Total No. of Questions : 8]

P2689

[5528]-11 M.A./M.Sc. MATHEMATICS MT-501 : Real Analysis - I (2008 Pattern) (Semester - I)

Time : 3 Hours]

Instructions to the candidates:

- 1) Attempt any five questions.
- 2) Figures to the right indicate full marks.
- **Q1)** a) Let $X = \mathbb{R}^2$ and $d: X \times X \to \mathbb{R}$ defined by $d(x, y) = |x_1 y_1| + |x_2 + y_2|$, where $x = (x_1, x_2), y = (y_1, y_2)$ then show that d is a metric on X. [6]
 - b) Define normed linear space and give examples of two different norms on ℝⁿ.
 - c) Define interior of a set in a metric space (X, d). If $A, B \subset X$ then it is true that $Int(A \cup B) = Int(A) \cup Int(B)$? Why? [5]
- **Q2)** a) If M_f denote $\{A_k \subset \mathbb{R}^n / D(A_k, A) \to 0 \text{ as } k \to \infty\}$ for some sequence in A_k in \in then prove that M_1 is a ring. [6]
 - b) State and prove Heine Borel theorem. [5]
 - c) With usual notations prove that m^* is translation Invariant. [5]
- **Q3)** a) Let $f:\mathbb{R}^n \to \mathbb{R} \cup \{\pm \infty\}$ then show that the following statements are equivalent [6]
 - i) $\{x/f(x) > a\}$ is measurable.
 - ii) $\{x/f(x) \ge a\}$ is measurable for any $a \in \mathbb{R}$.
 - b) If f is measurable function then prove that |f| is also measurable. [5]
 - c) Let A, B, C be subsets of \mathbb{R}^n then with usual notations prove that S(A,C) \subseteq S(A,B) \cup S(B,C) and D(A,C) \subseteq D(A,B)+D(B,C). [5]

[Total No. of Pages : 2

SEAT No. :

[Max. Marks : 80

P.T.O.

- *Q4*) a) State and prove monotone convergence theorem. [6]
 - b) Prove that Cantor set is a Lebesque measurable set and it has measure zero. [5]

c) Find Interior of A =
$$\left\{\frac{1}{n}/n \in \mathbb{N}\right\}$$
 and Q $\subset \mathbb{R}$. [5]

Q5) a) Show that a constant function and continuous function both are measurable. [6]
b) State and Fatou's Lemma. [5]
c) Give an example of non-measurable function. [5]
Q6) a) State and prove Holder's inequality. [6]

- b) Define counting measure and probability measure. [5]
- c) Prove that f = 0, a.e. on E. [5]

if
$$\int_{E} f dm = 0, \forall E \subset M.$$

Q7) a) Show that classical Fourier series for
$$f(x) = x$$
 is $2\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin(nx)$. [8]

- b) Apply Gram smidth process to functions $1, x, x^2, \dots$ to obtain formulas for first three Legender polynomials. [8]
- **Q8)** a) State and prove Banach contraction principle. [8]
 - b) State and prove Riesz Fischer theorem. [8]

Total No. of Questions :8]

P2690

[5528]-12 M.A./ M.Sc. MATHEMATICS MT-502: Advanced Calculus (2008 Pattern) (Semester - I)

Time : 3Hours] Instructions to the candidates:

1) Attempt any five questions.

2) Figures to the right indicate full marks.

(Q1) a) Show that the composition of continuous functions is always continuous. [6]

b) A scalar field f is defined on \mathbb{R}^n by the equation $f(\overline{x}) = \overline{a} \cdot \overline{x}$, where \overline{a} is a constant vector. Compute f'(x; y) for arbitrary x and y. [5]

c) Define the gradient vector of a scalar field f at \overline{a} . Find the gradient vector for the scalar field $f(x, y) = (x^2 + y^2) \sin(xy)$ at $\left(1, \frac{\pi}{2}\right)$. [5]

- (*Q2*) a) State and prove chain rule for the derivatives of vector fields. [8]
 - b) Let $u = \frac{x y}{2}$ and $v = \frac{x + y}{2}$ changes f(u, v) into F(x, y). Use an appropriate from of the chain rule to express the partial derivatives $\frac{\partial F}{\partial x}$ and $\frac{\partial F}{\partial y}$ in terms of the partial derivatives $\frac{\partial f}{\partial u}$ and $\frac{\partial f}{\partial v}$. [4]
 - c) Evaluate the directional derivative of $f(x, y, z) = \left(\frac{x}{y}\right)^{z}$ at (1, 1, 1) in the direction of $2\overline{i} + \overline{j} \overline{k}$. [4]

P.T.O.

SEAT No. :

[Total No. of Pages :3

[Max. Marks : 80

Q3) a) Show that the work done by a constant force depends on the endpoints and not on the path joining them.[6]

b) Evaluate
$$\int_{c} \frac{(x+y)dx - (x-y)dy}{x^2 + y^2},$$

Where c is the circle $x^2+y^2 = 4$, traversed once in counter clockwise direction. [5]

- c) Determine whether or not the vector field $\overline{f}(x, y) = 3x^2y\overline{i} + x^3y\overline{j}$ is a gradient on any open subset of \mathbb{R}^2 . [5]
- Q4) a) State and prove the second fundamental theorem of calculus for line integrals.[6]

b) Evaluate
$$\iint_{Q} (\sqrt{y} + x - 3xy^2) dxdy$$
 where $Q = [0, 1] \times [1, 3].$ [5]

c) Compute the volume of the solid enclosed by the ellipsoid
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$
.
[5]

- Q5) a) State the formula for change of variable in double integrals. Prove the formula for a particular case when the region of integration is rectangle and the function with constant value 1. [6]
 - b) Let f be defined on the rectangle $Q = [0, 1] \times [0, 1]$ as $f(x, y) = \begin{cases} 1 - x - y & \text{if } x + y \le 1 \\ 0 & \text{otherwise} \end{cases}$ make a sketch of the ordinate set of f over Q and compute the volume of this ordinate set by double integration.
 [5]
 - c) Evaluate the line integral $\int_{C} (5-xy-y^2) dx (2xy-x^2) dy$, where *C* is the square with vertices (0, 0), (1, 0), (1, 1) (0, 1) traversed counterclockwise. [5]

Q6) a) Prove the transformation formula $\iint_{S} f(x, y, z) dx dy dz = \iiint_{T} F(\sigma, \theta \phi) \sigma^{2} \sin \phi d\rho d\theta d\phi$

where $x = \rho \cos \theta \sin \phi$, $y = \rho \sin \theta \sin \phi$, $z = \rho \cos \phi$, and $\rho > 0$, $0 \le \theta < 2\pi$, and $0 \le \phi < \pi$. Justify your steps. [6]

- b) Let S be a parametric surface whose vector representation is $\overline{r}(u,v) = (u+v)\overline{i} + (u-v)\overline{j} + (1-2u)\overline{k}$ Find the fundamental vector product and the unit normal to the surface. [5]
- c) Use a suitable linear transformation to evaluate the double integral $\iint_{S} (x y^2) \sin^2(x + y) dx dy$

Where S is the parallelogram with vertices $(\pi, 0), (2\pi, \pi), (\pi, 2\pi), (0, \pi)$. [5]

Q7) a) State and prove stoke's theorem . [8] b) Determine the Jacobian matrix and compute the curl and divergence of vector field $\overline{F}(x, y, z) = xy^2 z^2 \overline{i} + z^2 \sin y \, \overline{j} + x^2 e^y \overline{k}$. [8]

Q8) a) Calculate the curl and divergence of a gradient of scalar field. [8]

b) i) Let \overline{r} and \overline{R} be smoothly equivalent functions related by the equation $\overline{R}(s,t) = \overline{r}(\overline{G}(s,t))$, where $\overline{G}(s,t) = U(s,t)\overline{i} + V(s,t)\overline{j}$ is a one-one continuously differentiable mapping of a region B in the st-plane onto a region A in the uv-plane. Prove that [6]

$$\frac{\partial \overline{R}}{\partial s} \times \frac{\partial \overline{R}}{\partial t} = \left(\frac{\partial \overline{r}}{\partial u} \times \frac{\partial \overline{r}}{\partial v}\right) \frac{\partial(u, v)}{\partial(s, t)}$$

Where the partial derivatives are evaluated at the point (u(s, t), v(s, t)).

[2]

ii) State Gauss divergence theorem.

Total No. of Questions : 8]

P2691

SEAT No. :

[Total No. of Pages : 4

[5528]-13 M.A./M.Sc.

MATHEMATICS

MT-503 : Linear Algebra

(2008 Pattern) (Semester-I)

Time : 3 Hours]

[Max. Marks : 80

Instructions to the candidates:

- 1) Attempt any five questions.
- 2) Figures to the right indicates full marks.
- 3) V denotes a finite dimensional vector space over the field K.
- **Q1)** a) Let X and Y be finite subsets of a vector space V. If Y is a linearly independent and $V = \langle X \rangle$, then prove that $|Y| \le |X|$. [6]
 - b) Find dimensions of the following subspaces of the vector space $\mathbb{R}^{n \times n}$ of all $n \times n$ matrices over \mathbb{R} : [6]

$$W_{1} = \left\{ \mathbf{A} \in \mathbb{R}^{n \times n} / \mathbf{A} = \mathbf{A}^{t} \right\}$$
$$W_{2} = \left\{ \mathbf{A} \in \mathbb{R}^{n \times n} / \mathbf{A} = -\mathbf{A}^{t} \right\}$$
$$W_{3} = \left\{ \mathbf{A} \in \mathbb{R}^{n \times n} / \text{trace } \mathbf{A} = 0 \right\}$$

c) Let T: ℝ[x] → ℝ[x] be defined by T(p(x)) = x p(x). Show that T is a linear operator on ℝ[x]. Also if D is the differential operator on ℝ[x], then show that DT-TD=I. [4]

P.T.O.

(Q2) a) State and prove first and second isomorphism theorem for vector spaces.

b) Let
$$W = \langle [1,2,1,0,1]^t, [1,0,1,1,1]^t, [1,2,1,3,1]^t \rangle$$
 a subspace of \mathbb{R}^5 . Find a basis of \mathbb{R}^5 / W . [5]

- c) Give a one-one linear map $T: \mathbb{R}^2 \to \mathbb{R}^3$. Can this map be onto? Justify.[5]
- **Q3)** a) Let W_1, \dots, W_m be subspaces of a vector space V. If [6]
 - i) $V = W_1 + \dots + W_m$, and
 - ii) For each k, $W_k \cap \sum_{i \neq k} W_i = \{0\}$ then prove that $V \simeq W_1 \oplus \dots \oplus W_m$.

b) Let D be the differential operator on the vector space $\mathbb{R}_4[x]$. Find the matrix of D with respect to the basis $\{1, x, x^2, x^3, x^5\}$. [5]

- c) Let A and B be similar matrices over \mathbb{R} . Show that A and B have same characteristic polynomials. [5]
- *Q4*) a) State and prove primary decomposition theorem. [6]
 - b) Let A be a 5×5 matrix with minimal polynomial $x^3(x-1)$. What can be its characteristic polynomial? Is A diagonalizable? Is A invertible? [5]
 - c) Show that if λ is an eigen value of T and p(x) ∈ k[x], then p(λ) is an eigen value of p(T). [5]

- Q5) a) Define geometric multiplicity and algebraic multiplicity of an eigen value of an operator. Prove that the geometric multiplicity of an eigen value cannot exceed its algebraic multiplicity. [6]
 - b) Write all possible Jordan Canonical form of the matrix whose characteristic polynomial is $(x^3 1)^2$. [5]
 - c) What do you mean by a diagonalizable matrix. Give two non-diagonal 3×3 matrices A and B such that A is diagonalizable but B is not diagonalizable. [5]
- *Q6)* a) Explain the rational canonical form of a matrix. Prove that two matrices are similar if and only if they have same rational canonical forms.
 - b) Define an inner product on the vector space of $n \times n$ matrices over \mathbb{C} .

Show that
$$|tr(AB^*)| \leq \sqrt{tr(AA^*)tr(BB^*)} \leq \frac{tr(AA^*) + tr(BB^*)}{2}$$
 for

$$\mathbf{A}, \mathbf{B} \in \mathbb{C}^{n \times n} \,. \tag{5}$$

- c) Prove the polarization identities for the inner product space. [5]
- Q7) a) State and prove Riesz representation theorem for finite dimensional inner product space.[6]
 - b) Let T be a self adjoint operator on an inner product space V. Prove that [5]
 - i) For all $v \in V$, $\langle Tv, v \rangle$ is real,
 - ii) If $\langle Tv, v \rangle = 0$, for all $v \in V$, then $T \equiv 0$.
 - c) Let T be a self adjoint operator on a finite dimensional inner product space V. Then prove that T is positive definite if and only if all eigen values of T are positive. [5]

- **Q8)** a) Let V be a finite dimensional inner product space and let $T \in L(V)$. Then prove that the following statements are equivalent. [6]
 - i) T is unitary.
 - ii) $\langle Tu, Tv \rangle = \langle u, v \rangle$, for all $u, v \in V$.
 - iii) $||\mathbf{T}u|| = ||u||$, for all $u \in \mathbf{V}$.
 - b) Find a polar decomposition of the following matrix. [5]
 - $\begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$
 - c) Prove that a bilinear form is reflexive if and only if it is either symmetric or alternating. [5]

\rightarrow \rightarrow \rightarrow

Total No. of Questions :8]

P2692

[5528]-14 M.A./ M.Sc. MATHEMATICS MT-504: Number Theory (2008 Pattern) (Semester - I)

Time : 3Hours/ [Max. Marks : 80 Instructions to the candidates: Attempt any five questions. 1) Figures to the right indicate full marks. 2) *Q1*) a) State and prove wilson's Theorem. [6] Solve the congruence $x^2 + x + 7 \equiv 0 \pmod{15}$. b) [5] What are the last two digits of 3^{545} . c) [5] Let p be a prime. Prove that $x^2 \equiv -1 \pmod{p}$ has a solution if and only if *Q2*) a) $p=2 \text{ or } p \equiv 1 \pmod{4}$. [6] Solve the set of congruences $x \equiv 1 \pmod{4}$, $x \equiv 0 \pmod{3}$, $x \equiv 5 \pmod{7}$ b) [5] Exhibit reduced residue system modulo7 composed entirely of powers of c) 3. [5] Let a be an integer and p be an odd prime and (a,p)=1. Consider the *Q3*) a) integers a, 2a, 3a, $(\frac{p-1}{2})$ a and their least positive residues modulo p. If n denotes the number of these residues that exceed $\frac{p}{2}$ then prove that $\left(\frac{a}{n}\right) = (-1)^n$. [6] *P.T.O.*

SEAT No. :

[Total No. of Pages :3

- b) Let a and b be integers and p be a prime, P>2, such that (a,p) = (b,p)=1. Prove that if $x^2 \equiv a \pmod{p}$ and $x^2 \equiv b \pmod{p}$ are not solvable then $x^2 \equiv ab \pmod{p}$ is solvable. [5]
- c) Prove that 3 is quadratic residue of 13 but a quadratic non-residue of 7.[5]
- *Q4*) a) Let Q be an odd positive integer then prove that [6]

i)
$$\left(\frac{-1}{Q}\right) = (-1)^{\frac{Q-1}{2}}$$

ii)
$$\left(\frac{2}{Q}\right) = \left(-1\right)^{\frac{Q^2-1}{8}}$$

- b) Verify that $x^2 \equiv 10 \pmod{89}$ is solvable. [5]
- c) Find all primes p such that $\left(\frac{-2}{p}\right) = 1$. [5]
- **Q5)** a) Let f(n) be a multiplicative function and let $F(n) = \sum_{d/n} f(d)$ then prove that F(n) is multiplicative function. [6]
 - b) Prove that $\prod_{d/n} d = n^{d(n)/2}$ for any positive integer n. [5]
 - c) For what real number *x*. [5]
 - i) [x+3] = [x] + 3
 - ii) [9x] = 9
 - iii) [x+3] = x+3

Q6) a) Let p be a prime, prove that the largest exponent e such that $P^e / n!$ is

$$e = \sum_{i=1}^{\infty} \left[\frac{n}{p^i} \right].$$
 [6]

b) Evaluate
$$\sum_{j=1}^{\infty} \mu(j!)$$
 [5]

- c) Find all integers x and y such that 147x+258y=369. [5]
- **Q7)** a) Let f(x) be a monic polynomial with integral coefficients, f(x) = g(x) h(x)where g(x) and h(x) are monic polynomials with rational coefficients then prove that g(x) and h(x) has integral coefficients. [6]
 - b) Let α be an integer in $Q(\sqrt{m})$ such that N (α) = $\pm p$ then prove that α is a prime in $Q(\sqrt{m})$ [5]
 - c) If α and $\beta \neq 0$ are integers in $Q(\sqrt{m})$ and α/β then prove that α/β and $N(\alpha)|N(\beta)$. [5]
- **Q8)** a) Prove that the fields $Q(\sqrt{m})$ for m= -1,-2,-3,-7,2,3 are Euclidean so have unique factorisation property. [8]
 - b) Prove that the reciprocal of a unit is a unit and the set of units in an algebraic number field form a multiplicative group. [5]
 - c) Prove that $\sqrt{3} + 1$ and $\sqrt{3} 1$ are associates in $Q(\sqrt{3})$. [3]

0000

Total No. of Questions :8]

P2694

Time : 3Hours]

[5528]-21 M.A./M.Sc. MATHEMATICS MT-601: General Topology (2008 Pattern) (Semester - II)

[Max. Marks : 80

Instructions to the candidates: 1) Attempt any five questions.

2) Figures to the right indicate full marks

Q1)	a)	If $\{T_{\alpha}\}_{\alpha \in J}$ is a collection of topologies on X then show that $\cap \tau_{\alpha}$, is
		again topology on X. Give an example to show that $\bigcup \tau_{\alpha}$ may not b	e a
		topology on X.	[8]
	b)	Prove that countable union of countable sets is again countable.	[5]
	c)	Define: Basis for a topology τ on X with an example.	[3]
Q2)	a)	Prove that every compact Hausdorff space is regular.	[8]
	b)	Define order topology on set X having simple order relation with methan one element.	ore [5]
	c)	State intermediate value theorem	[3]
Q3)	a)	State and prove Pasting lemma.	[8]
	b)	Show that every retraction map is a quotient map.	[5]
	c)	State Tietz extension theorem.	[3]
Q4)	a)	State and prove tube lemma.	[8]
	b)	Prove that continuous image of connected set is again connected.	[5]
	c)	Define:	[3]
		1) Lower limit Topology on \mathbb{R}	
		2) K-topology on \mathbb{R}	
		3) Upper limit Topology on \mathbb{R}	

SEAT No. :

[Total No. of Pages :2

Q5)	a)	State and prove Urysohns lemma.	[8]
	b)	State and prove Lebesgue number lemma.	[8]
Q6)	a)	State and prove Tychnoff's theorem.	[8]
	b)	Let $\Delta = \{x \times x \mid x \in X\}$ be the set in X×X where X is a topological spectrum of the term of	pace.
		Then show that X is Hausdorff space if and only if Δ is closed in	×××. [5]
	c)	Prove that [0,1] and [1,2] are homeomorphic.	[3]
Q 7)	a)	Prove that compactness implies limit point compactness. but conversally.	: not [8]
	b)	Let f:A \rightarrow X×Y is a map given by $f(a) = (f_1(a), f_2(a)) \forall a \in A$ then p	rove

- b) Let $f: A \to X \times Y$ is a map given by $f(a) = (f_1(a), f_2(a)) \forall a \in A$ then prove that f is continuous if and only if $f_1: A \to X$ and $f_2: A \to Y$ are continuous [8]
- (Q8) a) Let $\{A\alpha\}_{\alpha \in J} B$ be the arbitrary collection of subsets of X, then show that $\bigcup_{\alpha \in J} \overline{A}_{\alpha} \subseteq \overline{\bigcup_{\alpha \in J} A_{\alpha}}$ but not conversally. [8]

b) Prove that continuous image of a compact set is gain compact. [5]

c) Show that every retraction map is quotient map. [3]

Total No. of Questions : 8]

P2696

[5528]-23 M.A./M.Sc. MATHEMATICS MT-603 : Groups and Rings (2008 Pattern) (Semester-II)

Time : 3 Hours] Instructions to the candidates: [Max. Marks : 80

- 1) Attempt any Five questions.
- 2) Figures to the right indicate full marks.
- Q1) a) Define normal subgroup. Give an example of a group which is non abelian but has a proper normal subgroup. Justify the answer. [5]
 - b) Find the inverse of the element $A = \begin{bmatrix} 1 & 3 \\ 2 & 5 \end{bmatrix}$ in $GL(2, \mathbb{Z}_{11})$. [5]
 - c) Prove that a cyclic group is isomorphic to \mathbb{Z} or \mathbb{Z}_n , for some $n \in \mathbb{N}$.[6]
- Q2) a) Let H be finite subset of a group G. Then prove that H is a subgroup of G if and only if H is closed under the operation of G. Can (Z,+) contain a finite subgroup other than (0)? Justify.
 - b) Give examples of two non isomorphic groups of order 4 with justification.[5]
 - c) Prove that every subgroup of a cyclic group is cyclic. Moreover prove that, if |⟨a⟩| = n, then the order of any subgroup of ⟨a⟩ is a divisor of n; and for each positive divisor k of n, the group ⟨a⟩ has exactly one subgroup of order k.
- **Q3)** a) Suppose that H is a proper subgroup of \mathbb{Z} under addition and H contains 10 and 14. Determine H. [5]
 - b) Let G be a finite abelian group and let p be a prime that divides the order of G. Then prove that G has an element of order p. [5]
 - c) Let G be a finite group and p be a prime. If p^k divides |G|, then prove that G has at least one subgroup of order p^k . [6]

SEAT No. :

[Total No. of Pages : 2

Q4) a) Find the inverse and the order of each of the following permutations in S_{14} . [5]

- i) (1139)(2410)(71265) ii) (12103134)(715)(289).
- b) If N is a normal subgroup of a group G and |G/N| = m, show that $x^m \in N$ for all x in G. [5]
- c) State and prove the Lagrange's theorem for finite groups. Is the converse of the theorem true? Justify. [6]

- b) Is $(\mathbb{R},+)$ isomorphic to (\mathbb{R}^*,\times) ? Justify your answer. [5]
- c) If $\tau = (6\ 10\ 4)\ (5\ 11\ 9),\ \rho = (5\ 6\ 8\ 3\ 1)\ (9\ 2\ 10) \in S_{19}$. Then find $\tau^{-1}\rho\tau$ and $\rho^{-1}\tau\rho$. [6]
- *Q6)* a) Prove that if G is a group, then set of automorphisms of G, Aut(G) is a group.[5]
 - b) Determine all the homomorphisms from \mathbb{Z}_{20} to \mathbb{Z}_{24} . [5]
 - c) Find all the non isomorphic abelian groups of order 4900. [6]

Q7) a) Let H be an index 2 subgroup at group G. Prove that $a^2 \in H, \forall a \in G.$ [5]

- b) Find the group of inner automorphisms of dihedral group D_4 i.e. find $Inn(D_4)$. [5]
- c) let G be a finite group and let p be a prime. Then prove that the number of Sylow p-subgroups of G is equal to 1 modulo p and divides |G|. Also prove that, any two Sylow p subgroups of G are conjugate. [6]
- (Q8) a) Suppose that G is an abelian group with an odd number of elements. Show that the product of all of the elements of G is the identity. [5]
 - b) Prove that the group of order 56 is not simple. [5]
 - c) Let p be a prime integer and let G be a group such |G|=p². Prove that G is abelian.

Total No. of Questions : 8]

P2697

SEAT No. :

[Total No. of Pages : 3

[5528]-24 M.A./M.Sc. MATHEMATICS

MT-604 : Complex Analysis (2008 Pattern) (Semester-II)

Time : 3 Hours]

Instructions to the candidates:

- 1) Solve any five questions.
- 2) Figures to the right indicate full marks.
- **Q1)** a) State and prove Liouville's theorem. Using it, prove that sin z is an unbounded function on \mathbb{C} . [6]

b) Let R be the radius of convergence of the power series $\sum a_n z^n$. Prove

that
$$R = \lim \left| \frac{a_n}{a_{n+1}} \right|$$
. [5]

c) Let
$$\gamma(t) = e^{it}$$
, $0 \le t \le 2\pi$. Then evaluate the integrals: [5]

i)
$$\int_{\gamma} \frac{e^{iz}}{z^2} dz$$

ii)
$$\int_{\gamma} \frac{dz}{(z-2)^5}$$

- **Q2)** a) Let $u: \mathbb{C} \to \mathbb{C}$ be a harmonic function. Prove that u has a harmonic conjugate. [6]
 - b) Prove that if both f and \overline{f} are analytic on \mathbb{C} , then f is constant. [5]
 - c) Prove that a Mobius transformation takes circles onto circles. [5]

[Max. Marks : 80

- Q3) a) Find a Mobius transformation which takes right half plane onto the unit disc.[6]
 - b) Find the radius of convergence for the following series: [5]

i)
$$\sum 3^n z^n$$

ii)
$$\sum \frac{z^n}{n!}$$

- c) Show that if f = u + iv is analytic on \mathbb{C} , then u, v and uv are harmonic functions. [5]
- **Q4)** a) Let f be analytic in the disc B(a, R) and let γ be a closed rectifiable curve in B(a, R). Prove that $\int_{\gamma} f = 0$. [6]
 - b) Let f be analytic in B(a, R) and suppose f(a) = 0. Show that a is a zero of multiplicity m if and only if $f^{(m-1)}(a) = ... = f(a) = 0$ and $f^{(m)}(a) \neq 0$. [5]
 - c) Let G be simply connected and $f: G \to \mathbb{C}$ be analytic in G. Prove that f has a primitive in G. [5]
- **Q5)** a) State and prove the Casorati-Weierstrass theorem. [6]
 - b) Find a Mobius transformation which map the points 0,1,∞ onto the points 0, 1/2, 1, respectively. [5]
 - c) Identify the analytic function f on the unit disc such that [5]

$$f(1/n) = \frac{n}{2n+1}$$
 for $n = 2,3, \dots$

- **Q6)** a) Suppose f has an isolated singularity at z = a. Prove that z = a is a removable singularity if and only if $\lim_{z \to a} (z a) f(z) = 0$. [6]
 - b) Classify the singularities of the following functions: [5]

i)
$$\frac{\sin z}{z(z-2)}$$

- ii) $\sin(1/z)$
- c) Let f and g be entire functions such that $fg \equiv 0$. Prove that $f \equiv 0$ or $g \equiv 0$. [5]

- i) Morera's theorem
- ii) Open mapping theorem
- iii) Goursat's theorem
- b) Let f be analytic and non-vanishing in a region G. Prove that there is analytic g such that $f(z) = e^{g(z)}$. [5]
- c) State and prove Schwarz's lemma. [5]
- Q8) a) State Rouche's theorem. Using it, prove the fundamental theorem of algebra.[6]
 - b) Let f be a non-constant analytic function on a bounded open set G and is continuous on \overline{G} . Prove that either f has a zero in G or |f| assumes its minimum value on the boundary of G. [5]

c) Using residue theorem, show that
$$\int_0^\infty \frac{\sin x}{x} dx = \frac{\pi}{2}$$
. [5]

$$\rightarrow$$
 \rightarrow \rightarrow

P2698

Time : 3 Hours

SEAT No. :

[Total No. of Pages : 2

[5528]-25 M.A./M.Sc. MATHEMATICS MT - 605 : Partial Differential Equations

(2008 Pattern) (Semester - II)

[Max. Marks : 80

Instructions to the candidates:

- 1) Attempt any five questions.
- 2) Figures to the right indicate full marks.

Q1) a) Eliminate the arbitrary function from the function F $(x+y, x^2+y^2+z^2)$ and find the corresponding partial differential Equations. [6]

- b) Find the general solution of z(z-y)dx + z(z+x)dy + x(x+y)dz = 0. [6]
- c) Define the following terms and example of each [4]
 - i) Linear equation
 - ii) Non-linear equation
- **Q2)** a) Find general solution of $y^2 p xy q = x(z-2y)$. [6]
 - b) State the conditions for equation f(x, y, z, p, q) = 0 and g(x, y, z, p, q) = 0to be compatible on the Domain D. [4]

c) Find the complete integral of $p^2 + q^2 = x + y$. [6]

Q3) a) If $h_1 = 0$ and $h_2 = 0$ are compatible with f = 0, then, prove that h_1 and h_2 satisfy $\frac{\partial(f,h)}{\partial(x,u_x)} + \frac{\partial(f,h)}{\partial(y,u_y)} + \frac{\partial(f,h)}{\partial(z,u_z)} = 0$ where $h_i, i = 1, 2$. [6]

b) Verify that the equation is integrable

$$yz(y+z)dx + zx(x+z) dy + xy (x+y)dz = 0.$$
 [6]

c) State auxiliary equations of Jacobi's method of Non-linear partial differential equations. [4]

P.T.O.

- **Q4)** a) Reduce the equation $U_{xx} + 2U_{xy} + 17U_{yy}$ to canonical form and solve it.[6] State and prove Kelvin's inversion theorem. b) [6] Find the two initial strips of equation $z = \frac{1}{2}(p^2 + q^2) + (p - x)(q - y)$ which c) [4] passes through X-axis. State and prove Harnack's theorem. **Q5)** a) [6] Verify that the pfaffian differential equation is integrable and find its b) primitive of (1+yz)dx + z(z-x)dy - (1+xy)dz = 0. [6] Find auxiliary of equations $z^2 = pqxy$ by charpit's method. c) [4] Find the solution of the Heat-equation in an infinite rod which is defined **Q6)** a) $U_t = k U_{xx}, \quad -\infty < x < \infty, t > 0$ $U(x,0) = f(x), \quad -\infty < x < \infty.$ [6] as State Dirichlet problem for rectangle and its solution. **b**) [6] Classify the following equation into hyperbolic, elliptic, parabolic type c) $U_{xx} + 2(1 + \alpha y)U_{yz} = 0$. [4] Prove that the pfaffian differential equation **Q**7) a) $X \cdot dr = P(x, y, z) dx + Q(x, y, z) dy + R(x, y, z) dz = 0$ is integrable iff $X \cdot (nr) X = 0$. [8]
 - b) Use Duhamel's principle and solve the non-homogeneous wave equation $U_u - C^2 U_{xx} = F(x,t), t > 0$ with conditions u(x,0) = f(x), 0 < x < l, $u_t(x,0) = g(x), 0 < x < l, u(0,t) = u(1,t) = 0, t > 0.$ [8]
- **Q8)** a) Find the solution by method of characteristic, the integral surface of pq = z which pass through curve $xz = a^2, y = 0$. [8]
 - b) State Dirichlet's problem for rectangle and find it's solution. [8]

HHH

Total No. of Questions : 4]

P2699

SEAT No. :

[Total No. of Pages : 2

[5528]-26 M. A./M. Sc. MATHEMATICS MT - 606 : Object Oriented Programming Using C++ (2008 Pattern) (Semester - II)

Time : 3 Hours] Instructions to the candidates:

1) Question 1 is compulsory.

2) Attempt any two from questions 2, 3, 4.

3) Figures to the right indicate full marks.

Q1) Attempt the following questions.

- a) Write a short note on function prototype.
- b) What is data encapsulation?
- c) What is use of scope resolution operator?
- d) Write a function to read a matrix of size m×n from the keyboard using 'for' loop.
- e) Write a function to find LCM of two numbers.
- f) Give an example of structure in C++.
- g) Write a note on operator 'new'.
- h) Write a note on function overloading.
- i) Which operator we cannot overload?
- j) What is difference between private and protected members?

[20]

[Max. Marks : 50

Q2) a)	Define a class 'complex' having two data members 'real' and Overload necessary constructors, and overload operators +	'imaginary'. and –. Find
	addition and substraction of two complex numbers.	[10]
b)	Illustrate by example the use of virtual functions.	[5]
Q3) a)	Illustrate by example use of static member functions.	[10]
b)	Write a note on inline functions.	[5]
Q4) a)	Write a note on compile time polymorphism and run time pol	ymorphism.
		[10]

b) Write a note on const member function. [5]

Total No. of Questions :8]

P2700

[5528]-31 M.A./ M.Sc. MATHEMATICS MT-701: Functional Analysis

(2008 Pattern) (Semester - III)

Time : 3Hours]

Instructions to the candidates:

- *1) Attempt any five questions.*
- 2) All questions carry equal marks.
- 3) Figures to the right indicate full marks.
- **Q1)** a) State and prove the uniform boundedness principle. [8]
 - b) Show that if the conjugate space of a normed linear space X is separable then X is separable. [6]
 - c) Show that the orthogonal subset of inner product space is linearly independent. [2]
- Q2) a) Show that any two norms on a finite dimensional normed linear space are equivalent. [4]
 - b) Let X be a normed linear space and let E be a convex subset of X. Prove that interior E° and closure \overline{E} of E is convex and also prove that If $E^{\circ \neq} \phi$, then $\overline{E} = \overline{E^{\circ}}$. [6]
 - c) Let k(s,t) be a square integrable function on the unit square $[0,1] \times [0,1]$. For $x \in L^2[0,1]$, let $(Ax)(s) = \int_0^1 k(s,t)x(t)dt, 0 \le s \le 1$. Show that A is a bounded operator on $L^2[0,1]$. Show also that A is self adjoint if $k(s,t) = \overline{k(s,t)}$ for all (s,t) [6]

P.T.O.

SEAT No. :

[Total No. of Pages :3

[Max. Marks : 80

- **Q3)** a) Let X be a normed linear space, Y be a subspace of X and $g \in Y'$. Prove that there is some $f \in X'$ such that f/Y = g and ||f|| = ||g||. [6]
 - b) Prove that a normed space *X* is Banach if and only if every absolutely summable series of elements in *X* is summable in *X*. [6]
 - c) Does there exists a discontinuous linear function from an infinite dimensional normed linear space X to a normed linear space Y? Justify your answer.
- **Q4)** a) Let X be a normed space and $P: X \to X$ be a projection. Prove that P is closed map if and only if the subspaces R(P) and Z(P) are closed. [6]
 - b) Let B(X, Y) be the set of all continuous linear maps from a normed linear space X to a normed linear space Y. Prove that if Y is Banach then B(X, Y) is Banach. [6]
 - c) Let X and Y be normed linear spaces and $F: X \to Y$ be a linear map. Show that F is continuous at origin if and only if it is continuous on X. [4]
- **Q5)** a) Let X be an inner product space. For all $x, y \in X$, prove that $|\langle x, y \rangle| \le \langle x, x \rangle \langle y, y \rangle$ and equality holds if and only if the set $\{x, y\}$ is linearly dependent. [6]
 - b) Show that a nonzero normed space X is Banach if and only if the set $S = \{x \in X : ||x|| = 1\}$ is complete. [6]
 - c) Consider $X = (\ell^1, \|.\|_1)$, a normed linear space. Define $f : \ell^1 \to \mathbb{R}$ by $f(x) = \sum_{i=1}^{\infty} x_i$. Shows that *f* is a bounded linear functional with ||f|| = 1. [4]

- **Q6)** a) Let *H* be a Hilbert space and $A \in BL(H)$. Prove that there is a unique $B \in BL(H)$ such that for all $x, y \in H$, $\langle A(x), y \rangle = \langle x, B(y) \rangle$. [6]
 - b) Show that even a discontinuous linear map can have a closed graph. Does this contradict the closed graph theorem? Explain. [6]
 - c) Let *F* be a subspace of an inner product space *X* and $x \in X$. Show that $y \in F$ is a best approximation from *F* to *x* if and only if $x y \perp F$. [4]
- **Q7)** a) Let *H* be a Hilbert space and $A \in BL(H)$. Prove that the closure of R(A) equals $Z(A^*)^{\perp}$ and the closure of $R(A^*)$ equals $Z(A)^{\perp}$. [6]
 - b) Let *H* be a Hilbert space and $A \in BL(H)$. Prove that $||A^*|| = ||A||$ and $||A^*A|| = ||A||^2$. [6]
 - c) Let T be an operator on a finite dimensional Hilbert space H and M_1, M_2, \dots, M_n be all the eigenspaces of H. If T is normal, then prove that the M_1 's spans H. [4]
- **Q8)** a) Let *H* be a Hilbert space. Prove the $A \in BL$ (*H*) can be expressed as A = B + iC, where *B* and *C* are self adjoint operators on *H*. [6]
 - b) If M is a linear subspace of a Hilbert space H, then show that M is closed if and only if $M=M^{\perp\perp}$. [6]
 - c) If *T* is an operator on a Hilbert space *H* with $\langle Tx, x \rangle = 0$ for all $x \in H$ then prove that T = 0. [4]

Total No. of Questions :8]

P2701

[5528]-32 M.A./ M.Sc. MATHEMATICS MT-702: Ring Theory (2008 Pattern) (Semester - III)

Time : 3Hours] [Max. Marks : 80 Instructions to the candidates: 1) Attempt any five questions. Figures to the right indicate full marks. 2) All the symbols have their usual meanings. 3) *Q1*) a) State and prove first isomorphism theorem for rings. [6] If *F* is a field, then show that F/x is an Euclidean domain. [6] b) Show that a prime number p divides an integer of the form $n^{2}+1$ if and c) only if *p* is either 2 or $p \equiv 1 \pmod{4}$. [4] State and prove Chinese Remainder theorem for rings. [6] *Q2)* a) b) Prove that every non-zero prime ideal in a PID is maximal ideal. [6] Let F be a field and let $p(x) \in F[x]$. Then show that p(x) has a factor of c) degree one if and only if p(x) has a root in F. [4] Let R be commutative ring with unity. Then show that an ideal P in ring R **Q3)** a) is prime ideal if and only if R/P is an integral domain. [8] Prove that in an integral domain, a prime element is always irreducible.[4] b) Give any two examples of module *M* over ring *R*. c) [4] Let *M* be an *R*-module. Let *A* and *B* be submodules of *M* with $A \subset B$. **Q4)** a) then show that $(M/A)/(B/A) \cong M/B$. [10] Let R be an integral domain and let O be the field of fractions of R. If a **b**) field F contains a subring R' isomorphic to R, then show that subfield of

F generated by R' is isomorphic to Q.

P.T.O.

[6]

SEAT No. :

[Total No. of Pages :2

Q5)	a)	Prove that in a ring with identity every proper ideal is contained in a maximal ideal. [8]
	b)	If R is any commutative ring such that $R[x]$ is PID, then prove that R is necessarily a field. [6]
	c)	Define free module along with suitable example. [2]
Q6)	a)	Is inverse image of maximal ideal under a ring homomorphism a maximal ideal? Is image of prime ideal under ring homomorphism a prime ideal? [8]
	b)	Show that ring $\mathbb{Z}[2i]$ is an integral domain but not UFD. [4]
	c)	If N is a submodule of M, then annihilator of N in R is defined as $Ann(N) = \{r \in R : rn = 0, \text{ for all } n \in N\}$. Then show that $Ann(N)$ is an ideal of R. [4]
Q7)	a)	Prove that every PID is UFD. [8]
	b)	Show that every ideal in a Euclidean domain is principal. [6]
	c)	Show that the polynomial $f(x) = x^4 + 10x + 5 \in \mathbb{Z}[x]$ is irreducible. (State all the results which will be used.) [2]
Q8)	a)	Is field (i) an integral domain (ii) PID? Justify your answer. [4]
	b)	Show that $\mathbb{R}[x]/\langle x^2+1\rangle$ is field and $\mathbb{Z}[x]/\langle x\rangle$ is an integral domain. [8]

c) Let *R* be a ring and let *M* be an *R*-module. Show that a subset *N* of M is submodule of *M* if and only if $N \neq \phi$ and $x + \alpha y \in N$, for all $\alpha \in R$ and for all $x, y \in N$. [4]

Total No. of Questions : 8]

P2702

[5528]-33 M.A./M.Sc. MATHEMATICS MT-703 : Mechanics (2008 Pattern) (Semester-III)

Time : 3 Hours] Instructions to the candidates:

1) Attempt any five questions.

2) Figures to the right indicate full marks.

- **Q1)** a) Explain the terms:
 - i) Canonical pendulum
 - ii) Generalized momentum
 - iii) Kepler's third law of planetary motion
 - b) A particle of mass *m* moves in one dimension such that it has the Langrangian $L = \frac{m^2 x^4}{12} + mx^2 V(x) V^2(x)$, where V is some differentiable function of *x*. Find the equation of motion for *x(t)* and describe the physical nature of the system on the basis of this equation.[4]
 - c) Show that the Langrange's equation of Motion can also be written as

$$\frac{\partial \mathbf{L}}{\partial t} - \frac{d}{dt} \left(\mathbf{L} - \sum \dot{q}_j \frac{\partial \mathbf{L}}{\partial \dot{q}_j} \right) = 0.$$
 [6]

- **Q2)** a) Explain Atwood machine and discuss its motion. [6]
 - b) Find E-L differential equation satisfied by twice differentiable function y(x) which extremizes the functional $I(y(x)) = \int_{x_1}^{x_2} f(x, y, y') dx$ where y is prescribed at the end points. [8]
 - c) Explain the Basic lemma.

[2]

[Total No. of Pages : 3

[*Max. Marks* : 80

SEAT No. :

[4]

[6]

- **Q3)** a) State and prove the Principle of least action.
 - b) Show that the kinetic energy of the system can always be written as the sum of three homogeneous functions of the generalized velocities. [8]

[8]

- Q4) a) Describe the Routh's Procedure to solve the problem involving cyclic and non-cyclic co-ordinates. [8]
 - b) Prove that angular momentum of a particle in a central force field remains constant. [4]

c) Show that the Hamilton's Principle $\delta \int_{t_0}^{t} L dt = 0$ also holds for the non-conservative system. [4]

Q5) a) Find the extremals for an isoperimetric problem I(y(x)) = $\int_{0}^{1} (y'^2 - y^2) dx$,

subject to the conditions that
$$\int_{0}^{1} y dx = 1$$
, $y(0) = 0$, $y(\pi) = 1$. [7]

- b) For 2-D harmonic oscillator, the Hamiltonian is of the form $H(x, y.P_x, P_y) = \frac{1}{2m} (P_x^2 + P_y^2) + \frac{1}{2}k(x^2 + y^2).$ Show that the quantity $(xP_y - yP_x)$ is conserved. [7]
- c) Explain the Hamilton's Principle. [2]
- *Q6*) a) Prove that central force motion is always motion in a plane. [8]
 - b) Prove the Kepler's first law of planetary motion. [8]

Q7) a) Show that the transformation
$$P = \frac{1}{2}(p^2 + q^2)$$
, $Q = \tan^{-1}\frac{q}{p}$ is canonical. [8]

- b) Prove that Poisson brackets are invariant under canonical transformation.
 [8]
- **Q8)** a) If the matrix of transformation form space set of axes to body set of axes is equivalent to a rotation through an angle χ about some axis through the origin then show that [8]

$$\cos\left(\frac{\chi}{2}\right) = \cos\left(\frac{\phi+\varphi}{2}\right) \cdot \cos\left(\frac{\theta}{2}\right).$$

b) Obtain the Lagrangian for the system of two bodies moving under central force field. [8]

$$\rightarrow$$
 \rightarrow \rightarrow

Total No. of Questions :8]

P2703

[5528]-34 M.A./ M.Sc. MATHEMATICS MT-704: Measure and Integration (2008 Pattern) (Semester - III)

Time : 3Hours] Instructions to the candidates: [Max. Marks : 80

- 1) Attempt any five questions.
- 2) Figures to the right indicate full marks.
- 3) All symbols have their usual meanings.

Q1) a) If
$$E_i$$
's are with $\mu E_1 < \infty$ and $E_i \supset E_{i+1}$ then prove that
 $\mu \left(\bigcap_{i=1}^{\infty} E_i \right) = \lim_{n \to \infty} \mu E_n$. [6]

- b) Define a σ -algebra. Show that the class of measurable sets \mathscr{M} is a σ -algebra. [6]
- c) Show that every countable set has measure zero. [4]
- **Q2)** a) Let $\{(X_{\alpha}, \mathscr{B}_{\alpha}, \mu_{\alpha})\}$ be a collection of measurable spaces, and suppose that the sets $\{X_{\alpha}\}$ are disjoint and define

$$X = \bigcup X_{\alpha}, \ \mathscr{B} = \{B: (\alpha)[B \cap X_{\alpha} \in \mathscr{B}_{\alpha}]\} \text{ and } \mu(B) = \sum \mu_{\alpha}(B \cap X_{\alpha}).$$

- i) Show that \mathscr{B} is a σ -algebra. [5]
- ii) Show that μ is a measure. [5]
- b) Let c be any real number and let f and g be real valued measurable functions defined on the same measurable set E. Show that f+c, cf, f+g, f-g and fg are measurable.

P.T.O.

SEAT No. :

[Total No. of Pages :4

Q3) a) Let \mathscr{R} be σ -ring and \mathscr{R} be the smallest σ -algebra containing \mathscr{R} . if μ is

measure on \mathscr{R} , define $\overline{\mu}$ on \mathscr{B} by $\overline{\mu}E = \mu E$ if $E \in \mathscr{R}$ and $\overline{\mu}E = \infty$ if

$$E \in \mathcal{R}$$
 ' Then show that $\overline{\mu}$ is a measure on \mathcal{B} . [6]

- b) Show that for any set A and real number ∈>0, there is an open set O containing A such that μ*(O)≤μ*(A)+∈. [5]
- c) Let *E* and *F* are measurable sets, $f \in L(E,\mu)$ and $\mu(E\Delta F) = 0$, then show that $f \in L(F,\mu)$ and $\int_F f d\mu = \int_F f d\mu$. [5]
- **Q4)** a) Let $\langle f_n \rangle$ be sequence of non-negative measurable functions that converges almost everywhere on a set *E* to a function *f*. Then show that $\int_E f \leq \underline{\lim} \int_E f_n$. [6]
 - b) i) Show that, if f is integrable, then the set $\{x: f(x) \neq 0\}$ is a σ -finite measure. [3]
 - ii) Show that, if f is integrable, $f \ge 0$, then $f = \lim \phi_n$ for some increasing sequence of simple functions each of which vanishes outside a set of finite measure. [3]
 - c) If μ is a measure on a ring \mathscr{R} , then show that ρ defined by

$$\rho(A,B) = \mu(A \Delta B)$$
 is a pseudometric on \mathscr{R} . [4]

- **Q5)** a) Let v be a signed measure on the measurable space (X, \mathscr{B}) then prove that there is a positive set A and a negative set B such that $X = A \bigcup B \text{ and } A \bigcap B = \phi$ [6]
 - b) Let (X, \mathscr{B}) be a measurable space and $\langle \mu_n \rangle$ a sequence of measures on

 \mathscr{B} such that $\mu_n + 1E \ge \mu_n E$ and $\mu E = \lim \mu_n E$ for each $E \in \mathscr{B}$. Then show

that μ is a measure on \mathscr{B} . [6]

- c) Show that the function $x^{-1} \sin x$ is Riemann integrable on $(-\infty, \infty)$ but its Lebesgue integral does not exist. [4]
- *Q6*) a) Let (X, \mathcal{B}, μ) be a σ -finite measure space, and let υ be a measure defined

on \mathscr{B} which is absolutely continuous with respect to μ . Then prove that there

is a nonnegative measurable function f such that for each set E in \mathcal{B} we have

$$\upsilon E = \int_{E} f \, d\mu. \tag{6}$$

- b) Let μ be a measure on an algebra \mathscr{G} and μ^* the outer measure induced by μ . Then prove that the restriction $\overline{\mu}$ of μ^* to the μ^* -measurable sets is an extension of μ to σ -algebra containing \mathscr{G} . [6]
- c) Define Hausdroff outer measure. Show that Hausdroff outer measure is invariant under translation. [4]

Q7) a) If μ is a measure on a ring \mathscr{R} and the set function μ^* is defined on

$$\mathscr{H}(\mathscr{R})$$
 by $\mu^*(E) = \inf\left[\sum_{n=1}^{\infty} \mu(E_n): E_n \in \mathscr{R}, n = 1, 2, ..., E \subset \bigcup_{n=1}^{\infty} E_n\right].$

Then show that i) for $E \in \mathcal{R}$, $\mu^*(E) = \mu(E)$, ii) μ^* is an outer measure

on
$$\mathcal{H}(\mathcal{R})$$
. [5]

b) If μ is a σ -finite measure on a aring \mathscr{R} then show that it has unique extension

to the
$$\sigma$$
-ring $\mathscr{I}(\mathscr{R})$. [5]

- c) Let μ^* be a topologically regular outer measure on X then prove that each Borel set is μ^* -measurable. [6]
- **Q8)** a) Define Borel set. Let E be a subset of X such that $E \bigcap K$ is a Borel set for each compact set K. Then show that E is a Borel set. [6]
 - b) Let μ be a finite measure defined on a σ -algebra \mathscr{M} which contains all the Baire sets of locally compact space X.If μ is inner regular then show that μ is regular. [4]
 - c) Let μ*be a topologically regular outer measure on X. Then each Borel set is μ*-measurable. [6]

0000

Total No. of Questions :8]

P2704

1)

[5528]-35 M.A/M.Sc. MATHEMATICS MT 705 : Graph Theory (2008 Pattern) (Semester -III)

Time : 3 Hours] Instructions to the candidates:

- Solve any five questions out of eight questions.
- 2) Figures to the right indicate full marks.
- 3) Use of non programmable scientific calculator is allowed.
- **Q1)** a) Prove that every u, v-walk contains a u, v-path. [8]
 - b) Show that every closed odd walk contains an odd cycle. [5]
 - c) Write down the Adjacency and Incidence matrices of the following graph G. [3]

- Q2) a) Prove that if every vertex of a graph G has degree at least 2, then G contains a cycle.[8]
 - b) Prove that a simple graph and its complement cannot both be disconnected. [5]
 - c) Write down the graphs of
 - i) K₁₀
 - ii) C₇

P.T.O.

[3]

[Total No. of Pages : 2

SEAT No. :

[Max. Marks : 80

- **Q3)** a) If G is a graph then show that $\sum_{u \in v(G)} d(v) = 2e(G)$ [8]
 - b) Prove that the nonnegative integers d_1, \dots, d_n are the vertex degrees of some graph if and only if $\sum di$ is even. [8]
- **Q4)** a) Prove that, there are n^{n-2} distinct labelled trees on *n* vertices. [8]
 - b) Show that every tree with at least two vertices has at least two leaves. Deleting a leaf from an n-vertex tree produces a tree with n-1 vertices.

[8]

- **Q5)** a) Show that Peterson Graph has diameter 2 [8]
 - b) Prove that in a connected weighted graph G, Kruskal's Algorithm constructs a minimum-weight spanning tree. [8]
- *Q6*) a) By using Dijkstra's Algorithm find shortest route from vertex u to e. [8]

b) State and prove Hall's marriage theorem.

- **Q7)** a) Let G be an X,Y-bigraph having a matching that saturates X and Let S and T be subsets of X such that |N(S)|=|(S)| and |N(T)|=|(T)|. Prove that $|N(S \cap T)|=(S \cap T)$ [8]
 - b) If G is a 3-regular graph, then prove that K(G) = K'(G). [8]
- Q8) a) Let G be an n-vertex simple graph other than Kn. Prove that if G is not k-connected, then G has a separating set of size k-1.[8]
 - b) Prove that a graph is 2-connected if and only if it has an ear decomposition. Furthermore, every cycle in a 2-connected graph is the initial cycle in some car decomposition. [8]

[8]

Total No. of Questions :8]

P2705

Time : 3Hours]

[5528]-41 M.A./M.Sc. MATHEMATICS MT-801: Field Theory (2008 Pattern) (Semester - IV)

[Max. Marks : 80

[Total No. of Pages :2

SEAT No. :

Instructions to the candidates:

- 1) Attempt any five question of the following.
- 2) Figures to the right indicate full marks.
- Q1) a) If K is algebraically closed then prove that every irreducible polynomial in K[x] is of degree L [8]
 - b) Let E be an extension of a field F. Define the group of F-automorphisms of E with an Example. [5]
 - c) Prove that $\sqrt{2} + \sqrt{3}$ is algebraic over \mathbb{Q} . [3]
- Q2) a) Show that squaring the circle and doubling the cube are impossible by using rural and compass. [8]
 b) If E is a finite extension of a field F then prove that | G(E|F) |≤ [E:F].[5]
 - c) Show that IR is not a normal extension of \mathbb{Q} . [3]
- **Q3)** a) If K is a splitting field of $f(x) \in F[x]$ over F then show that K is an algebraic extension of F [8]
 - b) Determine the minimal polynomial for the element 1+i over \mathbb{Q} . [3]
 - c) Examine whether the polynomial x^4+x+1 GQ[x] is a separable polynomial. [5]
- **Q4)** a) Let E be a finite separable extension of a field F and H is a subgroup of G(E/F) then prove that $G(E/E_H)=H$ and $[E:E_H]=|G(E|E_H)|$. [8]
 - b) If $[F(\alpha):F]$ is odd then prove that $F(\alpha)=F(\alpha^2)$. [5]
 - c) Is $f(x)=x^2+x+1 \in \mathbb{Z}_2[x]$ irreducible over \mathbb{Z}_2 ? Justify. [3]

P.T.O.

- **Q5)** a) Show that the polynomial $x^7-10x^5+15x+5$ is not solvable by radicals over \mathbb{Q} . [8]
 - b) Let $F=\mathbb{Q}(\sqrt{2})$ and $E=\mathbb{Q}(\sqrt[4]{2})$. Show that E is a normal extension of F and F is a normal extension of \mathbb{Q} but E is not a normal extension of \mathbb{Q} [5]
 - c) If f(x) is an irreducible polynomial over F then prove that f(x) has a multiple root iff f¹(x)=0 [3]
- **Q6**) a) Show that the group G=G $(\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q})$ of \mathbb{Q} -automorphisms of $\mathbb{Q}(\sqrt[3]{2})$ is trivial. [8]
 - b) Let \mathbb{Q} be a root of x^{p} -x-L over a field F of characteristic P then show that F(Q) is a separable extension of F. [5]
 - c) Construct a field with g-elements. [3]
- *Q7*) a) Show that Galois group of $x^4+1 \in Q(x)$ is the klein four -group. [8]
 - b) If E is a Galois extension of F and K is any subfield of E containing F then prove that $K=E_{G(L\setminus K)}$ [8]

Q8) a) Show that
$$\mathbb{Q}\left(\sqrt{2},\sqrt{3}\right) = \mathbb{Q}\left(\sqrt{2}+\sqrt{3}\right)$$
 [8]

b) If L is algebraic over K and K is algebraic over a field F then prove that L is algebraic over F. [8]

Total No. of Questions : 8]

P2707

[5528]-43 M.Sc./M.A. MATHEMATICS MT-803 : Differential Manifolds (2008 Pattern) (Semester-IV)

Time : 3 Hours] Instructions to the candidates: [Max. Marks : 80

- 1) Attempt any Five questions.
- 2) Figures to the right indicate full marks.
- **Q1)** a) Define the differential operator d and for any k-form ω , show that $d(d\omega) = 0$. [8]
 - b) Let A be open in \mathbb{R}^k and let $f: A \to \mathbb{R}$ be of class C^{∞} . Show that the graph of f is a k-manifold in \mathbb{R}^{k+1} . [5]
 - c) Define volume of parametrized surface in \mathbb{R}^n . [3]
- **Q2)** a) Let U be an open set in \mathbb{R}^n and $f: U \to \mathbb{R}^n$ be of class C^r . Let $M = \{x: f(x) = 0\}$ and $N = \{x: f(x) \ge 0\}$. If M is nonempty and Df(x) has rank one at each point of M, then prove that N is an *n*-manifold in \mathbb{R}^n and $\partial N = M$. [8]
 - b) Define an exact form and give an example. [4]
 - c) Give an example of a manifold without boundary. Justify. [4]
- Q3) a) Define orientation of a manifold M and induced orientation on ∂M. [4]
 b) State Stoke's theorem. [4]
 c) Suppose M is a 2-manifold in R³ whose intersection with the plane z = t is the circle (x-t)² + (y-t)² = 1+t; z = t if 0 ≤ t ≤ 1 and is empty
 - otherwise. Find the area of M. [8]

SEAT No. :

[Total No. of Pages : 2

- **Q4)** a) What is the dimension of $A^k(V)$, the space of alternating *k*-tensors on an *n* dimensional vector space V? Justify. [8]
 - b) State Green's theorem for compact, oriented 2-manifold. [4]
 - c) Define a closed form and give an example. [4]
- **Q5)** a) Let F be a *k*-tensor. With usual notation, if $AF = \sum_{\sigma \in S_k} (sign \sigma) F^{\sigma}$, then prove that AF is an alternating tensor. Find AF if F is already alternating.[7]
 - b) If $\omega = x^2 yz dx + xy^2 z dy + z e^y x dz$ and $\eta = yz \cos x dx + xyz dy + 4xyz^2 dz$, then find $(\omega \wedge \eta)$. [5]

c) Is
$$[0, 1] \times [0, 1]$$
 a manifold in \mathbb{R}^2 ? Justify. [4]

- **Q6)** a) Let M be a k-manifold in \mathbb{R}^n . If ∂M is nonempty, then prove that ∂M is a k-1 manifold without boundary. [7]
 - b) If $\omega = x^2 y^2 z^2 dx + xz \sin y dy + e^x yz dz$ find $d\omega$. [4]
 - c) Let O(3) denote the set of all orthogonal 3 by 3 matrices. Show that it is a compact 3-manifold in ℝ⁹ without boundary. [5]
- **Q7)** a) If ω and η are k and l forms respectively, then prove that $d(\omega \wedge \eta) = d\omega \wedge \eta + (-1)^k \omega \wedge d\eta$. [8]
 - b) Let $\omega = y^2 z dx + x^2 z dy + x^2 y dz$, and $\alpha(u,v) = (u v, uv, u^2)$. Find $\alpha^*(d\omega)$. [8]
- **Q8)** a) With usual notation, show that $\alpha^*(d\omega) = d(\alpha^*\omega)$. [8]
 - b) Let $A = \mathbb{R}^2 \{0\}$. If $\omega = \frac{xdx + ydy}{x^2 + y^2}$, then show that ω is closed and exact on A. [8]

$$\rightarrow \rightarrow \rightarrow$$

Total No. of Questions : 8]

P2708

[5528]-44 M.A./M.Sc. MATHEMATICS MT-804 : Algebraic Topology (2008 Pattern) (Semester-IV)

Time : 3 Hours] Instructions to the candidates: [Max. Marks: 80

- 1) Solve any five questions.
- 2) Figures to the right indicate full marks.
- Q1) a) Show that the relation of being of the same homotopy type is an equivalence relation.[8]
 - b) What is strong deformation retract? Show that S^n is a strong deformation retract of $\mathbb{R}^{n+1} \setminus 0$. [4]
 - c) Show that the unit closed solid *n*-sphere B^n is a contractible space. [4]
- **Q2)** a) Let $x_0, x_1 \in X$. If there is a path in X from x_0 to x_1 then show that the groups $\pi_1(X, x_0)$ and $\pi_1(X, x_1)$ are isomorphic. [8]
 - b) Let $f: X \to Y$ be a continuous map of topological spaces. If $x_0 \in X$ then prove that there is a homomorphism $f^*: \pi_1(X, x_0) \to \pi_1(Y, f(x_0))$ induced by f. [4]
 - c) Show that a contractible space has trivial fundamental group. [4]
- Q3) a) Show that fundamental group of circle is isomorphic to additive group of integers. [9]
 b) The circle S¹ is not a retract of the disc B². [4]
 c) What is the fundamental group of torus? Explain why? [3]

P.T.O.

SEAT No. :

[Total No. of Pages : 2

- Q4) a) Define the term covering space. Also give two examples of covering spaces with justification.
 - b) Show that $f: S^1 \to S^1$ given by $f(z) = z^3$ is a covering projection. [4]
 - c) What is a local homeomorphism? Show that a covering map is local homeomorphism. [6]
- **Q5)** a) Is every local homeomorphism a covering map? Justify your answer.[4]
 - b) Define the terms fibration and fiber and give two examples of each. [4]
 - c) Suppose that $p: E \to B$ is a fibration such that every fiber has no non-null path then show that p has unique path lifting. [8]

Q6) a) Show that two different complexes may have the same polyhedron. [4]

- b) Show how to define simplicial mapping. Is simplicial mapping continuous? [6]
- c) Show that \mathbb{R}^n is homeomorphic to \mathbb{R}^m if and only if n = m. [6]
- **Q7)** a) Let $f: X \to Y$ be a homeomorphism and X has the fixed point property. Then show that Y has the fixed point property. [8]
 - b) Explain the terms with suitable examples: Geometrically independent set in ℝⁿ; Simplex; Simplicial complex; oriented simplex. [8]
- Q8) a) Define the term homotopy equivalent spaces. Also give examples of spaces that are homotopy equivalent but are not homeomorphic. [4]
 - b) Let X be a topological space and x₀ ∈ X. Define a group operation on elements of π₁(X, x₀) and show that the operation is a well defined operation. [6]
 - c) Let X and Y be of the same homotopy type and f:X→Y be a homotopy equivalence. Then show that f*:π₁(X,x)→π₁(Y,f(x)) is an isomorphism for any x∈X.

Total No. of Questions : 8]

P2709

SEAT No. :

[Total No. of Pages : 3

[5528] - 45

M. A. / M. Sc. MATHEMATICS MT- 805: Lattice Theory (2008 Course) (Old) (Semester - IV)

Time : 3.00 Hours]

[Max. Marks :80

Instructions to the candidates:

- 1) Attempt any five questions.
- 2) Figures to the right indicate full marks.

Q1) a) Show that $N_5 \cong L \times K$ implies that L or K has only one element. [5]

b) Let the algebra (L, \land, \lor) be a lattice, set $a \le b$ if and only if $a = a \land b$ then prove that (L, \le) is a poset and as a poset it is lattice. [5]

c) Draw all non isomorphic lattices with 6 elements. [6]

Q2) a) Let Θ be a congruence relation on L, and $a \in L$ then prove that $[a] \Theta$ is a convex sublattice. [5]

- b) Prove that sublattice of modular lattice is modular. [4]
- c) Let L be a lattice. Prove that subset I of L is an ideal if and only if following two conditions hold. [7]
 - i) $a, b \in I$ implies that $a \lor b \in I$,
 - ii) $x \in L$ and $a \in I$ with $x \le a$ implies that $x \in I$.
- **Q3)** a) Define a congruence relation and show that a reflexive binary relation θ on a lattice *L* is a congruence relation if and only if the following three properties are satisfied, for *x*, *y*, *z* \in L: [9]
 - i) $x \equiv y(\theta)$ if and only if $x \land y = x \lor y(\theta)$.
 - ii) $x \le y \le z \ x \equiv y(\theta)$, and $y \equiv z(\theta)$ imply that $x \equiv z(\theta)$.
 - iii) $x \le y \ x \equiv y(\theta)$ imply that $x \land t \equiv y \land t(\theta)$ and $x \lor t \equiv y \lor t(\theta)$.
 - b) Prove that *I* is a prime ideal of *L* if and only if there is a homomorphism ϕ of *L* onto *C*, with $I = \phi^{-1}(0)$. [7]

P.T.O.

- **Q4)** a) Let L, L_1, K, K_1 be lattices with $L \simeq L_1$ and $K \simeq K_1$, then prove that $L \times L_1 \simeq K_1 \times K$. [6]
 - b) Prove that collection of all complemented elements in a distributive lattice forms a sublattice. [4]
 - c) If in a poset P, \wedge H exists for all H \subset P then prove that P is complete lattice. [6]
- **Q5)** a) Let L be a lattice and let $a \in L$ then prove that following conditions are equivalent. [5]
 - i) *a* is standard.
 - ii) Let α_a be the binary relation on *L* defined as $: x \equiv y \pmod{a_a}$ if $(x \land y) \lor a_1 \equiv x \lor y$ for some $a_1 \le a$. Then α_a is a congruence relation.
 - iii) *a* is distributive and $a \lor x = a \lor y$ and $a \land x = a \land y$ imply that x = y.
 - b) Let *L* be distributive lattice, $a, b \in L$ and $a \neq b$, then prove that ther exist a prime ideal *P* of *L* containing exactly one of *a* and *b*. [6]
 - c) Show that the ideal lattice, ID(L) is conditionally complemented for any lattice L. [5]
- **Q6)** a) Prove that a lattice L is modular if and only if it does not contain a sublattice isomorphic to pentagon (N_5) . [10]
 - b) Let L be a lattice of finite length. If L is semimodular then prove that any two maximal chains of L are of the same length. [6]
- **Q7)** a) Prove that in a distributive lattice, $a \wedge x = a \wedge y$ and $a \vee x = a \vee y$ together implies that x = y. [3]
 - b) State and prove the Jordan-HÖlder theorem for semimodular lattices.[7]
 - c) State and prove the Stones separation theorem. [6]
- [5528]-45

- **Q8)** a) Let L be a semimodular lattice. If p and q are atoms of L, $a \in L$, and $a < a \lor q \le a \lor p$, then prove that $a \lor p = a \lor q$. [6]
 - b) Let $I = \{a_1, ..., a_n\}$ be a set of *n* atoms of a semimodular lattice. Then prove that the following conditions are equivalent. [10]
 - i) I is independent.
 - ii) $(a_1 \vee ... \vee a_i) \wedge a_{i+1} = 0$, for i = 1, 2, ..., n 1.
 - iii) $h(a_1 \vee \ldots \vee a_n) = n.$

* * *