						

Case Study - Hospital Emergency Queue System, Use of priority queue or combination of normal queue + sorting mechanism.

CO4 Trees and Graphs binary trees, binary search trees (BST). Threaded binary t Postorder, AVL trees: Rotations and balancing, Grap list), Graph traversals: BFS, DFS, Minimum Spanning tree- lap navigation, Use of weighted graphs and Dijkstra's Shortes	(09 Hours) Tree, Tree traversals: hs: Representations Kruskal's Algorithm,
Trees and Graphs Trees and Graphs binary trees, binary search trees (BST). Threaded binary t Postorder, AVL trees: Rotations and balancing, Grap list), Graph traversals: BFS, DFS, Minimum Spanning tree- Iap navigation, Use of weighted graphs and Dijkstra's Shortes	(09 Hours) rree, Tree traversals: hs: Representations Kruskal's Algorithm,
y, binary trees, binary search trees (BST). Threaded binary t Postorder, AVL trees: Rotations and balancing, Grap list), Graph traversals: BFS, DFS, Minimum Spanning tree- lap navigation, Use of weighted graphs and Dijkstra's Shortes	rree, Tree traversals: hs: Representations Kruskal's Algorithm,
Postorder, AVL trees: Rotations and balancing, Grap list), Graph traversals: BFS, DFS, Minimum Spanning tree- lap navigation, Use of weighted graphs and Dijkstra's Shortes	hs: Representations Kruskal's Algorithm,
list), Graph traversals: BFS, DFS, Minimum Spanning tree- Iap navigation, Use of weighted graphs and Dijkstra's Shortes	Kruskal's Algorithm,
lap navigation, Use of weighted graphs and Dijkstra's Shortes	
lap navigation, Use of weighted graphs and Dijkstra's Shortes	
	t Path Algorithm.
Mapping systems (like Google Maps), social media conn navigation, friend recommendation on social media, or search engines, database indexing	ections, File system rganizational charts,
CO5	
es	
r, "Object-Oriented Programming with C++", McGraw Hill artaj Sahni, "Fundamentals of Data Structures in C++", Orient kar, "Data Structures Through C++", BPB Publications	Blackswan
Object-Oriented Programming in C++", Sams Publishing s, "Data Structures and Algorithm Analysis in C++", Pearson o, "The C++ Programming Language", Addison-Wesley m, Moshe J. Augenstein and Aaron M. Tenenbaum, "Data struc	ctures using C and
Programming C++ (Richard L. Halterman) and Algorithm Analysis in C++, 3rd Edition (Clifford A. Shaffer)	
uTube Links: nd Algorithms, IIT Delhi, <u>https://nptel.ac.in/courses/106102(</u> ata Structures, https://onlinecourses.swayam2.ac.in/cec24_cs	064 s17/preview
	Mapping systems (like Google Maps), social media conn navigation, friend recommendation on social media, or search engines, database indexing CO5 s "Object-Oriented Programming with C++", McGraw Hill rtaj Sahni, "Fundamentals of Data Structures in C++", Orient kar, "Data Structures Through C++", BPB Publications bject-Oriented Programming in C++", Sams Publishing , "Data Structures and Algorithm Analysis in C++", Pearson , "The C++ Programming Language", Addison-Wesley n, Moshe J. Augenstein and Aaron M. Tenenbaum, "Data structure Programming C++ (Richard L. Halterman) nd Algorithm Analysis in C++, 3rd Edition (Clifford A. Shaffer) aTube Links: nd Algorithms, IIT Delhi, <u>https://nptel.ac.in/courses/1061024</u> ita Structures, https://onlinecourses.swayam2.ac.in/cec24_cs

[#Exemplar: These are the practical applications based on the contents of the particular unit and for information only. *Comprehensive Continuous Evaluation]

Savitribai Phule Pune University Second Year of Electronics and Computer Engineering (2024 Course)					
	PCC-203-ECE : Discrete Mathematics				
Teaching/s	scheme Credits Examination Scheme				
Theory: 03Hours/	Week	03	CCE: 30 Marks		
			End-Semester: 70 Mar	KS	
Course Prerequis	<mark>ites</mark> : Fundamenta	ll of Sets, Permutatio	ns & Combinations and M	latrix algebra.	
Course Objectives To familiarize the	: e students with	concepts and tech	niques of discrete mat	hematics: sets, logic,	
relations, function	ns, combinatoric	s, graphs, trees, a	nd algebraic structure	s enabling them to	
understand and ap	oply these theories	s and principles rele	vant to computer scienc	e.	
Course Outcomes: After successful co CO1: Formulate, in combinatori CO2: Analyze diffe recurrence r CO3: Model and d theory and d CO4: Apply the co theory	ompletion of the onterpret, and solve al techniques and erent types of relevise algorithmic lata structures.	course, students will e real-world problem formal proof metho lations and its closu e algorithmic solution c solution using gray	be able to: as by applying key conce ds relevant to computer ares, construct & use fu a to problems. phs & trees and solve p as Group, Ring and Fiel	pts from sets, logic, science. Inctions and solve problems in network	
Course Contents					
Unit I	T	Sets and Logi		(09 Hours)	
Sets: Introduction, Types of Sets, Operation and Laws, Principle of Inclusion and Exclusion, Multisets					
Logic: Proposition	s, Operations and	d Connectives, Truth	i table, Logical Equivale	ence, Normal Forms,	
Logical implication, Rules of Inference, Validity, Compactness and Resolution, Predicative and					
quantifiers, Metho	ds of Proofs and F	Principle of Mathema	tical Induction.		
Combinatorics: Counting Principle, Permutation and Combination, Pigonhole Principle, Binomial					
coefficients and Identities.					
Unit II		Relations and Fun	ctions	(09 Hours)	

Relations: Definitions, Types of relations, Properties, n-ary relations, Closure of relations, Equivalence relation, Equivalence classes, Partitions, Partial ordering relations, Hasse Diagram, Lattices, Chain and Antichains, Transitive closure and Warshall's algorithm.

Functions: Definitions, Types of functions, Composition of functions, Invertible functions, Generating functions, Recurrence relations, Solution of linear recurrence relation with Constant Coefficients

Unit III	Graph and Applications	(09 Hours)				
Terminology and	Terminology and types of graphs, Hand shaking lemma, Matrix representation of graphs, Adjacency					
and Incidence ma	and Incidence matrix, Isomorphism, Connectivity, Eulerian and Hamiltonian graphs, Shortest path,					
Travelling salesma	an problem, Dijkstra's algorithm, Planar graph and Euler formu	ula, Graph colouring,				
Chromatic numbe	r, Dual of Graph, Clique number.					
Unit IV	Trees	(09 Hours)				
Introduction, Prop	perties, Rootedtree, Binary Search tree, Treetraversal, Path len	gth, Weighted tree,				
Prefixcode, Huffn	nancoding, Spanning tree, Minimal spanning tree, Krusk	al algorithm, prims				
algorithm, Cut set,	The Max flow- Min cut theorem (Transport Network).					
Unit V	Algebraic Structure and Coding Theory	(09 Hours)				
Introduction to Al	gebraic structures, Semi group, Monoid, Group, Abelian group,	Cyclic group,				
Congruence relatio	n, Homomorphism, Normal subgroup, Ring, Field, Galois Theory,	, Coding Theory.				
Learning Resour	ces					
Textbooks:						
1. Kenneth H. Rosen, "Discrete Mathematics and its applications", Tata McGraw Hill.						
2. C. L. Liu. "Elements of Discrete Mathematics", Tata McGraw Hill.						
Reference Books:						
1. Bernard Kolman, Robert C. Busby, Sharon Ross. "Discrete Mathematical structures", Prentice Hall						
2. Ralph P. Gri	2. Ralph P. Grimaldi. "Discrete and Combinatorial Mathematics" Pearson Addison Wesley.					
3. Sriram P and Steven S," Computational Discrete Mathematics" Cambridge University Press.						
4. Narsingh Deo, "Graph Theory with Applications to Engineering and Computer Science",						
Prentice Hall.						
5. Edgar G. Go	odaire, Michael M Parmenter," Discrete Mathematics with C	raph Theory", 3 rd				
6. A R Vasisht	Edition, Pearson Education 6 A B Vasishtha "Abstract Algebra" Krishna Prakashan					

Savitribai Phule Pune University Second Year of Electronics and Computer Engineering (2024 Course)					
PCC-204-ECE: Analog and Digital Electronic Circuits Lab					
Teaching/scheme	Credits	Examination Scheme			
Practical: 02Hours/Week	01	Term work: 25 Marks			
		Practical: 50 Marks			
Companion Course, if any: Analog	g and Digital Electron	nic Circuits			
Course Objectives:					
The objective of this course is to) provide students w	vith			
• An understanding of EMOSFET	amplifier and ability	to design the amplifier circuit			
• An understanding of applicatio	ns of op-amp and abi	lity to design of opamp based circuits			
• An understanding of Combin	national and Seque	ntial digital ckt and ability to design			
Combinational and Sequential of	digital circuit				
• An understanding of use of ana	log and digital circuit	s in real life applications			
Course Outcomes:	a anna atudanta -				
After successful completion of th	e course, students v	vill be able to:			
Europe Eu	In source (c.s.) amp	inter and oscillator using EMOSPET. (Expt1,			
Expl2, Explo	ahmitt tuiggan waraf				
coz: Design applications such as 5	atE Event()	orm generator, oscillator using operational			
ampimers. (Expt3, Expt4, Exp	JIS,EXPLOJ				
CO3: Design digital circuits such as	adder, subtractor, m	10. E-111. E-12)			
in various applications. (Expl	.7, Expt8, Expt9, Expt	10, Expt11, Exp12)			
CO4: Solve the complex engineeri	ing problem using a	nalog and digital circuits. (Expt13, Expt14,			
Expt15)					
Guidelines for Student's Lab Jour	nal				
The students Lab Journal should co	ntain following relate	ed to every experiment –			
1. Title of the experiment					
2. Mapped Objective and Mappe	2. Mapped Objective and Mapped Outcome				
3. Hardware and/or software to	ools used with import	cant specifications			
4. Active and Passive Compone	ents used with their	important datasheet specifications (Attach			
datasheet)		- · · · ·			
5. Brief theory related to the ex	periment.				
6. Connection diagram /circuit diagram					

- 7. Design of the circuit (if required)
- 8. Observation table
- 9. Sample calculations (if required)
- 10. Graph (if any)
- 11. Result table
- 12. Conclusions (that gives directions about applications with justifications, any impactful trends and its importance, any innovations noted that leads to societal/economical/industrial/environmental change impacting sustainability aspect etc. etc.)

Guidelines for Laboratory/ TW Assessment

- 1. Continuous assessment of laboratory work is to be done based on overall performance and Laboratory performance of student.
- 2. Each Laboratory assignment assessment should assign grade/marks based on parameters with appropriate weightage.
- 3. Suggested parameters for overall term work assessment and weightage include punctuality in attendance (theory as well as in practical) (40%), continuous and timely assessment (10%), performance experimentation (correctness, understanding, originality), assignments, midterm/class tests etc.)(30%), and documentation (20%).

Suggested List of Laboratory Experiments (Any eight)

Group A (Any 4)

- 1 Design, build and test dc circuit for single stage CS amplifier & verify dc operating point. (CO1)
- 2 Design, build & test single stage CS amplifier, plot frequency response. Calculate Av, Ri, Ro & bandwidth.(CO1)
- 3 Design, build & test integrator using Op-amp for given frequency fa and plot frequency response. (CO2)
- 4 Design, build & test Schmitt trigger using Op-Amp. (CO2)
- 5 Design, build & test Square and triangular waveform generator using Op-Amp. (CO2)

6 Design, build and test any oscillator for given frequency using operational amplifier or EMOSFET. (CO2)

Group B (Any 4)

- 6 Design and implement 8:1 mux using 4:1 mux and verify its truth table. Also design & implement given 4 variable functions using IC74LS153 and verify its truth table. (C03)
- 7 Design and implement full adder and subtractor function using IC-74LS138. (CO3)
- 8 Design & implement 3-bit gray to binary/binary to gray code converter using IC-74LS138. (CO3)
- 9 Design and implement 4-bit binary adder and subtractor using IC-74LS83. (CO3)
- 10 Design and implement MOD-N and MOD-NN using IC-74LS90 and draw timing diagram. (CO3)
- 11 Design and implement MOD-N and MOD-NN using IC-74LS93 and draw timing diagram. (CO3)

Group C (Any 1) (Project Based Learning)

- 12 Design a traffic light controller for a square using digital and analog circuit. (CO2, CO3, CO5)
- Design a bottling plant mechanism to count no of bottles using digital and analog circuit. (CO2, CO3, CO5)
- 14 Design any real-life problem using digital and analog circuit. (C02, C03, C05)

Note: Out of 4 experiments from group A and B each, 2must be realized using hardware and 2using any simulation software. Group C is a mini project for project-based learning to be realized using theoretical design work on paper and then using simulation and hardware, in a group of maximum 5 students. The detailed experimental work should be submitted as a part of write up and considered for term work assessment.

Savitribai Phule Pune University Second Year of Electronics and Computer Engineering (2024 Course)						
PCC-205	PCC-205-ECE: Data Structure & Algorithms Lab					
Teaching/scheme	Teaching/scheme Credits Examination Scheme					
Practical: 02Hours/Week	01	Term work: 25 Marks				
		Practical: 25 Marks				
Companion Course, if any: Data St	ructure & Algorithi	ns				
 Course Objectives: To introduce basic C++ programmed and for down 	ramming concepts s	uch as classes, objects, constructors, and				
• To develop problem-solving si using C++.	tills by implementing	g standard searching and sorting algorithms				
To provide hands-on experien	ce with dynamic dat	a structures like linked lists, stacks, queues,				
and trees to reinforce their the	eoretical understand	ing.				
• To enable students to implem	ent and traverse gra	ohs using adjacency lists and apply depth-				
first and breadth-first search a	algorithms					
Course Outcomes: After successful completion of the o CO1: Implement object-oriented pr number arithmetic.	course, students will ogramming features	be able to: in C++ to solve problems such as complex				
CO2: Implement searching and sor	ting algorithms and e	evaluate their performance for given data.				
CO3: Apply appropriate data struct solve basic computational pro	tures like linked lists blems.	s, stacks, queues, and binary search trees to				
CO4: Develop graph-based solutions and perform BFS and DFS traversals using adjacency list representation.						
Guidelines for Student's Lab Journ	nal					
The students Lab Journal should co	ntain following relate	ed to every experiment –				
1. Title of the experiment						
2. Mapped Objective and mapped	d outcome					
3. Software and Tools used.						
4. Brief theory, algorithm/flowch	nart.					
5. Sample input/output - test cas	5. Sample input/output - test cases with example inputs and corresponding outputs.					
6. Conclusions.						

Guidelines for Laboratory/ TW Assessment

- 1. Continuous assessment of laboratory work is to be done based on overall performance.
- 2. Each lab assignment/experiment assessment will assign grade/marks based on parameters with appropriate weightage.
- 3. Suggested parameters for overall assessment as well as each laboratory assignment include:
 - ✓ Timely completion.
 - ✓ Performance.
 - ✓ Punctuality and neatness.

Suggested List of Laboratory Experiments

Group A (Any 8)

- 1. Program to demonstrate basic C++ concepts classes, objects, constructors, and operator overloading for complex number arithmetic (Addition, Subtraction, Multiplication)
- 2. Implement a) Linear Search and b) Binary Search algorithms using C++
- 3. Implement a) Bubble Sort, b) Insertion or Selection Sort algorithms using C++
- 4. Implement Singly Linked List with insertion, deletion, and display operations.
- 5. Implement Doubly Linked List with insertion, deletion, and display operations.
- 6. Implement Stack using a) arrays and b) linked list.
- 7. Evaluate postfix expression (input will be postfix expression)
- 8. Implement Queue using a) arrays and b) linked list.
- 9. Implement Binary Search Tree with insertion, deletion, and traversal (inorder, preorder, postorder).
- 10. Implement Graph using adjacency list. Perform BFS and DFS traversals.

Group B (Course Project)

Develop an application that solves a real-world problem or simulates a practical system

using appropriate data structures, implemented in C++. General Guidelines-

Team Size:

Individual or group of up to 3 students.

• Selection of Topic:

Students must choose a problem where the use of one or more data structures is essential. Project must be **interactive** (menu-based or GUI-based).

Some suggested domains- Railway reservation system, Hospital Queue System, College Result Processing, Phone Book.

• Mandatory Technical Requirements:

Use of **at least one data structure** (e.g., Linked List, Stack, Queue, Tree, Graph). Implement **searching and/or sorting algorithms**. Include **basic object-oriented concepts** like classes, constructors, and operator

overloading.

• Documentation Must Include:

Project Title and Abstract

Problem Statement

Data Structures Used and Justification

System Design / Flowchart / Class Diagram

Sample Input /Output

Code (with comments)

Conclusion and Future Scope

S	econd Year of Ele	Savitribai Phule Pune ctronics and Compu	e University ter Engineering (2024Co	urse)			
MDM-230-ECE: Statistical Data Analysis & Visualization							
Teaching/s	cheme Credits Examination Scheme						
Theory: 03 Hour	rs/Week	03	CCE: 30 Marks				
	End Sem: 70 Marks						
Prerequisite Cou	rses, if any: Fund	damental Knowledge	e of Excel, probability and	d statistics, basics of			
programming lang	guage, algorithms	and data structures	are preferred.				
Course Objective To impart the fu	s : indamental knowle	edge of Statistical Da	ata Analysis and Visualiz	ation, familiarize with			
the working of	Data Analyst,	the aim is also to	familiarize students with	th different statistical			
computational te	ests, applications an	nd visualization tools.					
Course Outcomes After successful o	s: completion of th	e course, students v	will be able to:				
CO1: Explain the f	oundational conc	epts and scope of sta	tistical data analysis and	l visualization.			
CO2: Illustrate the	e project life cycle	and functions of pha	ases in Data Analysis				
CO3: Analyze larg	e data sets and ha	ndle missing or inco	nsistent values in datase	ets.			
CO4: Compute Sta	tistical analysis u	sing Python/R.					
CO5: Discover and	l visualize dataset	s using Tableau/Pov	ver BI.				
		Course Cont	ents				
Unit I	Introdu	uction to Statistical	Data Analysis	(09 Hours)			
	111104		Dutu IIIui yolo	(0) 110410)			
Data Analytics Life	ecycle overview, l	Key Roles for a Succe	essful Analytics, Backgro	ound and Overview of			
Data Analytics Lif	Data Analytics Lifecycle Project. Understanding the data. types of data (categorical and numerical).						
Population vs. Sample, Data collection methods.							
Descriptive Statis	Descriptive Statistics: Measures of central tendency: mean. median. mode. Measures of Dispersion:						
Range, Variance, Standard Deviation, Quartiles and Interquartile range (IQR). Using Pandas and							
NumPy for basic statistical summaries							
#Exemplar	Python for stati	stical Analysis, Quiz					
Mapping of Course Outcomes CO1 For Unit I							

Unit II	Probability Theory and Distributions	(09 Hours)				
Probability Basics: Random variables, Events and Probability rules (addition, multiplication).						
Conditional Proba	Conditional Probability: Baye's Theorem					
Probability Distri	Probability Distributions: Binomial, Normal, Poisson and Exponential Distributions, skewed.					
Simulating probab	ility distributions in Python					
#Exemplar	ython Libraries: NumPy, Pandas, Matplotlib, Seaborn, SciPy, stats					
	models, Tic-Tac-Toe game logic using Probability Theory and					
	Distributions					
Mapping of Course Outcomes	C02					
for Unit II						
Unit III	Inferential Statistics	(09 Hours)				
Sampling methods	:: Simple, random, stratified, cluster, Central Limit Theorem					
Hypothesis Testin	ng: Null and Alternative Hypotheses, Type I and Type II	Errors, P-Values,				
Confidence Interv	als,Z-tests, T-tests, Chi-square,Analysis of Variance (ANOVA).					
#Exemplar	Numerical on inferential statistics, Performing hypothesis te	sts on real datasets				
Mapping of Course Outcomes for Unit III	CO3					
Unit IV	Exploratory Data Analysis (EDA)	(09 Hours)				
Identifying pattern	ns and outliers, handling missing data, Using descriptive statist	tics in EDA				
Heat maps, pair pl	ots, correlation matrix, Scatter plots with regression lines					
Visualizing distrib	utions with KDE plots, Correlation analysis: Pearson and Spear	rman,				
#Exemplar Plot maps, Regression modeling using scikit-learn, Scatter plots and regression lines						
	lines	plots and regression				
Mapping of Course Outcomes for Unit IV	lines	plots and regression				
Mapping of Course Outcomes for Unit IV Unit V	CO4 Recent Trends and Case Studies	plots and regression (09 Hours)				
Mapping of Course Outcomes for Unit IV Unit V Time series analy	CO4 Recent Trends and Case Studies sis: trends, seasonality, autocorrelation, Clustering and segm	plots and regression (09 Hours) nentation (K-Means),				
Mapping of Course Outcomes for Unit IV Unit V Time series analy Dimensionality re	CO4 Recent Trends and Case Studies sis: trends, seasonality, autocorrelation, Clustering and segn duction (PCA), Data storytelling and reporting, Ethics in da	plots and regression (09 Hours) nentation (K-Means), ata visualization and				
Mapping of Course Outcomes for Unit IV Unit V Time series analy Dimensionality re statistical reportir	CO4 Recent Trends and Case Studies sis: trends, seasonality, autocorrelation, Clustering and segn duction (PCA), Data storytelling and reporting, Ethics in da ig, End-to-end project: from raw dataset to insights and dashb	plots and regression (09 Hours) nentation (K-Means), ata visualization and oard.				
Mapping of Course Outcomes for Unit IV Unit V Time series analy Dimensionality re statistical reportir Case studies (e.g., 0	CO4 Recent Trends and Case Studies sis: trends, seasonality, autocorrelation, Clustering and segn duction (PCA), Data storytelling and reporting, Ethics in da ng, End-to-end project: from raw dataset to insights and dashb COVID-19 trends, marketing analytics).	(09 Hours) nentation (K-Means), ata visualization and oard.				
Mapping of Course Outcomes for Unit IV Unit V Time series analy Dimensionality re statistical reportin Case studies (e.g., 0 #Exemplar	CO4 Recent Trends and Case Studies sis: trends, seasonality, autocorrelation, Clustering and segn duction (PCA), Data storytelling and reporting, Ethics in da ng, End-to-end project: from raw dataset to insights and dashb COVID-19 trends, marketing analytics). Statistical Data Analysis and Visualization project	plots and regression (09 Hours) nentation (K-Means), ata visualization and oard.				

C05

Learning Resources

Textbooks:

1. Data Science and Big Data Analytics: Discovering, Analyzing, Visualizing and Presenting Data, EMC Education services Wiley Publication

2. Practical Statistics for Data Scientists 50+ Essential Concepts Using R and Python, O'Reilly Publications 2nd Edition

3. Practical Text Mining and statistical Analysis for non-structured text data applications,1st edition, Grey Miner, Thomas Hill.

Reference Books:

- 1. Data Analytics using R, Bharati Motwani, Wiley Publications
- 2. Dunn, P. F., & Davis, M. P. (2017). Measurement and data analysis for engineering and science. CRC press.
- 3. Python for Data Analysis: 3rd Edition, Wes McKinney, Publisher(s): O'Reilly Media, Inc.

MOOC/NPTEL Courses:

1. https://swayam.gov.in/nd1_noc20_cs46/

[#Exemplar: These are the practical applications based on the contents of the particular unit and for information only. *Comprehensive Continuous Evaluation]

Savitribai Phule Pune University Second Year of Electronics and Computer Engineering (2024Course)					
EEM-240-ECE: Engineering Economics & Applications					
Teaching/	scheme	Credits	Examination	Scheme	
Tutorial:01Hour/Week 01 Term Work:25 Marks					
Practical:02Hour	Practical:02Hours/Week 01				
Course Objective • To understane	<mark>s</mark> : d key economic p	rinciples and the tim	e value of money for eng	ineering decisions.	
• To learn dema	and forecasting, c	ost analysis, and dec	ision-making under unce	ertainty	
• To explore ma	arket structures, p	oricing strategies, an	d value engineering in el	ectronics.	
• To develop in	vestment evaluat	ion skills and grasp 1	nacroeconomic impacts	on tech-businesses.	
Course Outcomes After successful o	<mark>s</mark> : completion of th	e course, students	will be able to:		
CO1: Apply econo	mic principles and	d time value of mone	ey concepts using practic	al tools.	
CO2: Perform brea	ak-even and CVP	analyses to support	engineering decisions.		
CO3 : Analyze mar	ket competition a	nd pricing strategies	s with case studies.		
CO4: Evaluate pro	ojects with capital	budgeting and inter	pret macroeconomic effe	ects on electronics.	
		Course Conte	ents		
Unit I	Theories a	nd Laws of Econon	nics for Engineers	(04 Hours)	
Introduction to En Economic system wealth,andequilib	ngineering Econo ns and firm o riumprice,Timeva	mics, Basic economi bjectives, Laws o alueofmoney(Preser	c concepts: Utility, scarc f demand and supply tValue,FutureValue,annu	ity, opportunity cost, y, elasticity, Value, uity (basics)	
Unit II	Principles o	of Engineering Econ	omics and Costing	(04 Hours)	
Demand forecasting techniques and applications in tech markets, Cost behavior: Fixed, variable, marginal, total, Cost-volume-profit and break-even analysis, Decision-making under un-certainty (intro to decision theory), Economies of scale in electronics manufacturing					
Unit III	Applications	s of Economics in E	ectronics Industry	(04 Hours)	
Market structures	s: Perfect compet	ition, monopoly, m	onopolistic competition,	Pricing strategies	
and product life cycle costing, Game theory basics and strategic behavior, Make-or-buy decisions and					
Value Engineering in electronics, Kaizen and productivity in technical operations					
Unit IV	Investment	Analysis and Applic	ed Macroeconomics	(04 Hours)	
Capital budgeting: Payback period, Net Present Value (NPV), Internal Rate of Return (IRR), Profitability Index, Equipment replacement decisions, Overview of macroeconomic indicators: Gross Domestic Product (GDP), Consumer Price Index (CPI), Business cycles, inflation, interest rates, and impact, CSR, sustainability, and policy impacts on tech firms, Exposure to areas like IPR, R&D, and innovation economics					

_				
Extra two practical's shall be based on the syllabus of all units apart from the following list:				
	Any Six practical's can be carried out, below list:			
1.	Case examples from electronics industries (e.g.,Telecom spectrum pricing, consumer electronics)			
2.	Excel-based Time Value of Money (TVM)computations			
3.	Forecast demand for a telecom device (Routing and Switching Networking communication devices /AI enabled Smart IOT devices and sensor)			
4.	Performbreak-evenand Cost-Volume-Profit(CVP)analysis using spreadsheet			
5.	Case study: Comparison of Pricing strategy between two service providers such as of Jio, Airtel, BSNL etc.			
6.	To carryout mini project based on market and pricing strategy analysis of a smart device or IoT product			
7.	Evaluate a small-scale engineering project(e.g.,set up of lab or unit based)			
8.	Group discussion: Impact of government policies and budget on electronics and telecom sector			
9.				
Learning Resources				
Textbooks:				

1. A Textbook of Engineering Economics: The Principles and Applications, D. R. Kiran, BS Publications, 2021.

2. Engineering Economics Test & Cases, DND wivedi, Dr H L Bhatia & Dr S N Maheshwari, Vikas Publishing House Pvt. Ltd.

Reference Books:

- 1. Principles of Engineering Economics with Applications, Zahid A. Khan, Arshad N. Siddiquee, Brajesh Kumar, Mustufa H. Abidi 2nd edition, Cambridge University.
- 2. Practical Applications of Engineering Economics, Kal R. Sharma, Momentum Press. Engineering Economics, R. Panneerselvam, PHI Learning Private Ltd.

Savitribai Phule Pune University Second Year of Electronics and Computer Engineering (2024Course)					
VEC-250-ECE: Universal Human Values and Professional Ethics					
Teaching/scheme	Credits	Examination Scheme			
Theory: 02Hours/Week	02	CCE:15Marks			
		End-SemesterExam:35Marks			

Course Objectives:

- To help the students develop a holistic, humane world-vision, and appreciate the essential complementarities between values and skills to ensure mutual happiness and prosperity
- To elaborate on 'Self-exploration' as the process for Value Education
- To facilitate the understanding of harmony at various levels starting from self and going towards family and society.
- To elaborate on the salient aspects of harmony in nature and the entire existence
- To explain how the Right understanding forms the basis of Universal human values and definitiveness of Ethical human conduct.
- To provide the vision for a holistic way of living and facilitate transition from chaotic life to an orderly life.

Course Outcomes:

After successful completion of the course, students will be able to:

- **CO1:** Recognize the concept of self-exploration as the process of value education and see they have the potential to explore on their own right.
- **CO2:** Explore the human being as the coexistence of self and body to see their real needs/basic aspirations clearly.
- **CO3:** Explain relationship between oneself and the other self as the essential part of relationship and harmony in the family.
- **CO4:** Interpret the interconnectedness, harmony and mutual fulfillment in-herent in the nature and the entire existence.
- **CO5:** Draw ethical conclusions in the light of Right understanding facilitating the development of holistic technologies production systems and management models.

Course Contents					
Unit I	Introduction to Value Education	(07 Hours)			
(i) Understanding Value Education					
(ii) Self-exploration as the Process for Value Education					
(iii) Continuous Happiness and Prosperity-the Basic Human Aspirations and their Fulfillment					
(iv) Right Understanding, Relationship and Physical Facility					
(v) Happiness an	d Prosperity-Current Scenario				
---	--	-------------------------------------	--	--	
(vi) Method to Fulfil the Basic Human Aspirations					
Unit II	Harmony in the Human Being	(07 Hours)			
(i) Understandin	g Human being as the Co-existence of the Self and the Body				
(ii) Distinguishin	g between the Needs of the Self and the Body				
(iii) The Body as	an Instrument of the Self				
(iv) Understandi	ng Harmony in the Self				
(v) Harmony of t	he Self with the Body				
(vi) Programme	to Ensure self-regulation and Health				
Unit III	Harmony in the Family and Society	(08 Hours)			
 (i) Harmony in the Value in Relations (ii) 'Respect'- as (iii) Values in Hu (iv) Understandia (v) Vision for the 	ship the Right Evaluation man-to-Human Relationship ng Harmony in the Society e Universal Human Order	unuational			
Unit IV	Harmony in the Nature (Existence)	(08 Hours)			
(i) Understand	ing Harmony in the Nature				
(ii) Interconnec	tedness, self-regulation and Mutual Fulfilment among the Fou	r Orders of Nature			
(iii) Realizing Ex	istence as Co-existence at All Levels				
(iv) The Holistic	Perception of Harmony in Existence				
(v) Professiona	(v) Professional Ethics in the light of Right Understanding				
(vi) Strategies for Transition towards Value-based Life and Profession					
Learning Resour	ces				
Textbooks:					
1. A Foundatio Bagaria, 3rc Copy), 978-	on Course in Human Values and Professional Ethics, RR Gau l revised edition, UHV Publications, 2023, ISBN: 978-81-9577 81- 957703-6-6 (e-book)	r, R Asthana, GP 03-7-3 (Printed			

 Teachers' Manual for A Foundation Course in Human Values and Professional Ethics, R R Gaur, R Asthana, G P Bagaria, 3rd revised edition, UHV Publications, 2023, ISBN: 978-81-957703-5-9 (Printed Copy), 978-81-957703-0-4 (e-Book)

Reference Books:

- 1. P.L.Dhar, R. R. Gaur, 1990, Science and Humanism, Common wealth Publishers.
- 2. A. Nagaraj, 1999, Jeevan Vidya: Ek Parichaya, Jeevan Vidya Prakashan, Amarkantak
- 3. B.P.Banerjee, 2005, Foundations of Ethics and Management, Excel Books.
- 4. A.N.Tripathy, 2003, Human Values, New Age International Publishers.
- 5. E.G.Seebauer & Robert L.Berry, 2000, Fundamentals of Ethics for Scientists & Engineers, Oxford University Press
- 6. B.L.Bajpai, 2004, Indian Ethos and Modern Management, New Royal Book Co., Lucknow. Reprinted 2008.
- 7. M. Govindrajran, S Natrajan & V.S. Senthil Kumar, Engineering Ethics and Human Values, Eastern Economy Edition, Prentice Hall of India Ltd.
- 8. M.K.Gandhi, "TheStoryofmyExperimentswithTruth", DiscoveryPublisher

MOOC/NPTEL Courses:

- Swayam Course on "Understanding Human Being Nature and Existence Comprehensively " by Dr. Kumar Sambhav, Director, UP Institute of Design (UPID), Noida.https://onlinecourses.swayam2.ac
- 2. NPTEL Course on "Exploring Human Values: Visions of Happiness and Perfect Society" by Prof.

A. K.Sharma, Department of Humanities and Social Sciences, IIT Kanpur.

https://nptel.ac.in/courses/

E-Resources:-

- 1. https://fdp-si.aicte-india.org/download.php#1/
- 2. https://madhyasth-darshan.info/postulations/knowledge/knowledge-of-humane-conduct/
- 3. https://www.youtube.com/channel/UCQxWr5QB_eZUnwxSwxXEkQw

Savitribai Phule Pune University Second Year of Electronics and Computer Engineering (2024Course)						
CEP-260	-ECE: Community E	ngagement Project				
Teaching/schemeCreditsExamination Scheme						
Practical:04Hours/Week02TermWork:25Marks						
	Oral/Presentation: 25Marks					
Prerequisite : Students should have prior knowledge of						

- 1. Basic understanding of social and ethical responsibilities
- 2. Teamwork and communication skills acquired in prior course work or group activities
- 3. Familiarity with problem-solving methodologies and project planning
- 4. Conversation in local language

Companion Course:

- CEP is an experiential learning approach that combines education, learning, community development, and meaningful community service.
- Project involves students in community development and service activities and applies the experience to personal and academic development.
- The targeted contribution of college students to the village/local development will benefit the community.
- The college has an opportunity to help students become more socially conscious and responsible while simultaneously becoming a socially conscious organization.

Course Objectives:

- Establish a mutually beneficial relationship between the college and the community
- Opportunities to engage with their local community, fostering empathy, teamwork, and problem- solving skills while contributing positively to their surroundings.
- An understanding of the challenges faced by the local community and the role of engineering in addressing those challenges.
- The ability to apply technical knowledge and skills to design solutions or interventions that create a positive impact on the community.
- The skills to evaluate and critically analyze the outcomes of their engagement activities, deriving actionable insights for sustainable impact

Course Outcomes: After successful completion of the course, students will be able to:

CO1: Identify and Analyze local community needs and challenges by engaging with stakeholders and evaluating real-world problems.

CO2: Design and Implement practical, creative, and context-specific solutions using engineering principles to address community issues.

CO3 : Reflect and Evaluate the effectiveness of their interventions and articulate lessons learned through reports and presentations.

Course Contents Implementation

- A group of 3 to 4 students could be assigned for a particular habitation or village or municipal ward, as far as possible, in the near vicinity of their place of stay/college premise.
- Each group/practical batch is allotted to a faculty member of the department as a mentor.
- A division of 60 students can have 3 batches of minimum 20 students. Practical load of 4 hours to be allocated to each batch.
- The group of students will be associated with a government official / village authorities / NGOs etc. concerned, allotted by the district administration, during the duration of the project.
- The Community Engagement Project should be different from the regular programs of NSS/NCC/Gr Club/Hobby Clubs, Special Interests Groups etc
- An activity book has to be maintained by each of the students to record the activities undertaken/involved and will be countersigned by the concerned mentor / HoD.
- Project report shall be submitted by each student / group of students.
- An internal evaluation shall also be conducted by a committee constituted by the HoD. Evaluation to be done based on the active participation of the student and marks could be awarded by the mentor / HoD.
- Students groups can conduct an awareness program on Health and Hygiene or in Organic Farming or in Fisheries or in advocating prohibition of liquor or about renewable energy, e-waste management or any other activity in an area of their studies and as per his / her aptitude.
- Oral Examination shall consist of presentation and demonstration of the project work carried out by the project groups.

Suggestive list of topics under Community Engagement Project

The below lists are not exhaustive and open for HoD's or mentors to add, delete or modify. It is expected that the focus should be on specific local issues in their nearby areas.

The students are expected to carry out these projects with involvement, commitment, responsibility and accountability. The mentors of a student/group of students shall

1.Use/miss-use of cell phones

2. Career orientation of youth

3. Water facilities and drinking water availability

4. Health and hygiene of the school going students, homemakers and old personals

5. Health intervention and awareness programs

6. Horticulture

7.Herbal and Nutrition

8. Traditional and Modern healthcare methods

9.Food habits

10.Air/Sound/Water pollution

11. Plantation and Soil protection

12. Renewable energy and Solar Systems

13. Yoga awareness and practice

14. Healthcare awareness programs and their impact

15. Organic farming, IoT implementations

16. Food adulteration

17. Incidence of Diabetes and other chronic diseases

18. Blood groups and blood levels

19.Chemicals in daily life

20.Music and dance

21.Women education and empowerment

Project Scope

- Conduct workshops or awareness drives on topics like digital literacy, environmental sustainability, mental health, or career planning for local stakeholders.
- Develop a simple prototype or solution that addresses a real-world problem (e.g., a watersaving device, simple mobile apps, or tools for community use).
- Organize clean-up drives, tree plantations, recycling campaigns, or energy conservation initiatives.

• Promote health through awareness programs on hygiene, nutrition, and exercise.

• Teach basic computer or technical skills to students, staff, or the community

Proposal Submission

CEP Group should Submit a two-page project proposal, preferably prior to the term commencement outlining the following:-

- Title of the project
- Aim, Objective and expected outcome
- Plan of execution (timeline and activities).
- Place of the CEP and involvement of any local authority, NGP
- Required resources (if any).
- Get approval from the designated faculty mentor.

Learning Resources

Textbooks:

- 1. Waterman, A. Service-Learning : A Guide to Planning, Implementing, and Assessing Student Projects. Routledge, 1997.
- 2. Beckman, M., and Long, J.F. Community-Based Research : Teaching for Community Impact. Stylus Publishing, 2016.
- 3. Design Thinking for Social Innovation. IDEO Press, 2015.
- 4. Dostilio, L.D., et al. The Community Engagement Professional's Guide book : A Companion to The Community Engagement Professional in Higher Education. Stylus Publishing, 2017

MOOC/NPTEL/YouTube Links:

 $1. \ NPTEL course: Ecology and Society, https://online courses.nptel.ac.in/noc20_hs77/preview$

Web Links:-

- 1. UNESCO : Education for Sustainable Development https://www.unesco.org
- 2. EPICS (Engineering Projects in Community Service) https://engineering.purdue.edu/EPICS
- 3. Ashoka : Innovators for the Public https://www.ashoka.org Design for Change https://www.dfcworld.com

Savitribai Phule Pune University, Pune

Maharashtra, India

SE - Department of Electronics and Computer Engineering

2024 Pattern

Semester IV

With effect from Academic Year 2025–26

Savitribai Phule Pune University Second Year of Electronics and Computer Engineering (2024 Course)				
PCC-206-	ECE: Communication	Systems		
Teaching/scheme	Credits	Examination Scheme		
	00	CCE: 30 Marks		
Theory: 03Hours/Week	02	End-Semester: 70 Marks		
Prerequisite Courses, if any : Analog and	nd Digital Electronics			
Companion Course, if any: Laboratory	Practical			
Course Objectives:				
The objective of this course is to prov	vide students with			
 Introduction to the fundam Provide students with a condigital communication system Analyze various Modulation PPM, PCM, DM, ADM. Familiarize students with the Communication and Televis 	ental principles used in nprehensive understand ems. a and Demodulation tech ne communication appli- sion Broadcasting.	n modern communication systems. ding of the basic concepts of analog and hniques like AM, FM, PAM, PWM, cations such as Satellite		
Course Outcomes:				
After successful completion of the cou	ırse, students will be a	able to:		
C01: Explain elements and basic parame	ters of communication s	system.		
CO2: Apply mathematical equations to c	compute Amplitude Moo	dulation parameters.		
CO3: Analyze mathematical equations to	compute Frequency Mo	dulation parameters.		
CO4: Evaluate Pulse Modulation Technic	CO4: Evaluate Pulse Modulation Techniques for communication system.			
C05: Interpret Real World applications	of communication syste	em.		
	Course Contents			
Unit I Introduct	tion to Communication	n Systems (09 Hours)		
Basics of Communication System, ElemAnalog, Digital, Wired and Wireless, Reg(External and Internal Noise), Noise CWaves, Effects of Environment, PropaTropospheric Scatter Propagation.#ExemplarWi-Fi, Bluetooth, Infrar	nents of Communicatio generative Repeater, So Calculations, Noise Figu gation of Waves (Gro ed Remote Control. Eth	on System, Types of Communication- ources of Noise: Classification of Noise are. Fundamentals of Electromagnetic ound wave, Sky wave, Space wave),		
Manning of Course Outcomes for Unit L				
Unit II Amplitude Modu	lation and Demodulat	tion Techniques (09 Hours)		
Need of Modulation, Types of ModulationModulation Index, AM Spectrum, TypeSideband Suppressed Carrier (DSB-SC),Detection, Super Heterodyne AM Receive#ExemplarTerrestrial CommunicaMapping of Course Outcomes for Unit L	tion, Mathematical Ana es of AM: Double Side Single Sideband (SSB) er. tion, Computer Modem.	alysis of Amplitude Modulation (AM), eband Full Carrier (DSB-FC), Double), Vestigial Sideband (VSB), Envelope		
mapping of course outcomes for onit i				

Unit III	FM Modulation and Demodulation Techniques	(09 Hours)	
Concept of An	gle Modulation, Mathematical Analysis of Frequency Modulation	and Phase	
Modulation (Mo	dulation Index, Spectrum, Bandwidth, power), Relation between Phase	e Modulation	
and Frequency	Modulation, Types of FM: Narrowband and Wideband, FM Generation b	oy Armstrong	
Method, FM Dete	ection by Phase Lock Loop (PLL).		
#Exemplar	Magnetic Tape Recording, Stereophonic FM Multiplex System		
Mapping of Cour	se Outcomes for Unit III: CO3		
Unit IV	Pulse Modulation Techniques	(09 Hours)	
Sampling Theor	em, Nyquist Criteria, Types of Sampling: Ideal, Natural and Flat Top, Pr	ulse Amplitude	
Modulation (PA)	M), Pulse Width Modulation (PWM), Pulse Position Modulation (PPM), I	Line Codes and	
it's types (RZ, N	RZ, Unipolar, Bipolar, AMI, Manchester), Quantization of signals, Types o	f Quantization:	
Uniform and N	on-uniform Quantization, Pulse Code Modulation (PCM), Delta Mod	lulation (DM),	
Quantization No	ise, Adaptive Delta Modulation (ADM)		
#Exemplar	Wireless Communication, Optical Recording		
Mapping of Cour	se Outcomes for Unit IV: CO4		
Unit V	Applications of Communication System	(09 Hours)	
IEEE Standards	802.11, Case Study: Television Broadcasting, FM Radio Broadcasting	g, Satellite	
Communication,	Walkie – Talkie, Industrial Automation: Remote Control and Monitoring	g, Machine	
to Machine Com	munication, Weather Monitoring, Air Traffic Control System.		
#Exemplar	Dish TV, Smart Meters		
Mapping of Cou	rse Outcomes for Unit V: CO5		
Learning Resou	irces		
Textbooks:			
1. George Kenne	Ding "Modern Appleg and Digital Communication Systems" 4th Edition	Outond	
University	Press	Oxioru	
Reference Bool	KS:		
1. Taub, Schillin	g and Saha, "Principles of Communication Systems", 4 th Edition, McGraw	v Hill.	
2. A.B Carlson, P B Crully, J C Rutledge, "Communication Systems", 5 th Edition, Tata McGraw Hill.			
3. Wayne Toma	si, "Electronic Communications System", 5 th Edition, Pearson Education		
e-Books:			
George Kenned	y, "Electronic Communication Systems" 5th Edition, McGraw-Hill.		
https://soanee	mrana.com/onewebmedia/ELECTRONIC%20COMMUNICATION%20S	SYSTEM%2	
0BY%20GEORG	E%20KENNEDY.pdf		
MOOC / NPTEL	/YouTube Links:		
https://npte	1.ac.1n/courses/108/104/108104091/		
and for informat	ion only. *Comprehensive Continuous Evaluation]	ular unit	

Savitribai Phule Pune University Second Year of Electronics and Computer Engineering (2024 Course)				
P	C-207-ECE: Signals and Syster	ns	-	
Teaching/scheme	Credits	Exan	nination Scheme	
	02	CCE: 30 Marks		
Theory: 03Hours/week	03	End-Semester	: 70 Marks	
Prerequisite Courses, if any: Fundamentals of calculus				
Companion Course, if any: Labora	tory Practical			
To impart the fundamental knowled idea about operations to be perfor transforming the signals from time	lge of signals and systems to all t med on signals and systems, T domain to frequency, S and Z do	he students of g he aim is to ma main.	ive comprehensive ke the concepts of	
Course Outcomes : After successful completion of the	e course, students will be able	to:		
C01: Apply the mathematical equations of continuous and discrete time signals and perform				
fundamental operations on signals and classify systems				
CO2: Find response of a system for any arbitrary input signal using the convolution process				
and aware of its modern applications. Test the system stability using the impulse response.				
CO3: Analyze and resolve the signals in frequency domain using Fourier Transform				
CO4: Apply Laplace transform for continuous time signals and perform system analysis.				
CO5: Apply z-transform to discrete time signals and perform the system analysis				
Course Contents				
Unit IFundamentals of Signals S Systems(09 Hours)				
Signal: Definition, Continuous Time signal, Sampling Theorem, Discrete Signal, Signal Representation:				
Graphical, Functional, Tabular and Sequence. Basic Elementary signals and their relationships: Unit				
Impulse, Unit step, Unit ramp, Unit parabolic, rectangular pulse, Triangular, Signum, Sinusoidal, Real				
exponential, Complex exponential, Sinc and Gaussian function, Operations on signals such as addition,				
subtraction, shifting, scaling. System	n: Definition, Classification, stat	ic and dynamic	systems, causal and	

unstable syster	instable systems, invertible and non- invertible systems. System interconnections.			
Exemplar Examples of real-life signals such as: Speech, ECG, EEG, EMG etc. Examples of real-life systems such as: Communication, Control systems etc.				
Mapping of Course Outcomes for Unit I: CO1				
Unit IITime Domain Representation of LTI System(09 Hours)				
System Input-output relation definition of impulse response. Introduction to convolution, convolution				

System Input-output relation, definition of impulse response, Introduction to convolution, convolution sum, methods of finding convolution sum: tabular and graphical, convolution integral, computation of convolution integral using graphical method for unit step to unit step, unit step to exponential, exponential to exponential, unit step to rectangular and rectangular to rectangular only. Properties of convolution sum and convolution integral. System interconnection, system properties in terms of impulse response, step response in terms of impulse response. Concept of correlation, Auto-correlation, Cross Correlation, significance.

Mapping of Course Outcomes for Unit II: CO2 Introduction to Fourier Series: Fourier Series (FS) representation of periodic Continuous-Time (CT) signals using trigonometric and exponential forms, Dirichlet conditions for the existence of Fourier Series, Gibbs phenomenon. Fourier Transform (FT): Fourier Transform representation of aperiodic CT signals; Dirichlet conditions for the existence of Fourier Transform of standard CT signals, properties and their significance; interplay between time and frequency domains using sinc and rectangular signals; Fourier Transform for periodic signals #Exemplar Applications of Fourier Transform for spectral analysis, communication, Biomedical signal analysis, Image processing. Mapping of Course Outcomes for Unit II: CO3 Unit IV Laplace Transform (09 Hours) Definition of Laplace transform, Limitations of Fourier transform and need of Laplace transform, ROC, Properties of ROC, Laplace transform of standard periodic and aperiodic functions, properties of Laplace transform based on partial fraction expansion, stability considerations in S domain, Application of Laplace Transform for Data Mining and Machine Learning, semiconductor mobility Mapping of Course Outcomes for Unit IV: CO4 Unit V Z Transform (09 Hours) Introduction to Z transform and its definition, ROC, Z transform and the Fourier transform by partial fraction method, the relationship between the Z-transform and the Fourier transform by partial fraction of Z Transform in Digital Signal Processing, control systems and system identification. Mapping of Course Outcomes for Unit IV: CO5 Learning Resources<	#Exemplar	Modern applications of the convolution; Speech recognition, Voice Assi Translation, Medical Speech Processing	istants, Real-Time	
Unit III Fourier Transform and Application (09 Hours) Introduction to Fourier Series: Fourier Series (FS) representation of periodic Continuous-Time (CT) signals using trigonometric and exponential forms, Dirichlet conditions for the existence of Fourier Series, Gibbs phenomenon. Fourier Transform (FT): Fourier Transform representation of aperiodic CT signals; Dirichlet conditions for the existence of Fourier Transform, evaluation of magnitude and phase response; Fourier Transform of standard CT signals; properties and their significance; interplay between time and frequency domains using sine and rectangular signals; Fourier Transform for periodic signals #Exemplar Applications of Fourier Transform for spectral analysis, communication, Biomedical signal analysis, Image processing. Mapping of Course Outcomes for Unit III: CO3 U09 Hours) Definition of Laplace transform of standard periodic and aperiodic functions, properties of Laplace transform soft on partial fraction expansion, stability considerations in S domain, Application of Laplace transforms: RL, RC, RLC Circuit analysis, transfer function and impulse response. #Exemplar Laplace transform for Data Mining and Machine Learning, semiconductor mobility Mapping of Course Outcomes for Unit IV: CO4 Unit V Unit V Z Transform Mapping of Course Outcomes for Unit IV: CO4 U09 Hours) Introduction to Z transform and its definition, ROC, Z transform applications to discrete-time signal and system analysis. Properties of the Z-transform, and the Fourier transform. <td>Mapping of Co</td> <td>urse Outcomes for Unit II: CO2</td> <td></td>	Mapping of Co	urse Outcomes for Unit II: CO2		
Introduction to Fourier Series: Fourier Series (FS) representation of periodic Continuous-Time (CT) signals using trigonometric and exponential forms, Dirichlet conditions for the existence of Fourier Series, Gibbs phenomenon. Fourier Transform (FT): Fourier Transform representation of aperiodic CT signals; Dirichlet conditions for the existence of Fourier Transform; evaluation of magnitude and phase response; Fourier Transform of standard CT signals; properties and their significance; interplay between time and frequency domains using sinc and rectangular signals; Fourier Transform for periodic signals #Exemplar Applications of Fourier Transform for spectral analysis, communication, Biomedical signal analysis, Image processing. Mapping of Course Outcomes for Unit II: CO3 (09 Hours) Definition of Laplace transform, Limitations of Fourier transform and need of Laplace transform, ROC, Properties of ROC, Laplace transform of standard periodic and aperiodic functions, properties of Laplace transform based on partial fraction expansion, stability considerations in S domain, Application of Laplace Transform for Data Mining and Machine Learning, semiconductor mobility Mapping of Course Outcomes for Unit IV: CO4 Unit V 2 Transform, ROC, 2 transform and the Fourier transform. #Exemplar Application of Z transform in Digital Signal Processing, control systems and system analysis. Properties of the Z-transform and the Fourier transform. #Exemplar Application of Z transform in Digital Signal Processing, control systems and system identification. Mapping of Course Outcomes for Unit V: CO5 Learning Resources Ed	Unit III	Fourier Transform and Application	(09 Hours)	
signals using trigonometric and exponential forms, Dirichlet conditions for the existence of Fourier Series, Gibbs phenomenon. Fourier Transform (FT): Fourier Transform representation of aperiodic CT signals; Dirichlet conditions for the existence of Fourier Transform; evaluation of magnitude and phase response; Fourier Transform of standard CT signals; properties and their significance; interplay between time and frequency domains using sinc and rectangular signals; Fourier Transform for periodic signals #Exemplar Applications of Fourier Transform for spectral analysis, communication, Biomedical signal analysis, Image processing. Mapping of Course Outcomes for Unit III: CO3 Unit V Laplace Transform of standard periodic and aperiodic functions, properties of Laplace transform and their significance, Laplace transform evaluation using properties, Inverse Laplace transform based on partial fraction expansion, stability considerations in S domain, Application of Laplace transforms: RL, RC, RLC Circuit analysis, transfer function and impulse response. #Exemplar Laplace transform for Data Mining and Machine Learning, semiconductor mobility Mapping of Course Outcomes for Unit IV: CO4 Unit V Z Transform applications to discrete-time signal and system analysis. Properties of the Z-transform applications to discrete-time signal and system analysis. Properties of the Z-transform and the Fourier transform. #Exemplar Application of Z Transform in Digital Signal Processing, control systems and system identification. Mapping of Course Outcomes for Unit V: CO5 Learning Resources Textbooks: 1. Signals S Systems Simplifies by A Nagoor Kani, Mc Graw Hill Education 2 nd Edition 2. Signals and Systems by Ramesh Babu, SCITECH Publication, 2 nd edition 3. Signals and Systems by Ramesh Babu, SCITECH Publication, 2 nd edition 4. John G. Proakis and Dimitris G. Manolakis, "Digital signal Processing: Principles, Algorithms, and Applications", 4E. Sept. 2007 Reference Books: 1. Charles Phillips, "Signals,	Introduction	to Fourier Series: Fourier Series (FS) representation of periodic Con	ntinuous-Time (CT)	
Series, Gibbs phenomenon. Fourier Transform (FT): Fourier Transform representation of aperiodic CT signals; Dirichlet conditions for the existence of Fourier Transform; evaluation of magnitude and phase response; Fourier Transform of standard CT signals; properties and their significance; interplay between time and frequency domains using sinc and rectangular signals; Fourier Transform for periodic signals #Exemplar Applications of Fourier Transform for spectral analysis, communication, Biomedical signal analysis, Image processing. Mapping of Course Outcomes for Unit III: CO3 (09 Hours) Definition of Laplace transform of standard periodic and aperiodic functions, properties of ROC, Laplace transform of standard periodic and aperiodic functions, properties, Inverse Laplace transform and their significance, Laplace transform evaluation using properties, Inverse Laplace transform based on partial fraction expansion, stability considerations in S domain, Application of Laplace Transforms for Data Mining and Machine Learning, semiconductor mobility Mapping of Course Outcomes for Unit IV: CO4 Unit V Z Transform, standard Z-transform pairs, inverse Z-transform by partial fraction method, the relationship between the Z-transform pairs, inverse Z-transform. #Exemplar Application of Z Transform in Digital Signal Processing, control systems and system identification. Mapping of Course Outcomes for Unit V: CO5 Learning Resources Textbooks: 1. Signals S Systems by Ramesh Babu, SCITECH Publication, 2 nd edition 2. Signals And Systems by Ramesh Babu, SCITECH Publication, 2 nd	signals using	trigonometric and exponential forms, Dirichlet conditions for the end	xistence of Fourier	
Fourier Transform (FT): Fourier Transform representation of aperiodic CT signals; Dirichlet conditions for the existence of Fourier Transform; evaluation of magnitude and phase response; Fourier Transform of standard CT signals; properties and their significance; interplay between time and frequency domains using sinc and rectangular signals; Fourier Transform for periodic signals #Exemplar Applications of Fourier Transform for spectral analysis, communication, Biomedical signal analysis, Image processing. Mapping of Course Outcomes for Unit III: CO3 (09 Hours) Definition of Laplace transform of standard periodic and aperiodic functions, properties of ROC, Laplace transform of standard periodic and aperiodic functions, properties of ROC, Laplace transform of standard periodic and aperiodic functions, properties of ROC, Laplace transforms: RL, RC, RLC Circuit analysis, transfer function and impulse response. #Exemplar Laplace transforms for Data Mining and Machine Learning, semiconductor mobility Mapping of Course Outcomes for Unit IV: CO4 (09 Hours) Unit V Z Transform and the Fourier transform pairs, inverse Z-transform. #Exemplar Laplace transform and its definition, ROC, Z transform applications to discrete-time signal and system analysis. Properties of the Z-transform and the Fourier transform. #Exemplar Application of Z Transform in Digital Signal Processing, control systems and system identification. Mapping of Course Outcomes for Unit V: CO5 Learning Resources Textbooks: 1. 1	Series, Gibbs J	ohenomenon.		
conditions for the existence of Fourier Transform; evaluation of magnitude and phase response; Fourier Transform of standard CT signals; properties and their significance; interplay between time and frequency domains using sinc and rectangular signals; Fourier Transform for periodic signals #Exemplar Applications of Fourier Transform for spectral analysis, communication, Biomedical signal analysis, Image processing. Mapping of Course Outcomes for Unit III: CO3 Unit IV Laplace Transform (09 Hours) Definition of Laplace transform, Limitations of Fourier transform and need of Laplace transform, ROC, Properties of ROC, Laplace transform of standard periodic and aperiodic functions, properties of Laplace transform based on partial fraction expansion, stability considerations in S domain, Application of Laplace Transforms: RL, RC, RLC Circuit analysis, transfer function and impulse response. #Exemplar Laplace transform for Data Mining and Machine Learning, semiconductor mobility Mapping of Course Outcomes for Unit IV: CO4 Unit V Z Transform (09 Hours) Introduction to Z transform and its definition, ROC, Z transform applications to discrete-time signal and system analysis. Properties of the Z-transform, standard Z-transform pairs, inverse Z-transform. #Exemplar Application of Z Transform in Digital Signal Processing, control systems and system identification. Mapping of Course Outcomes for Unit V: CO5 Learning Resources Textbooks: 1. Signals S Systems by Alan Openheim and Alan Willesky Prentice-Hall Publication, 2 nd Edition 2. Signals and Systems by Ramesh Babu, SCITECH Publication, 2 nd edition 3. Signals and Systems by Ramesh Babu, SCITECH Publication, 2 nd edition 4. John G. Proakis and Dimitris G. Manolakis, "Digital signal Processing: Principles, Algorithms, and Applications", 4E. Sept. 2007 Reference Books: 1. Charles Phillips, "Signals, Systems and Transforms", Pearson Education, 3rd Edition	Fourier Tra	nsform (FT): Fourier Transform representation of aperiodic CT	signals; Dirichlet	
Fourier Transform of standard CT signals; properties and their significance; interplay between time and frequency domains using sinc and rectangular signals; Fourier Transform for periodic signals #Exemplar Applications of Fourier Transform for spectral analysis, communication, Biomedical signal analysis, Image processing. Mapping of Course Outcomes for Unit III: CO3 (09 Hours) Definition of Laplace transform, Limitations of Fourier transform and need of Laplace transform, ROC, Properties of ROC, Laplace transform of standard periodic and aperiodic functions, properties, Inverse Laplace transform based on partial fraction expansion, stability considerations in S domain, Application of Laplace Transforms: RL, RC, RLC Circuit analysis, transfer function and impulse response. #Exemplar Laplace transform for Data Mining and Machine Learning, semiconductor mobility Mapping of Course Outcomes for Unit IV: CO4 (09 Hours) Introduction to Z transform and its definition, ROC, Z transform applications to discrete-time signal and system analysis. Properties of the Z-transform, standard Z-transform paris, inverse Z-transform by sparial fraction method, the relationship between the Z-transform and the Fourier transform. #Exemplar Application of Z Transform in Digital Signal Processing, control systems and system identification. Mapping of Course Outcomes for Unit V: CO5 Image: Course Outcomes for Unit V: CO5 Learning Resources Transform in Digital Signal Processing, control systems and system identification. 2. Signals S Systems by Alan Openheim	conditions fo	r the existence of Fourier Transform; evaluation of magnitude an	d phase response;	
and frequency domains using sinc and rectangular signals; Fourier Transform for periodic signals #Exemplar Applications of Fourier Transform for spectral analysis, communication, Biomedical signal analysis, Image processing. Mapping of Course Outcomes for Unit III: CO3 (09 Hours) Definition of Laplace transform, Limitations of Fourier transform and need of Laplace transform, ROC, Properties of ROC, Laplace transform of standard periodic and aperiodic functions, properties of Laplace transform based on partial fraction expansion, stability considerations in S domain, Application of Laplace Transform for Data Mining and Machine Learning, semiconductor mobility Mapping of Course Outcomes for Unit IV: CO4 (09 Hours) Unit V Z Transform (09 Hours) Introduction to Z transform for Data Mining and Machine Learning, semiconductor mobility Mapping of Course Outcomes for Unit IV: CO4 Unit V Z Transform (09 Hours) Introduction to Z transform and its definition, ROC, Z transform applications to discrete-time signal and ysis. Properties of the Z-transform, standard Z-transform pairs, inverse Z-transform. #Exemplar Mapping of Course Outcomes for Unit V: CO5 Learning Resources Itentification. Mapping of Course S ystems Simplifies by A Nagoor Kani, Mc Graw Hill Education 2 nd Edition 2. Signals S Systems by Ramesh Babu, SCITECH Publication, 2 nd edition 3. Signals and System by Ramesh Babu, SCITECH Publication, 2 nd edition 3. Signal	Fourier Trans	form of standard CT signals; properties and their significance; inter	play between time	
#Exemplar Applications of Fourier Transform for spectral analysis, communication, Biomedical signal analysis, Image processing. Mapping of Course Outcomes for Unit III: CO3 (09 Hours) Definition of Laplace transform, Limitations of Fourier transform and need of Laplace transform, ROC, Properties of ROC, Laplace transform of standard periodic and aperiodic functions, properties, Inverse Laplace transform based on partial fraction expansion, stability considerations in S domain, Application of Laplace Transforms: RL, RC, RLC Circuit analysis, transfer function and impulse response. #Exemplar Laplace transform for Data Mining and Machine Learning, semiconductor mobility Mapping of Course Outcomes for Unit IV: CO4 (09 Hours) Introduction to Z transform and its definition, ROC, Z transform applications to discrete-time signal and system analysis. Properties of the Z-transform, standard Z-transform pairs, inverse Z-transform. #Exemplar Application of Z Transform in Digital Signal Processing, control systems and system identification. Mapping of Course Outcomes for Unit V: CO5 Learning Resources Textbooks: 1 Signals S Systems by Alan Openheim and Alan Willesky Prentice-Hall Publication, 2 nd Edition Signals and Systems by Ramesh Babu, SCITECH Publication, 2 nd edition Signals and Systems by Ramesh Babu, SCITECH Publication, 2 nd edition Optications, ''AE. Sept. 2007 Reference Books: 1 Other Provide a	and frequency	y domains using sinc and rectangular signals; Fourier Transform for p	eriodic signals	
Mapping of Course Outcomes for Unit III: CO3 (09 Hours) Definition of Laplace transform, Limitations of Fourier transform and need of Laplace transform, ROC, Properties of ROC, Laplace transform of standard periodic and aperiodic functions, properties of Laplace transform and their significance, Laplace transform evaluation using properties, Inverse Laplace transform based on partial fraction expansion, stability considerations in S domain, Application of Laplace Transforms: RL, RC, RLC Circuit analysis, transfer function and impulse response. #Exemplar Laplace transform for Data Mining and Machine Learning, semiconductor mobility Mapping of Course Outcomes for Unit IV: CO4 (09 Hours) Unit V Z Transform, standard Z-transform pairs, inverse Z-transform and system analysis. Properties of the Z-transform, standard Z-transform pairs, inverse Z-transform. #Exemplar Application of Z Transform in Digital Signal Processing, control systems and system identification. Mapping of Course Outcomes for Unit V: CO5 Learning Resources Instructions Signals S systems Simplifies by A Nagoor Kani, Mc Graw Hill Education 2 nd Edition 2. Signals S Systems by Alan Openheim and Alan Willesky Prentice-Hall Publication, 2 nd Edition 3. Signals and Systems by Ramesh Babu, SCITECH Publication, 2 nd edition 4. John G. Proakis and Dimitris G. Manolakis, "Digital signal Processing: Principles, Algorithms, and Applications", 4E. Sept. 2007 Reference Books: 1. Charles Phillips, "Signals, Systems and Transforms", Pearson Education, 3rd Edit	#Exemplar	Applications of Fourier Transform for spectral analysis, communications analysis, Image processing.	ation, Biomedical	
Unit IVLaplace Transform(09 Hours)Definition of Laplace transform, Limitations of Fourier transform and need of Laplace transform, ROC, Properties of ROC, Laplace transform of standard periodic and aperiodic functions, properties of Laplace transform and their significance, Laplace transform evaluation using properties, Inverse Laplace transform based on partial fraction expansion, stability considerations in S domain, Application of Laplace Transforms: RL, RC, RLC Circuit analysis, transfer function and impulse response.#ExemplarLaplace transform for Data Mining and Machine Learning, semiconductor mobilityMapping of Course Outcomes for Unit IV: CO4 Unit VC TransformUnit VZ Transform, standard Z-transform pairs, inverse Z-transform and system analysis. Properties of the Z-transform, standard Z-transform pairs, inverse Z-transform.#ExemplarApplication of Z Transform in Digital Signal Processing, control systems and system identification.Mapping of Course Outcomes for Unit V: CO5Learning ResourcesTextbooks:1.1.Signals S Systems Simplifies by A Nagoor Kani, Mc Graw Hill Education 2 nd Edition2.Signals and System by Ramesh Babu, SCITECH Publication, 2 nd edition3.Signals and Dimitris G. Manolakis, "Digital signal Processing: Principles, Algorithms, and Applications", 4E. Sept. 2007Reference Books:1.1.Charles Philips, "Signals, Systems and Transforms", Pearson Education, 3rd Edition	Mapping of Co	ourse Outcomes for Unit III: CO3		
Definition of Laplace transform, Limitations of Fourier transform and need of Laplace transform, ROC, Properties of ROC, Laplace transform of standard periodic and aperiodic functions, properties of Laplace transform and their significance, Laplace transform evaluation using properties, Inverse Laplace transform based on partial fraction expansion, stability considerations in S domain, Application of Laplace Transforms: RL, RC, RLC Circuit analysis, transfer function and impulse response. #Exemplar Laplace transform for Data Mining and Machine Learning, semiconductor mobility Mapping of Course Outcomes for Unit IV: CO4 (09 Hours) Introduction to Z transform and its definition, ROC, Z transform pairs, inverse Z-transform by partial fraction method, the relationship between the Z-transform and the Fourier transform. #Exemplar Application of Z Transform in Digital Signal Processing, control systems and system identification. Mapping of Course Outcomes for Unit V: CO5 Learning Resources Textbooks: 1. 1. Signals S Systems Simplifies by A Nagoor Kani, Mc Graw Hill Education 2 nd Edition 2. Signals and System by Alan Openheim and Alan Willesky Prentice-Hall Publication, 2 nd Edition 3. Signals and Systems by Ramesh Babu, SCITECH Publication, 2 nd edition 4. John G. Proakis and Dimitris G. Manolakis, "Digital signal Processing: Principles	Unit IV	Laplace Transform	(09 Hours)	
Properties of ROC, Laplace transform of standard periodic and aperiodic functions, properties of Laplace transform and their significance, Laplace transform evaluation using properties, Inverse Laplace transform based on partial fraction expansion, stability considerations in S domain, Application of Laplace Transforms: RL, RC, RLC Circuit analysis, transfer function and impulse response. #Exemplar Laplace transform for Data Mining and Machine Learning, semiconductor mobility Mapping of Course Outcomes for Unit IV: CO4 Unit V Z Transform (09 Hours) Introduction to Z transform and its definition, ROC, Z transform applications to discrete-time signal and system analysis. Properties of the Z-transform, standard Z-transform pairs, inverse Z-transform by partial fraction method, the relationship between the Z-transform and the Fourier transform. #Exemplar Application of Z Transform in Digital Signal Processing, control systems and system identification. Mapping of Course Outcomes for Unit V: CO5 Learning Resources Textbooks: 1. Signals S Systems Simplifies by A Nagoor Kani, Mc Graw Hill Education 2 nd Edition 2. Signals and Systems by Alan Openheim and Alan Willesky Prentice-Hall Publication, 2 nd Edition 3. Signals and Systems by Ramesh Babu, SCITECH Publication, 2 nd edition 4. John G. Proakis and Dimitris G. Manolakis, "Digital signal Processing: Principles, Algorithms, and Applications", 4E. Sept. 2007 Reference Books: 1. Charles Phillips, "Signals, Systems and Transforms", Pearson Education, 3 rd Edition	Definition of	Laplace transform, Limitations of Fourier transform and need of Lapla	ace transform, ROC,	
Laplace transform and their significance, Laplace transform evaluation using properties, Inverse Laplace transform based on partial fraction expansion, stability considerations in S domain, Application of Laplace Transforms: RL, RC, RLC Circuit analysis, transfer function and impulse response. #Exemplar Laplace transform for Data Mining and Machine Learning, semiconductor mobility Mapping of Course Outcomes for Unit IV: CO4 Unit V Z Transform (09 Hours) Introduction to Z transform and its definition, ROC, Z transform applications to discrete-time signal and system analysis. Properties of the Z-transform, standard Z-transform pairs, inverse Z-transform by partial fraction method, the relationship between the Z-transform and the Fourier transform. #Exemplar Application of Z Transform in Digital Signal Processing, control systems and system identification. Mapping of Course Outcomes for Unit V: CO5 Learning Resources 1 . Signals S Systems Simplifies by A Nagoor Kani, Mc Graw Hill Education 2 nd Edition 2. Signals S Systems by Alan Openheim and Alan Willesky Prentice-Hall Publication, 2 nd Edition 3. Signals and Systems by Ramesh Babu, SCITECH Publication, 2 nd edition 4. John G. Proakis and Dimitris G. Manolakis, "Digital signal Processing: Principles, Algorithms, and Applications", 4E. Sept. 2007 Reference Books: 1. Charles Phillips, "Signals, Systems and Transforms", Pearson Education, 3rd Edition	Properties of	ROC, Laplace transform of standard periodic and aperiodic funct	ions, properties of	
Laplace transform based on partial fraction expansion, stability considerations in S domain, Application of Laplace Transforms: RL, RC, RLC Circuit analysis, transfer function and impulse response. #Exemplar Laplace transform for Data Mining and Machine Learning, semiconductor mobility Mapping of Course Outcomes for Unit IV: CO4 <u>Unit V Z Transform (09 Hours)</u> Introduction to Z transform and its definition, ROC, Z transform applications to discrete-time signal and system analysis. Properties of the Z-transform, standard Z-transform pairs, inverse Z-transform by partial fraction method, the relationship between the Z-transform and the Fourier transform. #Exemplar Application of Z Transform in Digital Signal Processing, control systems and system identification. Mapping of Course Outcomes for Unit V: CO5 Learning Resources Textbooks: 1. Signals S Systems Simplifies by A Nagoor Kani, Mc Graw Hill Education 2 nd Edition 2. Signals S Systems by Alan Openheim and Alan Willesky Prentice-Hall Publication, 2 nd Edition 3. Signals and Systems by Ramesh Babu, SCITECH Publication, 2 nd edition 4. John G. Proakis and Dimitris G. Manolakis, "Digital signal Processing: Principles, Algorithms, and Applications", 4E. Sept. 2007 Reference Books: 1. Charles Phillips, "Signals, Systems and Transforms", Pearson Education, 3rd Edition	Laplace trans	sform and their significance, Laplace transform evaluation using ${}_{ m l}$	properties, Inverse	
Application of Laplace Transforms: RL, RC, RLC Circuit analysis, transfer function and impulse response. #Exemplar Laplace transform for Data Mining and Machine Learning, semiconductor mobility Mapping of Course Outcomes for Unit IV: CO4 (09 Hours) Introduction to Z transform and its definition, ROC, Z transform applications to discrete-time signal and system analysis. Properties of the Z-transform, standard Z-transform pairs, inverse Z-transform by partial fraction method, the relationship between the Z-transform and the Fourier transform. #Exemplar Application of Z Transform in Digital Signal Processing, control systems and system identification. Mapping of Course Outcomes for Unit V: CO5 Learning Resources Textbooks: 1. 1. Signals S Systems Simplifies by A Nagoor Kani, Mc Graw Hill Education 2 nd Edition 2. Signals and Systems by Ramesh Babu, SCITECH Publication, 2 nd edition 3. Signals and Systems and Dimitris G. Manolakis, "Digital signal Processing: Principles, Algorithms, and Applications", 4E. Sept. 2007 Reference Books: 1. 1. Charles Phillips, "Signals, Systems and Transforms", Pearson Education, 3rd Edition	Laplace tran	sform based on partial fraction expansion, stability consideration	ons in S domain,	
response. #Exemplar Laplace transform for Data Mining and Machine Learning, semiconductor mobility Mapping of Course Outcomes for Unit IV: CO4 (09 Hours) Introduction to Z transform and its definition, ROC, Z transform applications to discrete-time signal and system analysis. Properties of the Z-transform, standard Z-transform pairs, inverse Z-transform by partial fraction method, the relationship between the Z-transform and the Fourier transform. #Exemplar Application of Z Transform in Digital Signal Processing, control systems and system identification. Mapping of Course Outcomes for Unit V: CO5 Learning Resources Textbooks: I. 1. Signals S Systems Simplifies by A Nagoor Kani, Mc Graw Hill Education 2 nd Edition 2. Signals and Systems by Alan Openheim and Alan Willesky Prentice-Hall Publication, 2 nd Edition 3. Signals and Systems by Ramesh Babu, SCITECH Publication, 2 nd edition 4. John G. Proakis and Dimitris G. Manolakis, "Digital signal Processing: Principles, Algorithms, and Applications", 4E. Sept. 2007 Reference Books: 1. 1. Charles Phillips, "Signals, Systems and Transforms", Pearson Education, 3rd Edition	Application of	f Laplace Transforms: RL, RC, RLC Circuit analysis, transfer fund	ction and impulse	
#Exemplar Laplace transform for Data Mining and Machine Learning, semiconductor mobility Mapping of Course Outcomes for Unit IV: CO4 (09 Hours) Introduction to Z transform and its definition, ROC, Z transform applications to discrete-time signal and system analysis. Properties of the Z-transform, standard Z-transform pairs, inverse Z-transform by partial fraction method, the relationship between the Z-transform and the Fourier transform. #Exemplar Application of Z Transform in Digital Signal Processing, control systems and system identification. Mapping of Course Outcomes for Unit V: CO5 Learning Resources Textbooks: I. Signals S Systems Simplifies by A Nagoor Kani, Mc Graw Hill Education 2 nd Edition 2. Signals and Systems by Alan Openheim and Alan Willesky Prentice-Hall Publication, 2 nd Edition Edition 3. Signals and Systems by Ramesh Babu, SCITECH Publication, 2 nd edition Applications", 4E. Sept. 2007 Reference Books: I. Charles Phillips, "Signals, Systems and Transforms", Pearson Education, 3rd Edition	response.			
Mapping of Course Outcomes for Unit IV: CO4 (09 Hours) Introduction to Z transform and its definition, ROC, Z transform applications to discrete-time signal and system analysis. Properties of the Z-transform, standard Z-transform pairs, inverse Z-transform by partial fraction method, the relationship between the Z-transform and the Fourier transform. #Exemplar Application of Z Transform in Digital Signal Processing, control systems and system identification. Mapping of Course Outcomes for Unit V: CO5 Learning Resources I. Signals S Systems Simplifies by A Nagoor Kani, Mc Graw Hill Education 2 nd Edition 2. Signals and Systems by Alan Openheim and Alan Willesky Prentice-Hall Publication, 2 nd Edition 3. Signals and Systems by Ramesh Babu, SCITECH Publication, 2 nd edition 4. John G. Prokis and Dimitris G. Manolakis, "Digital signal Processing: Principles, Algorithms, and Applications", 4E. Sept. 2007 Reference Books: I. 1. Charles Phillips, "Signals, Systems and Transforms", Pearson Education, 3rd Edition	#Exemplar	Laplace transform for Data Mining and Machine Learning, semicondu	ctor mobility	
Unit VZ Transform(09 Hours)Introduction to Z transform and its definition, ROC, Z transform applications to discrete-time signal and system analysis. Properties of the Z-transform, standard Z-transform pairs, inverse Z-transform by partial fraction method, the relationship between the Z-transform and the Fourier transform.#ExemplarApplication of Z Transform in Digital Signal Processing, control systems and system identification.#ExemplarApplication of Z Transform in Digital Signal Processing, control systems and system identification.Mapping of Course Outcomes for Unit V: CO5Learning ResourcesTextbooks:Implication Systems Simplifies by A Nagoor Kani, Mc Graw Hill Education 2 nd Edition2.Signals S Systems by Alan Openheim and Alan Willesky Prentice-Hall Publication, 2 nd Edition3.Signals and Systems by Ramesh Babu, SCITECH Publication, 2 nd edition4.John G. Proakis and Dimitris G. Manolakis, "Digital signal Processing: Principles, Algorithms, and Applications", 4E. Sept. 2007Reference Books:Implications, Systems and Transforms, Pearson Education, 3rd Edition	Mapping of Co	ourse Outcomes for Unit IV: CO4		
Introduction to Z transform and its definition, ROC, Z transform applications to discrete-time signal and system analysis. Properties of the Z-transform, standard Z-transform pairs, inverse Z-transform by partial fraction method, the relationship between the Z-transform and the Fourier transform. #Exemplar Application of Z Transform in Digital Signal Processing, control systems and system identification. Mapping of Course Outcomes for Unit V: CO5 Learning Resources Textbooks: 1. Signals S Systems Simplifies by A Nagoor Kani, Mc Graw Hill Education 2 nd Edition 2. Signals S Systems by Alan Openheim and Alan Willesky Prentice-Hall Publication, 2 nd Edition 3. Signals and Systems by Ramesh Babu, SCITECH Publication, 2 nd edition 4. John G. Proakis and Dimitris G. Manolakis, "Digital signal Processing: Principles, Algorithms, and Applications", 4E. Sept. 2007 Reference Books: 1. Charles Phillips, "Signals, Systems and Transforms", Pearson Education, 3rd Edition	Unit V	Z Transform	(09 Hours)	
 and system analysis. Properties of the Z-transform, standard Z-transform pairs, inverse Z-transform by partial fraction method, the relationship between the Z-transform and the Fourier transform. #Exemplar Application of Z Transform in Digital Signal Processing, control systems and system identification. Mapping of Course Outcomes for Unit V: CO5 Learning Resources Textbooks: Signals S Systems Simplifies by A Nagoor Kani, Mc Graw Hill Education 2nd Edition Signals S Systems by Alan Openheim and Alan Willesky Prentice-Hall Publication, 2nd Edition Signals and Systems by Ramesh Babu, SCITECH Publication, 2nd edition John G. Proakis and Dimitris G. Manolakis, "Digital signal Processing: Principles, Algorithms, and Applications", 4E. Sept. 2007 Reference Books: Charles Phillips, "Signals, Systems and Transforms", Pearson Education, 3rd Edition 	Introduction	to Z transform and its definition, ROC, Z transform applications to d	iscrete-time signal	
by partial fraction method, the relationship between the Z-transform and the Fourier transform. #Exemplar Application of Z Transform in Digital Signal Processing, control systems and system identification. Mapping of Course Outcomes for Unit V: CO5 Learning Resources Textbooks: 1. Signals S Systems Simplifies by A Nagoor Kani, Mc Graw Hill Education 2 nd Edition 2. Signals S Systems by Alan Openheim and Alan Willesky Prentice-Hall Publication, 2 nd Edition 3. Signals and Systems by Ramesh Babu, SCITECH Publication, 2 nd edition 4. John G. Proakis and Dimitris G. Manolakis, "Digital signal Processing: Principles, Algorithms, and Applications", 4E. Sept. 2007 Reference Books: 1. 1. Charles Phillips, "Signals, Systems and Transforms", Pearson Education, 3rd Edition	and system analysis. Properties of the Z-transform, standard Z-transform pairs, inverse Z-transform			
#Exemplar Application of Z Transform in Digital Signal Processing, control systems and system identification. Mapping of Course Outcomes for Unit V: CO5 Learning Resources Textbooks: 1. Signals S Systems Simplifies by A Nagoor Kani, Mc Graw Hill Education 2 nd Edition 2. Signals S Systems by Alan Openheim and Alan Willesky Prentice-Hall Publication, 2 nd Edition 3. Signals and Systems by Ramesh Babu, SCITECH Publication, 2 nd edition 4. John G. Proakis and Dimitris G. Manolakis, "Digital signal Processing: Principles, Algorithms, and Applications", 4E. Sept. 2007 Reference Books: 1. 1. Charles Phillips, "Signals, Systems and Transforms", Pearson Education, 3rd Edition	by partial frac	ction method, the relationship between the Z-transform and the Fouri	er transform.	
 Mapping of Course Outcomes for Unit V: CO5 Learning Resources Textbooks: Signals S Systems Simplifies by A Nagoor Kani, Mc Graw Hill Education 2nd Edition Signals S Systems by Alan Openheim and Alan Willesky Prentice-Hall Publication, 2nd Edition Signals and Systems by Ramesh Babu, SCITECH Publication, 2nd edition John G. Proakis and Dimitris G. Manolakis, "Digital signal Processing: Principles, Algorithms, and Applications", 4E. Sept. 2007 Reference Books: Charles Phillips, "Signals, Systems and Transforms", Pearson Education, 3rd Edition 	#Exemplar	Application of Z Transform in Digital Signal Processing, control sys identification.	stems and system	
 Learning Resources Textbooks: Signals S Systems Simplifies by A Nagoor Kani, Mc Graw Hill Education 2nd Edition Signals S Systems by Alan Openheim and Alan Willesky Prentice-Hall Publication, 2nd Edition Signals and Systems by Ramesh Babu, SCITECH Publication, 2nd edition John G. Proakis and Dimitris G. Manolakis, "Digital signal Processing: Principles, Algorithms, and Applications", 4E. Sept. 2007 Reference Books: Charles Phillips, "Signals, Systems and Transforms", Pearson Education, 3rd Edition 	Mapping of Co	ourse Outcomes for Unit V: CO5		
 Textbooks: Signals S Systems Simplifies by A Nagoor Kani, Mc Graw Hill Education 2nd Edition Signals S Systems by Alan Openheim and Alan Willesky Prentice-Hall Publication, 2nd Edition Signals and Systems by Ramesh Babu, SCITECH Publication, 2nd edition John G. Proakis and Dimitris G. Manolakis, "Digital signal Processing: Principles, Algorithms, and Applications", 4E. Sept. 2007 Reference Books: Charles Phillips, "Signals, Systems and Transforms", Pearson Education, 3rd Edition 	Learning Resources			
 Signals S Systems Simplifies by A Nagoor Kani, Mc Graw Hill Education 2nd Edition Signals S Systems by Alan Openheim and Alan Willesky Prentice-Hall Publication, 2nd Edition Signals and Systems by Ramesh Babu, SCITECH Publication, 2nd edition John G. Proakis and Dimitris G. Manolakis, "Digital signal Processing: Principles, Algorithms, and Applications", 4E. Sept. 2007 Reference Books: Charles Phillips, "Signals, Systems and Transforms", Pearson Education, 3rd Edition 	Textbooks:			
 Signals S Systems by Alan Openheim and Alan Willesky Prentice-Hall Publication, 2nd Edition Signals and Systems by Ramesh Babu, SCITECH Publication, 2nd edition John G. Proakis and Dimitris G. Manolakis, "Digital signal Processing: Principles, Algorithms, and Applications", 4E. Sept. 2007 Reference Books: Charles Phillips, "Signals, Systems and Transforms", Pearson Education, 3rd Edition 	1. Signals S Systems Simplifies by A Nagoor Kani, Mc Graw Hill Education 2 nd Edition			
 Signals and Systems by Ramesh Babu, SCITECH Publication, 2nd edition John G. Proakis and Dimitris G. Manolakis, "Digital signal Processing: Principles, Algorithms, and Applications", 4E. Sept. 2007 Reference Books: Charles Phillips, "Signals, Systems and Transforms", Pearson Education, 3rd Edition 	2. Signals S S	2. Signals S Systems by Alan Openheim and Alan Willesky Prentice-Hall Publication, 2 nd Edition		
 John G. Proakis and Dimitris G. Manolakis, "Digital signal Processing: Principles, Algorithms, and Applications", 4E. Sept. 2007 Reference Books: Charles Phillips, "Signals, Systems and Transforms", Pearson Education, 3rd Edition 	3. Signals and	l Systems by Ramesh Babu, SCITECH Publication, 2 $^{ m nd}$ edition		
Reference Books: 1. Charles Phillips, "Signals, Systems and Transforms", Pearson Education, 3rd Edition	4. John G. Pro Applicat	oakis and Dimitris G. Manolakis, "Digital signal Processing: Principles, A tions", 4E. Sept. 2007	lgorithms, and	
1. Charles Phillips, "Signals, Systems and Transforms", Pearson Education, 3rd Edition	Reference Books:			
a a manufacture in the manufacture and the	Reference Bo	ooks:		
2. Simon Haykin, "Signals and Systems", John Wiley 2 ¹¹⁰ edition.	Reference Bo 1. Charles Phi	ooks: illips, "Signals, Systems and Transforms", Pearson Education, 3rd Editi	on	

e-Books:

https://studentshubblog.wordpress.com/wp-content/uploads/2014/12/signals-and-systems-simonhaykin.pdf

https://books.google.co.in/books/about/Signals_and_Systems_Edition_3_0.html?id=ZTUPEAAAQBAJSp rintsec=frontcoverSsource=kp_read_buttonShl=enSredir_esc=y#v=onepageSqSf=false

MOOC / NPTEL/YouTube Links: https://onlinecourses.nptel.ac.in/noc21_ee28/preview

[#Exemplar: These are the practical applications based on the contents of the particular unit and for information only. *Comprehensive Continuous Evaluation]

Savitribai Phule Pune University Second Year of Electronics and Computer Engineering (2024 Course)					
	PCC-208	-ECE: Object Oriented Pro	gramming	,	
Teaching	Teaching/scheme Credits Examination Scheme				
	. //	02	CCE: 30 Marks		
Theory: 03Hours	S/ Week	03	End-Semester: 70	Marks	
Course Prerequi	<mark>sites</mark> : Fundamental	of Programming			
Course Objective	es:				
1. Make the stu	udents familiar with	basic concepts and techniq	ues of object-oriente	d programming	
in Java.	1.11.		1 .		
2. Develop an ability to write programs in Java for problem solving.					
Course Outcome	S:				
After successful	completion of the	course, students will be a	ble to:		
CO1: Explain the	basic principles of t	he Java programming langu	age		
CO2 : Develop Java	a programs by appl	ying the concepts of classes	and objects		
CO3: Implement programs using Inheritance, interfaces, and packages in Java					
CO4: Analyze multithreading and exception handling mechanisms to create robust Java programs.					
CO5: Construct gr	raphical application	is using the Graphics class,	AWT packages, and	manage file I/O	
operations	in Java.				
Course Contents					
Unit I		Java Fundamentals		(09 Hours)	

Evolution of Java, Comparison of Java with other programming languages, Java features, Java Environment, Simple Java Program, Java Tokens, Java Statements, Constants, variables, data types. Declaration of variables, giving values to variables, Scope of variables, arrays, Symbolic constants, Typecasting, Getting values of variables, Standard default values, Operators, Expressions, Type conversion in expressions, Operator precedence and associativity.

#Exemplar Simple Java Program to Print Hello Word

Mapping of Course Outcomes for Unit I: CO1

Unit II	Classes, Methods S Objects in Java	(09 Hours)
---------	------------------------------------	------------

Class Fundamentals, Declaring Objects, Assigning Object reference variables, Methods, Constructors, The This keyword, Garbage collection, finalize method, overloading methods, using objects as parameters, Argument passing, returning objects, Recursion, access control, static, final, arrays, strings class, Command line arguments.

#Exemplar Program for Matrix addition using array		
Mapping of Course Outcomes for Unit II: CO2		
Unit III	Inheritance, Packages and Interfaces	(09 Hours)

Inheritance: Basics, Using Super, Creating Multilevel hierarchy, Constructors in derived class, Method overriding, dynamic method dispatch, Using Abstract classes, Using final with inheritance,

Packages: Java API Packages, Using System Packages, creating accessing and using a package, importing packages, adding a class to a Package, Hiding classes

Interfaces: Define, implement and extend, Accessing Interface variables, Default interface methods, using static method in interface.

#Exemplar Write a program using method overriding in the inheritance

Mapping of Course Outcomes for Unit III: CO3

Unit IV	Multithreading, Exception handling	(09 Hours)
---------	------------------------------------	------------

Introduction to multithreading: Introduction, creating thread and extending thread class. Stopping and blocking a thread, Life Cycle of a Thread, using thread methods,

Concept of Exception handling: Introduction, Types of errors, Exception handling syntax, multiple

catch statements, using final statement, throwing our own exceptions

I/O basics, reading console inputs, Writing Console output.

#Exemplar Write a program for handing exception using try and multiple catch

Mapping of Course Outcomes for Unit IV: CO4

	Unit V	Graphics Programming and File Handling	(09 Hours)
--	--------	--	------------

Graphics class, Lines, Rectangle, circles and ellipses, Introduction to AWT packages, handling events on AWT components, Introduction to Swing package, components and containers.

Managing input/output files: Concept of streams, Stream Classes, Byte stream, Character stream, Using Stream, creation of files, reading/writing a file.

#Exemplar Bouncing ball, student management system

Mapping of Course Outcomes for Unit V: CO5

Learning Resources

Textbooks:

- E Balagurusamy, "Programming with JAVA", Tata McGraw Hill, 6th Edition
- Herbert Schildt, Java: The complete reference, Tata McGraw Hill, 7th Editon.

Reference Books:

- 1. Matt Weisfeld, "The Object-Oriented Thought Process", Pearson
- 2. Cox Brad, "Object –Oriented Programming: An Evolutionary Approach", Addison –Wesley
- 3. Y. Daniel Liang (2010), "Introduction to Java programming", Pearson Education, India, 7th Edition

MOOC / NPTEL/YouTube Links https://nptel.ac.in/courses/106/105/106105191/

f"France in The second the second is a local in the second

[#Exemplar: These are the practical applications based on the contents of the particular unit and for information only. *Comprehensive Continuous Evaluation]

Savitribai Phule Pune University Second Year of Electronics and Computer Engineering (2024 Course)		
PCC-20	9-ECE: Communication Syste	ems Lab
Teaching/scheme	Credits	Examination Scheme
Practical: 02Hours/Week	01	Term Work: 25 Marks Practical: 25 Marks
Course Objectives:		·
 To measure the practical parameters of modulation techniques such as AM and FM To introduce the concept of sampling theorem and pulse modulation techniques To provide students with comprehensive understanding of digital modulation techniques like PCM, DM and ADM. To provide foundational knowledge to develop practical skills through experiential learning. 		
 Course Outcomes: After successful completion of the course, students will be able to: CO1: Generate and demodulate analog modulated signals such as AM, DSB-SC, SSB, FM, and PM using hardware. CO2: Apply sampling theorem to given signals and Interpret time-domain and frequency domain representations of sampling theorem. CO3: Measure the performance characteristics of digital modulation techniques. CO4: Analyze, compare and contrast different line coding techniques and their applications. CO5: Make use of simulation tools to model and analyze digital communication systems. CO6: Write a report on the project/industrial visit/case study/poster presentation. 		

	Guidelines for Student's Lab Journal	
The	The students Lab Journal should contain the following contains related to every experiment as	
	Title of the experiment	
	The of the experiment	
	Objective	
	Apparatus with their detailed specifications. (Hardware / Software)	
	Brief theory related to the experiment.	
Connection diagram /Circuit diagram / Block diagram / Flowchart.		
	Observation table	
	Sample calculations / Software Program	
	Results and Waveforms	
	Conclusions.	
Guidelines for Laboratory/ TW Assessment		
1.	Continuous assessment of laboratory work is to be done based on overall performance and	
	Laboratory performance of the student.	
2		

appropriate weightage.

3.	Suggested parameters for overall assessment as well as each Laboratory assignment include
	timely completion, performance, efficiency, punctuality, and neatness.

Suggested List of Laboratory Experiments (Any 10)			
	Group A: Hardware Practical's (Any 6)		
1.	AM Generation and Detection: Measurement of modulation index by using Graphical method,		
	Trapezoidal Method and Total Power		
2.	FM Generation and Detection: Measurement of modulation index and Bandwidth using Phase		
	Lock Loop (IC 565)		
3.	Verification of Sampling Theorem by using PAM Techniques (Flat top and Natural sampling)		
	and reconstruction of original signal.		
4.	Observe waveforms for Pulse Code Modulation		
5.	Measure and Plot Delta Modulation waveforms.		
6.	Measure and Plot Adaptive Delta Modulation waveforms		
7.	Plot line codes (Unipolar RZ, Unipolar NRZ, Polar RZ, Polar RZ, Bipolar (AMI), Split phase		
	Manchester) and its spectral analysis		
	Group B: Software Practical's (Any 3)		
8.	Write a program to generate White Noise and calculate Signal to Noise Ratio (SNR) and Noise		
	Figure of the system		
9.	Write a program to verify Sampling Theorem		
10.	Write a program to calculate Signal to Noise ratio for PCM system and DM system.		
11.	Any Case study with simulation using suitable platform. (Matlab, Scilab, Python etc.)		
Group C: Experiential Learning (Any 1)			
10.	Industrial Visit to Radio Broadcasting Center / All India Radio Station/ TV Transmitter Station /		
	Digital TV Studio / Industries related to Communication System.		
11.	Project Based Learning / Poster Presentation		

Second Year of Ele	Savitribai Phule Pune Univers ctronics and Computer Engine	ity eering (2024 Course)
PCC-210-ECE: S	Signal and Systems and Obj	ect-Oriented Lab
Teaching/scheme	Credits	Examination Scheme
Practical: 02Hours/Week	01	Term Work: 25Marks
Flactical. 02110015/ Week	01	Oral: 25Marks
 Course Objectives: To offer practical experience signals, signal analysis using To learn Constants, Variables Decision making statements Introduce the principles of O objects, inheritance, encapsu Explore exception handling, Course Outcomes: After successful completion of the second second	with the concepts of signal, ba transforms in software enviro s, and Data Types, Operators a in Java. bject-Oriented Programming lation and abstraction. multithreading, file I/O, and (ne course, students will be a	asic operations on onment. nd Expressions, (OOP) such as classes, GUI development ble to:
CO1: Generate and perform operations on the Signals		
CO2: Determine the system response by using convolution.		
 CO3: Perform Fourier analysis on signals and understand spectral characteristics of the signal. CO4: Create Java programs using classes, objects, and methods to model real-world scenarios CO5: Apply inheritance, polymorphism, encapsulation, and abstraction in Java programs CO6: Collaborate in teams to debug, test, and document Java projects using industry-standard tools. 		
Guidelines for Student's Lab Journal		
The students Lab Journal should contain following related to every experiment –		
• Title of the experiment		
• Objective		
Computer detailed specificatio	ns.	

- Brief theory related to the experiment.
- Program with its output print and Conclusions.

Guidelines for Laboratory/ TW Assessment

- Continuous assessment of laboratory work is to be done based on overall performance and Laboratory performance of student.
- Each Laboratory assignment assessment should assign grade/marks based on parameters with appropriate weightage.
- Suggested parameters for overall assessment as well as each Laboratory assignment include
- Timely completion, performance, efficiency, punctuality, and neatness.

Suggested List of Laboratory Experiments

Group A: Signals and Systems (any 6)		
1.	Write a program to generate and plot the following signals in time domain and also sketch its amplitude and phase spectrum. Verify the result for: • Impulse • Unit Step • Exponential • Unit ramp • Sinc • Rectangular signals.	
2.	Write a program to perform Addition, Subtraction, Time shifting and Time scaling operation on given signal and plot the signals	
3.	Write a program to for Sampling Theorem and aliasing effect: Consider trigonometric signals.	
4.	Write a program to find the convolution integral of Unit step and exponential signals and write a program to sketch the out response of the system. Also verify any one property of convolution integral	
5.	Write a program to find the auto-correlation and cross-correlation between two signals.	
6.	Write a program record or use the recorded music samples of different instruments (at least four) and write a program to record the music signal and sketch it in time domain, its amplitude spectrum and phase spectrum. Also comment on the result	
7.	Write a program to find Fourier Transform coefficients of any given signal. Using these coefficients, reconstruct the signal. Observe the effect of Gibb's phenomenon.	
********(Any of MATLAB/Sci-lab/Octave/Python programming platform can be used) *********		
GROUP B: Object Oriented Programming (Any 6)		
1.	Write some simple programs in Java such as	
	1.To find factorial of number.	
	2. To display first 50 prime numbers.	
	3. To find sum and average of N numbers.	
2.	Write a program in Java to implement a Calculator with simple arithmetic operations such as	
3.	Write a program in Java to create a player class. Inherit the classes Cricket player, Football player and Hockey player from player class.	
4.	Write a Java program which imports user defined package and uses members of the classes contained in the package	
5.	Write a Java program which implements interface.	
6.	Write a java program which use try and catch for exception handling.	
7.	A Mini project in Java: A group of 4 students can develop a small application in Java	

Savitribai Phule Pune University Second Year of Electronics and Computer Engineering (2024 Course)				
	MDM-231-ECI	E: AI and Machine L	earning Fundamentals	
Teachin	g/scheme	Credits	Examination Sche	me
Theory: 03Hour	rs/Week	02	CCE: 30 Marks	
			End-Semester: 70 Marks	
Prerequisite Co Machine Learnin	ourses, if any : Progra 1g, Basic Understand	amming Fundamenta ing of Data Handling.	ls (Preferably Python), Mather	matics for
Companion Cou	ırse, if any: NA			
Course Objectiv	/es:			
The objective	of this course is to	provide students w	ith	
 To develop logical thinking and problem-solving skills using search algorithms such as Breadth- First Search (BFS), Depth-First Search (DFS), Minimax. To understand common machine learning algorithms, such as linear regression, logistic regression, decision trees, K-nearest neighbours, and clustering techniques. To apply supervised learning techniques for prediction and classification. To explore clustering algorithms and feature reduction techniques used in unsupervised learning 				
Course Outcom	es:	course students w	ill ha abla ta	
CO1: Explain th	e foundational conce	epts and scope of AI a	nd ML.	
CO2: Implement	CO2: Implement search algorithms like BFS, DFS, and Minimax to AI problems.			
CO3 : Make use of supervised learning models such as Linear Regression, KNN.				
CO4 : Demonstrate unsupervised learning techniques such as K-Means and PCA				
CO5 : Analyze model performance using metrics like accuracy, precision, recall and F1- score.				
Course Contonts				
Unit I	Intro	duction to Artificia	al Intelligence	(09 Hours)
Definition, histo	ory, and evolution o	f AI, Applications o	f AI in various domains (hea	althcare, robotics

finance, etc.), Challenges in AI. Types of AI: Narrow AI, General AI, Super AI Intelligent agents and their structure, Agents and Environments, Concept of Rationality, Nature of Environments, Structure of Agents. Basics of AI programming: Symbolic vs. sub-symbolic AI.

Case studies: AI Chatbot for Healthcare Pre-Diagnosis. (A telemedicine platform aimed to reduce the load on doctors by pre-diagnosing common symptoms.)

#Exemplar Quiz on types of AI and ML

Mapping of Course Outcomes for Unit I: CO1

Unit II	Problem Solving and Search in AI	(09 Hours)
Problem formulation, Search strategies: Uninformed (BFS, DFS), Informed (A*, Greedy),		

Game playing: Minimax algorithm, Alpha-Beta pruning, Constraint Satisfaction Problems, Heuristics and their importance in AI. Search in Complex Environments, Local Search and Optimization Problems

#Exemplar

Tic-Tac-Toe game logic using Minimax

Mapping of Course Outcomes for Unit II: CO2

Unit III	Fundamentals of Machine Learning	(09 Hours)	
Introduction to Machine Learning (ML), Difference between AI, ML, and Deep Learning, Types of ML:			
Supervised, Unsupervised, Reinforcement Learning, Steps in building ML models- Data collection and			
preprocessing, splitting data: Training and testing sets, Model selection, training, and evaluation, Mode			
deployment (ba	sic overview). Performance metrics: Accuracy, Precision, Recall, F1-so	core, Introduction	
to Python-based	ML libraries (scikit-learn, pandas, matplotlib).		

Case study: Build a small ML model using real dataset. (Predicting Iris Flower Species using Machine Learning).

#Exemplar Building a basic decision tree for classification

Mapping of Course Outcomes for Unit III: CO3

Unit IV Supervised Learning Techniques

(09 Hours)

Regression: Linear Regression, Line of best fit and cost function (MSE), Multiple Linear Regression. Classification: Logistic Regression, Binary classification problem. K-Nearest Neighbors (KNN), Concept of distance metric (Euclidean distance), Choosing the right value of k. Decision Trees, Overfitting and underfitting, Cross-validation and hyperparameter tuning, Bias-variance tradeoff.

Case study: Predict whether a person has diabetes based on diagnostic health data

#Exemplar Implementing KNN to reduce feature dimensions in a dataset

Mapping of Course Outcomes for Unit IV: CO4

Unit V	Un-supervised Learning and Recent Trends	(09 Hours)

Clustering: Importance of clustering, Introduction to clustering algorithms, Types of clustering: Hard vs Soft. K-Means, Choosing the number of clusters (k), Elbow Method and Inertia. Hierarchical Clustering, Agglomerative vs Divisive clustering, Dendrograms and linkage methods. Dimensionality Reduction: PCA, Applications of AI/ML in IoT, Edge Computing, and Robotics, Ethical considerations and challenges in AI/ML, Future trends: Generative AI, Explainable AI (XAI).

#Exemplar NLP project: Sentiment analysis on Twitter data

Mapping of Course Outcomes for Unit V: CO5

Learning Resources

Textbooks:

- 1) Elaine Rich, Kevin Knight, Shivashankar B. Nair "Artificial Intelligence": (2nd edition), Publisher: McGraw Hill Education.
- 2) Andreas C. Müller, Sarah Guido "Introduction to Machine Learning with Python", (1st edition), Publisher: O'Reilly Media.
- 3) Joel Grus, " Data Science from Scratch ", (2nd edition), Publisher: O'Reilly Media.

Reference Books:

- 1) Stuart Russell, Peter Norvig "Artificial Intelligence: A Modern Approach", (3rd edition), Publisher-Pearson Education
- 2) Tom M. Mitchell "Machine Learning", (Indian edition), Publisher: McGraw Hill.
- 3) Aurélien Géron "Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow" (2nd edition) Publisher: O'Reilly Media.

e-Books:

https://www.nrigroupindia.com/ebook/Introduction%20to%20Machine%20Learning%20with%20P

ython%20(%20PDFDrive.com%20)-min.pdf

MOOC / NPTEL/YouTube Links: https://nptel.ac.in/courses/106102220

[#Exemplar: These are the practical applications based on the contents of the particular unit and for information only. *Comprehensive Continuous Evaluation]

Savitribai Phule Pune University Second Year of Electronics and Computer Engineering (2024 Course)			
VSE-270-ECE: Critical Thinking and Programming Lab			
	Teaching/scheme	Credits	Examination Scheme
Theo	Theory: 03Hours/Week02Term Work: 25 Marks		
			Practical: 25 Marks
Prere	equisite Courses, if any: DSA (Preferably Python, J	ava)
Cours	se Objectives:		
The	objective of this course is to	provide students w	ith
1)	To develop logical thinking an assignments using real-world	nd problem-solving s scenarios.	kills through structured programming
2)	To enable students to apply b functions, and recursion in Py	asic programming co rthon and Java.	onstructs such as loops, conditionals, arrays,
3)	To cultivate critical thinking a mathematical and pattern-bas	abilities by analyzing, sed problems.	designing, and implementing algorithms for
4)	To introduce students to four modularity, reusability, debug	idational software de	velopment practices, including code
 5) To familiarize students with data handling and file operations for building simple applications 			
 6) To encourage the development of mini-projects and simulations that promotes innovation, teamwork and communication of technical ideas effectively. 			
Course Outcomes: After successful completion of the course, students will be able to: C01: Apply fundamental programming concepts such as variables, conditionals, loops, and functions			
to solve computational problems using Python and Java.			
CO2 :	Solve real-life problems by de	esigning efficient alg	orithms and implementing logic through
struct	tured programs.		
CO3 :	Demonstrate the ability to wor	k with user-defined	and library functions to perform tasks like
recur	sion, string operations, and file	handling.	
CO4 :	Develop programs that integr	ate control structure	es and data structures to manage data and
perform operations such as sorting, searching, and matrix manipulation.			
CO5: Construct small applications that simulate real-world systems like calculators, voting systems,			
and attendance trackers using procedural and object-oriented programming principles.			
CO6: Exhibit improved critical thinking and debugging skills by identifying logical errors, refining			
algorithms, and testing program correctness.			
	Guidelines for Student's Lab Journal		

The students Lab Journal should contain following related to every experiment -

Title of t	he experiment.		
Objectiv	e.		
Softwar	e required.		
Brief the	Brief theory related to the experiment.		
Algorithms/flowcharts.			
Software code.			
Result and discussion.			
Conclusi	ion		
	Guidelines for Laboratory/ TW Assessment		
1.	Continuous assessment of laboratory work is to be done based on overall performance		
	and Laboratory performance of student.		
2.	Each Laboratory assignment assessment should assign grade/marks based on parameters with appropriate weightage.		

3. Suggested parameters for overall assessment as well as each Laboratory assignment include timely completion, performance, efficiency, punctuality, and neatness.

List of Laboratory Experiments (Using Python) Group A (Any Five)			
1.	Write a program to print pyramid/star patterns using nested loops		
2.	Create a program to calculate average, percentage, and grades from 5 subjects		
3.	Build a calculator that performs arithmetic and stores operation history		
4.	Check if a given number is both palindrome and prime.		
5.	Build a basic quiz game with multiple choice questions and scoring		
6.	Write a Python program that reads a text file and counts the frequency of each word in the file.		
List of Laboratory Experiments (Using Java)			
1.	Generate right-angled and pyramid patterns using loops.		
2.	Accept subject marks and display grade using if-else ladder		
3.	Simulate an election voting system for 3 candidates.		
4.	Implement recursive functions for factorial and Fibonacci series.		
5.	Convert decimal numbers into binary, octal, and hexadecimal.		
6.	Maintain and Display percentage attendance of students.		
Learnin	Learning Resources		
Textbooks:			

- 1) Cay S. Horstmann, Gary Cornell, "Core Java Volume I Fundamentals", 11th Edition Pearson Education, 2018.
- 2) Jeri R. Hanly, Elliot B. Koffman, "Problem Solving and Program Design in C", 8th Edition Pearson Education, 2015.

Reference Books:

- 1) John Zelle, "Python Programming: An Introduction to Computer Science", 3rd Edition Franklin, Beedle & Associates Inc., 2016.
- 2) Herbert Schildt, "Java: The Complete Reference", 11th Edition McGraw-Hill Education, 2018.
- George T. Heineman, Gary Pollice, Stanley Selkow, "Algorithms in a Nutshell", 2nd Edition – O'Reilly Media, 2016.

NPTEL:

https://onlinecourses.nptel.ac.in/noc22_cs47/preview

https://onlinecourses.swayam2.ac.in/cec22_cs20/preview

[#Exemplar: These are the practical applications based on the contents of the particular unit and for information only. *Comprehensive Continuous Evaluation]

	S Second Year of Elec	avitribai Phule Pune U	niversity Engineering (2024 Course)	
	AEC-281-EC	CE: Modern Indian La	nguages (Marathi)	
Teachi	ing/scheme	Credits	Examination Scheme	
Tutorial: 01H	ours/Week	02	Term Work: 25 Marks	
Practical: 02	Hours/Week			
Course Objecti	ives:			
अभ्यार	सक्रमाची उद्दिष्टे :			
8	प्रगत भाषिक कौशल्य	गंची क्षमता विकसित व	उ रणे	
Э	प्रमारमाध्यमांतील सं	नापनातील स्वरूप आणि	ा स्थान स्पष्ठ करणे	
۰. ۲	त्यक्तिमन्त विकास अ	भाषा भाषा यांच्यातील	महमंत्रंश माष कमो	
Y.	ज्यातम् अपनेत्र जीव	गान नापा पाण्पाताल		
o. 1	लाकसाहाताल जाव	मध्यवहार आणि प्रसारम रेक्टराया जिन्हां क्रम	गाव्यम याच परस्पर संबंध स्पष्ट फरण.	
ч.	प्रसारमाध्यमासाठा ल	गखनदामता विकासत क	λų.	
		UNIT I & UNIT I	I	
घटक		तपशी	ल	
120	१. भाषा आणि व	व्यक्तिमत्त्व विकास : सह	संबंध	
१ २. लोकशाहीतील जीवनव्यवहार आणि प्रसारमाध्यमे				
प्रसारमाध्यमांसाठी लेखन				
	१ वत्तपत्रासाठी ब	बातमीलेखन आणि मद्रि	तशोधन	
2	२ नभोवाणीसार्ठ	२ नभोवाणीमाठी भाषणाची मंहितालेखन		
	3 दरचित्रवाणीम	ाठी माहितीपटामाठी मं	हेतालेखन	
	र पुरायगयाणारा			

UNIT III & UNIT IV			
१	 भाषा, जीवन व्यवहार आणि नवमाध्यमे, समाजमाध्यमे नवमाध्यमे आणि समाजमाध्यमांचे प्रकार : ब्लॉग, फेसबुक, ट्विटर. नवमाध्यमे आणि समाजमाध्यमांविषयक साक्षरता, दक्षता, वापर आणि परिणाम 		
ર	१. वेबसाईट आणि ब्लॉग, ट्विटरसाठी लेखन २. व्यावसायिक पत्रव्यवहार		

Learning Resources

संदर्भ ग्रंथ :

- १ सायबर संस्कृती, डॉ. रमेश वरखेडे
- २ उपयोजित मराठी, संपादक डॉ. केतकी मोडक, संतोष शेणई, सुजाता शेणई
- ३ ओळख माहिती तंत्रज्ञानाची, टिमोथी जे. ओ लिअरी
- ४ संगणक, अच्युत गोडबोले, मौज प्रकाशन, मुंबई.
- ५ इंटरनेट, डॉ. प्रबोध चोबे, मनोरमा प्रकाशन, मुंबई.
- ६ व्यावहारिक मराठी, डॉ. ल. रा. नसिराबादकर, फडके प्रकाशन, कोल्हापूर.
- ७ आधुनिक माहिती तंत्रज्ञानाच्या विश्वात, शिक्रापूरकर दीपक, मराठे उज्ज्वल, उत्कर्ष प्रकाशन, पुणे.

Savitribai Phule Pune University Second Year of Electronics and Computer Engineering (2024 Course)					
	AE	C-281-ECE: Modern Indian Lan	iguages (Hindi)		
Teac	hing/scheme	Credits	Examination Scheme		
Tutorial: 01	Futorial:01Hours/Week02Term Work:25 Marks				
Practical: 02	2 Hours/Week				
Course Objec	ctives:				
उद्देश्य : १. छात्रों में हिंदी भाषा श्रवण कौशल विकसित करना। २. छात्रों में हिंदी भाषा संवाद कौशल विकसित करना। ३. छात्रों में हिंदी भाषा वाचन कौशल विकसित करना। ४. छात्रों में हिंदी भाषा लेखन कौशल विकसित करना। ५. हिंदी भाषा—विधि तथा भाषा—व्यवहार से अवगत करना।					
	UNIT I & UNIT II				
_	इकाई	पाठ्यवि	षय		
3	इकाई— I	वर्ण विचार :			
१) हिंदी वर्णमाला — परिचय					
२) लिपि — परिचय					
	३) वर्णो का उच्चारण और वर्गीकरण				
	४) स्वराघात				
	५) संधि : स्वर संधि, व्यंजन संधि, विसर्ग संधि।				

UNIT III & UNIT IV				
इकाई— II	इकाई— II भाषा कौशल शिक्षण : लघुकथाओं द्वारा भाषा कौशल			
	शिक्षण (श्रवण, संवाद, वाचन, लेखन)			
	१) शिक्षा – ज्योति जैन			
	२) पानी के पेड़ – ज्योति जैन			
	३) पशुभाषा – ज्योति जैन			
	४) अपशगुन – ज्योति जैन			

Learning Resources
संदर्भ ग्रंथ :
१. हिंदी भाषा शिक्षण — संपा. हिंदी अध्ययन मंडल, सावित्रीबाई फुले
पुणे विश्वविद्यालय, पुणे, राजकमल प्रकाशन, नई दिल्ली।
२. हिंदी व्याकरण – पं. कामताप्रसाद गुरु, प्रकाशन संस्थान, नई दिल्ली।
३. प्रयोजनमूलक हिंदी — डॉ. माधव सोनटक्के, लोकभारती प्रकाशन, नई
दिल्ली।

Savitribai Phule Pune University Second Year of Electronics & Computer Engineering (2024 Course)				
EEM-241- ECE : Entrepreneurship Skill Development				
Teaching SchemeCreditsExamination Scheme				
Tutorial: 01 Hour/Week	01	Term Work : 25 Marks		
Practical: 02 Hours/Week	01			

Course Objectives: The course aims to:

- 1. Introduce the fundamental principles of entrepreneurship, forms of business organizations, and the startup ecosystem.
- 2. Enable students to identify, evaluate, and select viable business opportunities using structured techniques.
- 3. Familiarize students with business models, financial planning, and market validation strategies.
- 4. Expose students to key marketing strategies, customer acquisition techniques, and branding essentials for startups
- 5. Develop students' entrepreneurial mindset and their ability to communicate and pitch business ideas effectively using structured storytelling techniques

Course Outcomes: Upon successful completion of this course, students will be able to:

- C01: Describe the role of entrepreneurship in economic growth and the startup ecosystem.
- CO2: Apply creative techniques to viable business ideas based on customer needs.
- CO3: Develop a basic business model using tools like the Business Model Canvas through market research.
- CO4: Implement basic marketing strategies for startups.
- CO5: Deliver a concise business pitch using storytelling and effective communication techniques.
- z Course Contents r

Complete the syllabus within 20 hrs. Discuss the issues and content in more details during practical hours batchwise.

Unit I - Introduction to Entrepreneurship

Entrepreneurship: Definition and evolution, Role of entrepreneurship in economic development Role of entrepreneurship in economic development – Role in job creation, GDP, and innovation. Characteristics of an Entrepreneur: Key traits: Risk-taking, innovation, pro-activeness, Leadership, perseverance, and resilience

Types of Entrepreneurships: Startup entrepreneurship, Social entrepreneurship, Intrapreneurship (corporate entrepreneurship), Lifestyle and small business entrepreneurship,

Forms of Business Organization – Sole proprietorship, partnership, private limited, public limited. Entrepreneurial Mindset: Growth mindset and adaptability, Creativity and problem-solving, Opportunity recognition and initiative-taking

Overview of the Startup Ecosystem: Key stakeholders: Incubators, accelerators, angel investors, VCs, Government support schemes (Startup India, Atal Innovation Mission, etc.), Global vs. Indian startup ecosystems

Case Study:

- 1. Ritesh Agarwal Founder of OYO Rooms (India)
- 2. Falguni Nayar Founder of Nykaa (India)
- 3. Nandan Nilekani Co-founder of Infosys & Architect of Aadhaar (India) etc.

Unit II -Idea Generation & Opportunity Recognition

Creativity Techniques for Idea Generation: Definition and importance of creativity in entrepreneurship. Brainstorming: Rules of effective brainstorming. Individual vs. group brainstorming. Mind Mapping: Visual idea structuring using central themes and branches. Tools (manual and digital) for mind mapping.

Understanding Customer Needs and Pain Points: Customer pain points and their identification, Problem-solution fit: Linking pain points to possible solutions. Observational techniques, user interviews, and empathy mapping.

Evaluating Opportunities: Difference between an "idea" and an "opportunity." Basic filters: Desirability, feasibility, and viability. Tools: SWOT Analysis, Opportunity Matrix, Industry trends, market gaps.

Feasibility Analysis Basics: Market Need Assessment: about the users, the problem complexity. Scalability Check: Geographically or vertically growth of the idea, Barriers to scaling. Introduction to the "Lean Canvas".

Case Study : Analyzing how "Dunzo" or "BigBasket" identified urban pain points and How "Zerodha" scaled in India with a digital-first approach

Unit III - Business Model Development

Introduction to Business Model Canvas: Definition and purpose of a business model, Overview of the Business Model Canvas by Osterwalder, Benefits of using BMC for startups.

Key Components of BMC: Value Proposition: Defining what unique value the product/service offers. Addressing customer pain points. Customer Segments: Identifying target customers. Creating customer personas Revenue Models: Direct sales, subscriptions, freemium, licensing, etc.

Basic Market Research for Validation: Importance of market research in early-stage business development. Designing effective surveys and customer feedback forms. Conducting basic interviews and analyzing responses. Introduction to MVP (Minimum Viable Product) and feedback loops.

Case study: Map the BMC for a well-known startup 62 (e.g., Uber or Zomato).

Unit IV - Marketing Strategies & Customer Acquisition

Basics of Branding and Positioning: Introduction to Brand – Elements of brand identity: name, logo, voice, tone, and values. Positioning – How to create a unique space in the customer's mind. Positioning maps, Value-based positioning vs. competitor-based positioning Startup Branding Challenges – Limited budget, building trust, clarity in messaging.

Costing & Pricing Strategies – Fixed vs. variable costs, break-even analysis.

Introduction to Digital Marketing: Distribution Channels: Traditional vs. digital distribution. Social Media Marketing: Platforms overview (Instagram, LinkedIn, Facebook, X/Twitter) Creating a content strategy and calendar Organic vs. paid reach

Search Engine Optimization (SEO): Basics of how search engines work, Keyword research and content optimization, On-page vs. off-page SEO Importance of Digital Presence – Website essentials, blogs, and analytics tools.

Customer Acquisition Strategies: Understanding the Customer Journey – Awareness, interest, decision, action. Early-Stage Customer Acquisition Tactics: Word-of-mouth & referrals, Influencer marketing (micro-influencers), Email marketing basics, building a landing page and collecting leads Retention vs. Acquisition – Importance of building long-term customer relationships.

Case Studies :

- 1. Zomato Branding & Positioning in a Competitive Market
- 2. Mamaearth Digital-First Customer Acquisition
- 3. Nykaa Customer Segmentation and Channel Strategy

Unit V - Pitching & Business Communication

Crafting an Elevator Pitch: Definition and purpose, Key elements: Problem, solution, value proposition, target audience, Delivery tips: Clarity, brevity, confidence

Storytelling & Communication: Importance of Storytelling in Business, Structure of a Business Story: Setup, Conflict, Resolution. Communication Skills: Verbal and Non-verbal

Overview of Funding Sources: Public & private capital sources, venture capital, debt financing. Bootstrapping: Meaning, benefits, and risks, Angel investors: Role, expectations, approach, Brief on incubators, government schemes, crowdfunding.

Case study:

- 1. Shark Tank India Pitch Analysis (Any Season)
- 2. Airbnb The Original Pitch Deck
- 3. Dropbox Storytelling Through Demonstration
- 4. Dunzo Investor Pitch Evolution

Learning Resources

ZText Books:

1. Bygrave, W.D., Zacharakis, A., & Corbett, A.C. Entrepreneurship, 6th Edition, Wiley, 2025. ISBN: 9781394262809.

63

2. Drucker, Peter F. Innovation and Entrepreneurship: Practice and Principles, Reprint Edition, Harper Business, 2006. ISBN: 9780060851132.

3. Osterwalder, Alexander & Pigneur, Yves. Business Model Generation: A Handbook for Visionaries, Game Changers, and Challengers, 1st Edition, Wiley, 2010. ISBN: 9780470876411.

Reference Books:

- 1. Ries, Eric. The Lean Startup: How Today's Entrepreneurs Use Continuous Innovation to Create Radically Successful Businesses, 1st Edition, Crown Business, 2011. ISBN: 9780307887894.
- 2. Kawasaki, Guy. The Art of the Start 2.0: The Time-Tested, Battle-Hardened Guide for Anyone Starting Anything, Portfolio (Penguin Random House), 2015. ISBN: 9781591847847.

MOOC / NPTEL/YouTube Links: -

- 1. Entrepreneurship Essentials By Prof. Manoj Kumar Mondal IIT Kharagpur https://onlinecourses.nptel.ac.in/noc20_ge08/preview
- 2. Entrepreneurship By Prof. C Bhaktavatsala Rao IIT Madras https://onlinecourses.nptel.ac.in/noc21_mg70/preview
- 3. https://onlinecourses.nptel.ac.in/noc20_mg35
- 4. https://www.coursera.org/learn/entrepreneur-guide-beginners
- 5. https://wadhwanifoundation.org/

YouTube/Video Links

1. https://www.youtube.com/@wadhwani-foundation/videos

List of Assignments to be carried out during practical session

No	Title	Objective	Description
No	Title En- trepreneurial Mindset Reflection	Objective To encourage students to explore their personal views on entrepreneurship and recognize the key characteristics of an entrepreneurial mindset by studying the journey of a real-world entrepreneur	 Description Write a reflective essay (500-600 words) based on the following: Explain what entrepreneurship means to you personally. Identify an entrepreneur (Indian or global) whom you admire and explain the reasons for your admiration. Highlight specific mindset traits (e.g., risk-taking, resilience, innovation, adaptability) that contributed to this entrepreneur's success. Reflect on how these traits align with your own
			strengths or indicate areas you wish to develop.

	Idea		
2	Generation	To foster creativity,	Generate 10 Business Ideas
	Challenge	structured	Use any structured brainstorming technique
		brainstorming, and	Ideas can be tech-based, social impact, service-based,
		the ability to identify	or product-based
		potential business	2. Select One Idea- Choose the most promising idea
		opportunities based	from your list
		on real-world	3. Write a 1-page Concept Summary, include the
		problems.	following:
			• Problem Identified: Describe the specific problem or
			pain point your idea addresses.
			• Solution Overview: Briefly describe your business
			idea.
			• Target Audience: Identify the group of people or
			organizations that would benefit.
			• Market Potential: Discuss the viability and scalability
			of the idea.
	Business		
3	Model &	To help students	Part A: Business Model Canvas
	Customer	develop a clear.	1. Choose a business idea (from Assignment 2 or a
	Validation	structured business	new one).
		model and test its	2. Create a Business Model Canvas with all 9 key
		assumptions through	blocks:
		customer	o Customer Segments
		conversations. The	o Value Propositions
		goal is to learn how	o Channels
		to validate ideas	o Customer Relationships
		through real-world	o Revenue Streams
		feedback and refine	o Key Resources
		the business concept	o Key Activities
		accordingly.	o Key Partnerships
			o Cost Structure
			3. Present the BMC in visual or tabular format.

			Part B: Customer Interviews & Insights
			1. Identify 2–3 potential customers from your target
			segment.
			2. Conduct brief interviews (5–10 minutes each) to
			gather insights on:
			o Their pain points
			o Their reaction to your proposed solution
			o Willingness to pay or use your product/service
			3. Summarize findings in a 1–1.5 page report that
			includes:
			o Key customer quotes or paraphrased insights
			o A revised Value Proposition or Customer Segment
			block (if needed)
			o A short reflection: key learnings and potential
			changes to your idea
4	Business	To develop a practical	You are preparing to launch your business idea.
4	Launch Plan	understanding of how	Prepare a combined Marketing and Financial Snapshot
	– Marketing	marketing stratey and	including the following
	& Financial	financial planning go	Part A: Marketing Campaign Plan
	Snapshot	hand-in-hand in	 Define your target market by identifying primary
		launching a startup.	customers.
		Students will define a	 Design a mini-campaign using one or more of the
		basic marketing	following channels:
		campaign and align it	Social media (e.g., Instagram, LinkedIn)
		with estimated costs,	Print/digital flyers
		pricing, and projected	Email marketing
		revenue.	 Describe the campaign content, including the
			message or offer to be promoted.
			• Optionally, create 1–2 sample marketing materials.
			 Write a 300-word explanation outlining your
			marketing strategy and expected impact.
			Part B: Financial Snapshot
			1. Startup Costs – Estimate your initial costs (fixed +
			variable)
			2. Pricing Strategy – State your pricing model and
			justification
			3. Break-even Analysis – Basic cost vs. sales estimate
			4. 6-Month Revenue Projection – Expected sales and income
			5. Format: Use a simple table or spreadsheet (optional)

5	Elevator Pitch Video	To help students develop confidence and clarity in presenting their business idea in a short, compelling format. The exercise simulates real-world investor or networking scenarios where entrepreneurs must grab attention quickly.	Prepare a 90-second elevator pitch for your business idea (the same or refined idea used in earlier assignments). Your pitch should cover the following elements: o The Problem – Problem Identification o The Solution – Description of your product/service. o Value Proposition – The unique value proposition. o Target Audience – Audience for your idea. o Call to Action – E.g. request for support, funding, feedback, etc. Deliver Your Pitch: o Record a video and submit it with written version of your pitch. o Ensure clear speech, confident body language (for video), and persuasive tone. Reflection (Short Write-up): o Share what you learned about communicating your idea o Describe challenges or rewards you experienced in the process

Savitribai Phule Pune University Second Year of Electronics and Computer Engineering (2024 Course)				
	VEC-251-ECE: Environm	nent Awareness		
Teaching/scheme	Credits	Examination Scheme		
Theory: 02Hours/Week	02	CCE: 15 Marks End-Semester: 35 Marks		
Course Objectives:				
The objective of this cours	e is to provide students v	vith		
1. To introduce the multic	lisciplinary nature and sco	pe of environmental studies.		
2. To understand ecosyste	. To understand ecosystem structures, biodiversity, and ecological balance through hands-			
on ob- servation and do	on ob- servation and documentation.			
3. To examine the use and	3. To examine the use and impact of natural resources on environmental sustainability.			
4. To explore biodiversity conservation practices and develop eco-sensitive thinking through field- based inquiry.				
Course Outcomes:				
After successful completion	of the course, students	vill be able to:		
CO1: Illustrate the interdependence of ecosystems through activity-based exploration				
CO2: Analyze the role of natural resources in sustainable development using real-world data.				
CO3: Investigate biodiversity threats and conservation strategies through surveys and projects				
CO4: Create awareness tools or reports promoting sustainability based on their findings.				
Course Contents				

Environment and Ecosystem

- 1. Environment Meaning of Environment, Types of Environments, Components of Environment,
- 2. Man- Environment relationship, importance of environment,
- 3. Need for Public Awareness
- 4. Ecosystem-Meaning, Major Components of Ecosystem
- 5. Case studies of Forest Ecosystem, Grassland Ecosystem, Desert Ecosystem, Aquatic Ecosystem
- 6. Stability of Ecosystem in Sustainable Environment

Environment Pollution

- 1. Definition of Pollution, Types of Pollution
- 2. Air Pollution-Meaning, Sources, effects of air pollution, Air Pollution Act
- 3. Water Pollution Meaning, Sources, Effects of Water pollution, Water Pollution Act
- 4. Noise Pollution Meaning, Sources, Effect of Noise Pollution
- 5. Solid Waste Pollution Meaning, sources, Effect of Waste Pollution
- 6. Environment Protection Act Air (Prevention and control of Pollution) Act,
- 7. Water Act (Prevention and control of Pollution) Act,
- 8. Solid waste Pollution Act in India
| | Practical Assignments | | |
|---|--|--|--|
| Week | Topic to be covered | | |
| 1 | Introduction: Group discussion and poster making on "Why Environmental Studies
Matter for Technologists" | | |
| 2 | Eco Mapping: Identify and document elements of an ecosystem within the college campus | | |
| 3 | Model the Food Web: Create food chains and food webs using flowcharts (digital tools
like Canva / Lucid chart) | | |
| 4 | Case Study Review: Present real-world examples of forest, grassland, and aquatic ecosystems | | |
| 5 | Soil and Water Testing Activity: Test soil pH, water quality (use school-level kits), and interpret results | | |
| 6 | Field Visit / Virtual Tour: Document deforestation or mining impact in a chosen region;
students prepare a comparative report | | |
| 7 | Water Audit Exercise: Estimate water usage at home/hostel and identify areas of overuse; propose conservation measures | | |
| 8 | Renewable Energy Models: Create a simple model or PPT on any renewable energy
source (e.g., solar cooker, wind energy demo) | | |
| 9 | Biodiversity Documentation: Survey nearby areas for plant/animal species; identify any endemic/endangered species | | |
| 10 | Conservation Proposal Pitch: In groups, students prepare a mini proposal for biodiversity conservation at local level | | |
| 11 | Group Project Work: Work on mini project report/documentation on any ecosystem/natural resource/e-waste management topics | | |
| 12 | Presentation & Viva: Final presentation and oral examination based on project work and learning portfolio | | |
| Learni | ng Resources | | |
| Textbo | ooks: | | |
| 1. Odum, Eugene P. "Fundamentals of Ecology" | | | |
| 2. R. Rajagopalan, "Environmental Studies – From Crisis to Cure", Oxford | | | |
| Refere | ence Books: | | |
| 1. Erach Bharucha, Textbook of Environmental Studies, OGC | | | |
| 2. Anuona Kausnik anu C.P. Kausnik, Environmental Studies , New Age International | | | |
| | | | |
| 1. <u>nttps://www.environment.gov.in</u> | | | |
| 2. <u>nttps://www.unep.org</u> | | | |

Savitribai Phule Pune University, Pune

Maharashtra, India

Task Force for Curriculum Design and Development

Programme Co-ordinator

Dr. Prachi Mukherji, Dr. S. K. Moon Member, Board of Studies-Electronics & Telecomm Engineering

Core Committee Members

Dr. Prachi Mukherji	MKSSS Cummins College of Engg for Women, Pune
Dr. S. K. Moon	Pune Institute of Computer Technology, Pune
Dr. R. P. Pawase	Amrutvahini College of Engineering, Sangamner
Dr. B. S. Agarkar	Sanjivani College of Engineering, Kopargaon

Team Members for Course Design

Analog and Digital Electronic Circuits		
Dr.B.D. Jadhav (M-BoS)	Rajarshi Shahu College of Engineering, Pune	
Dr .S.K.Moon (M-BoS)	Pune Institute of Computer Technology, Pune	
Dr. Yogesh Thakre	PVGs College of Engineering, Pune	
Dr. P. P. Chitte	Pravara Rural Engineering College, Loni	
Dr. S. V. Mahajan	Sir Visvesvaraya Institute of Technology, Nashik	

Data Structure and Algorithms		
Dr. S. K. Moon(M-BoS)	Pune Institute of Computer Technology, Pune	
Dr. G. R. Patil	AIT., Pune	
Dr. S. B. Rahane	Amrutvahini College of Engineering, Samgamner	
Mr. S. D. Anap	Pravara Rural Engineering College, Loni	
Prof. Dhekale Santosh B.	AISSMS, CoE, Pune	
Dr. Varsha Deogaonkar	I2IT, Pune	

Discrete Mathematics	
Dr. N.S. Mujumdar	JSPM's Rajarshi Shahu College of Engineering, Pune
Dr. Pravin Thakare	Zeal College of Engg & Research, Narhe, Pune
Dr. Radhika Menon	BoS Engg Science Co-ordinator, SPPU
Dr. Dipak Mahurkar	Sanjivani College of Engineering, Kopargaon
Ms. T. B. Katte	Pravara Rural Engineering College, Loni
Ms. N. S. Sapike	Pravara Rural Engineering College, Loni

Statistical Data Analysis and Visualization		
Dr. Prachi Mukherji(M-BoS)	MKSSS Cummins College of Engineering for Women, Pune	
Ms. Sneha Nahatkar	Pune Institute of Computer Technology, Pune	

Engineering Economics & Applications		
Dr. B. S. Agarkar(M-BoS)	Sanjivani College of Engineering, Kopargaon	
Dr. Pratap Shinde	BSCOER, Narhe, Pune	
Dr. S. P. Ghodake	Sanjivani College of Engineering, Kopargaon	
Dr. Makrand Jadhav	RMD Sinhgad SoE, Pune	
Dr. J. P. Shinde	RMD Sinhgad SoE, Pune	

Community Engagement Project		
Dr. Shailesh Kulkarni (M-BoS)	VIIT, Pune	
Mr. R. R. Bhambare	Pravara Rural Engineering College, Loni	
Dr. A.N. Paithane	Rajarshi Shahu College of Engineering, Pune	
Dr. P.M. Ghate	Rajarshi Shahu College of Engineering, Pune	

Communication Systems		
Dr. Prachi Mukherji(M-BoS)	MKSSS Cummins College of Engineering for Women, Pune	
Dr. S. K. Jagtap	NBN Sinhgad Technical Institutes Campus, Pune	
Kavita Waghmode	Dattakala Group of Institutions Faculty of Engineering, Bhigwan	
Swapnil Bangal	Pravara Rural Engineering College, Loni	
Dr. P. N. Kota	MECOE, Pune	

Signals and Systems		
Dr .R. S. Pawase (M-BoS)	Amrutvahini College of Engineering, Sangamner	
Dr.D. G. Bhalke	Dr. D. Y. Patil Institute of Technology, Pune	
Dr. R. G. Mapari	PCCOER, Pune	
Dr. (Mrs.) S. S. Gundal	Amrutvahini College of Engineering, Sangamner	
Dr. Manjare C. A.	JSCOE, Pune	

Object Oriented Programming		
Dr. S. K. Moon(M-BoS)	Pune Institute of Computer Technology, Pune	
Dr. V. S. Ubale	Amrutvahini College of Engineering, Sangamner	

Dr. S. B. Rahane	Amrutvahini College of Engineering, Sangamner	
Shashikala Koti	Sinhgad College of Engineering, Pune	
AI and Machine Learning Fundamentals		
Dr. S. K. Moon(M-BoS)	Pune Institute of Computer Technology, Pune	
Dr. B. H. Pan sambal	Zeal College of Engineering & Research, Pune	
Dr. S. A Shaikh	Pravara Rural Engineering College, Loni	
Dr. Minakshi Patil	Sinhgad Academy of Engineering, Pune	

Vocational and Skill Enhancement Course-III	
Dr. Prachi Mukherji (M-BoS)	MKSSS Cummins College of Engineering for Women, Pune
Dr. B. H. Pansambal	Zeal College of Engineering & Research, Pune
Dr. Sumit Patil	Zeal College of Engineering & Research, Pune

Entrepreneurship skill Development	
Dr. Sandeep Musale (M-BoS)	MKSSS Cummins College of Engineering for Women, Pune
Dr Pratap Shinde	BSCOER, Narhe, Pune
Mr. R. R. Bhambre	Pravara Rural Engineering College, Loni
Dr. M. M. Jadhav	NBN, Pune

Chairman

Dr. S. D. Shirbahadurkar - Board of Studies Electronics & Telecomm. Engineering

Savitribai Phule Pune University, Pune

Dean

Dr. Pramod Patil -Dean-Science and Technology

Savitribai Phule Pune University, Pune
