Time : 3 Hours]

[Max. Marks: 80

Instructions to the candidates:

1) Attempt any five questions.
2) Figures to the right indicate full marks.

Q1) a) Let $\mathrm{X}=\mathbb{R}^{2}$ and $d: \mathrm{X} \times \mathrm{X} \rightarrow \mathbb{R}$ defined by $d(x, y)=\left|x_{1}-y_{1}\right|+\left|x_{2}+y_{2}\right|$, where $x=\left(x_{1}, x_{2}\right), y=\left(y_{1}, y_{2}\right)$ then show that d is a metric on X . [6]
b) Define normed linear space and give examples of two different norms on \mathbb{R}^{n}.
c) Define interior of a set in a metric space (X, d). If $\mathrm{A}, \mathrm{B} \subset \mathrm{X}$ then it is true that $\operatorname{Int}(A \cup B)=\operatorname{Int}(A) \cup \operatorname{Int}(B)$? Why?

Q2) a) If M_{f} denote $\left\{\mathrm{A}_{k} \subset \mathbb{R}^{n} / \mathrm{D}\left(\mathrm{A}_{k}, \mathrm{~A}\right) \rightarrow 0\right.$ as $\left.k \rightarrow \infty\right\}$ for some sequence in A_{k} in \in then prove that M_{J} is a ring.
b) State and prove Heine - Borel theorem.
c) With usual notations prove that m^{*} is translation Invariant.

Q3) a) Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{ \pm \infty\}$ then show that the following statements are equivalent
i) $\quad\{x / f(x)>a\}$ is measurable.
ii) $\quad\{x / f(x) \geq a\}$ is measurable for any $a \in \mathbb{R}$.
b) If f is measurable function then prove that $|f|$ is also measurable.
c) Let $\mathrm{A}, \mathrm{B}, \mathrm{C}$ be subsets of \mathbb{R}^{n} then with usual notations prove that $\mathrm{S}(\mathrm{A}, \mathrm{C}) \subseteq \mathrm{S}(\mathrm{A}, \mathrm{B}) \cup \mathrm{S}(\mathrm{B}, \mathrm{C})$ and $\mathrm{D}(\mathrm{A}, \mathrm{C}) \subseteq \mathrm{D}(\mathrm{A}, \mathrm{B})+\mathrm{D}(\mathrm{B}, \mathrm{C})$.

Q4) a) State and prove monotone convergence theorem.
b) Prove that Cantor set is a Lebesque measurable set and it has measure zero.
c) Find Interior of $\mathrm{A}=\left\{\frac{1}{n} / n \in \mathrm{~N}\right\}$ and $\mathrm{Q} \subset \mathbb{R}$.

Q5) a) Show that a constant function and continuous function both are measurable.
b) State and Fatou's Lemma.
c) Give an example of non-measurable function.

Q6) a) State and prove Holder's inequality.
b) Define counting measure and probability measure.
c) Prove that $f=0$, a.e. on E.

$$
\text { if } \int_{\mathrm{E}} f d m=0, \forall \mathrm{E} \subset \mathrm{M} .
$$

Q7) a) Show that classical Fourier series for $f(x)=x$ is $2 \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin (n x)$.
b) Apply Gram smidth process to functions $1, x, x^{2}$, to obtain formulas for first three Legender polynomials.

Q8) a) State and prove Banach contraction principle.
b) State and prove Riesz - Fischer theorem.

$$
t+t+
$$

[5528]-12
 M.A./ M.Sc.
 MATHEMATICS
 MT-502: Advanced Calculus
 (2008 Pattern) (Semester - I)

[Total No. of Pages: 3

Q3) a) Show that the work done by a constant force depends on the endpoints and not on the path joining them.
b) Evaluate $\int_{c} \frac{(x+y) d x-(x-y) d y}{x^{2}+y^{2}}$,

Where c is the circle $x^{2}+y^{2}=4$, traversed once in counter clockwise direction.
c) Determine whether or not the vector field $\bar{f}(x, y)=3 x^{2} y \bar{i}+x^{3} y \bar{j}$ is a gradient on any open subset of \mathbb{R}^{2}.

Q4) a) State and prove the second fundamental theorem of calculus for line integrals.
b) Evaluate $\iint_{Q}\left(\sqrt{y}+x-3 x y^{2}\right) d x d y$ where $Q=[0,1] \times[1,3]$.
c) Compute the volume of the solid enclosed by the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$.

Q5) a) State the formula for change of variable in double integrals. Prove the formula for a particular case when the region of integration is rectangle and the function with constant value 1.
b) Let f be defined on the rectangle $Q=[0,1] \times[0,1]$ as $f(x, y)=\left\{\begin{array}{ll}1-x-y & \text { if } x+y \leq 1 \\ 0 & \text { otherwise }\end{array}\right.$ make a sketch of the ordinate set of f over Q and compute the volume of this ordinate set by double integration.
c) Evaluate the line integral $\int_{C}\left(5-x y-y^{2}\right) d x-\left(2 x y-x^{2}\right) d y$, where C is the square with vertices $(0,0),(1,0),(1,1)(0,1)$ traversed counterclockwise.

Q6) a) Prove the transformation formula $\iiint_{S} f(x, y, z) d x d y d z=\iiint_{T} F(\sigma, \theta \phi) \sigma^{2} \sin \phi d \rho d \theta d \phi$ where $\quad x=\rho \cos \theta \sin \phi, \quad y=\rho \sin \theta \sin \phi, \quad z=\rho \cos \phi, \quad$ and $\quad \rho>0$, $0 \leq \theta<2 \pi$, and $0 \leq \phi<\pi$. Justify your steps.
b) Let S be a parametric surface whose vector representation is $\bar{r}(u, v)=(u+v) \bar{i}+(u-v) \bar{j}+(1-2 u) \bar{k}$ Find the fundamental vector product and the unit normal to the surface.
c) Use a suitable linear transformation to evaluate the double integral $\iint_{S}\left(x-y^{2}\right) \sin ^{2}(x+y) d x d y$

Where S is the parallelogram with vertices $(\pi, 0),(2 \pi, \pi),(\pi, 2 \pi),(0, \pi)$.

Q7) a) State and prove stoke's theorem.
b) Determine the Jacobian matrix and compute the curl and divergence of vector field $\bar{F}(x, y, z)=x y^{2} z^{2} \bar{i}+z^{2} \sin y \bar{j}+x^{2} e^{y} \bar{k}$.

Q8) a) Calculate the curl and divergence of a gradient of scalar field.
b) i) Let \bar{r} and \bar{R} be smoothly equivalent functions related by the equation $\bar{R}(s, t)=\bar{r}(\bar{G}(s, t))$, where $\bar{G}(s, t)=U(s, t) \bar{i}+V(s, t) \bar{j}$ is a one-one continuously differentiable mapping of a region B in the st-plane onto a region A in the uv-plane. Prove that

$$
\frac{\partial \bar{R}}{\partial s} \times \frac{\partial \bar{R}}{\partial t}=\left(\frac{\partial \bar{r}}{\partial u} \times \frac{\partial \bar{r}}{\partial v}\right) \frac{\partial(u, v)}{\partial(s, t)}
$$

Where the partial derivatives are evaluated at the point $(u(s, t), v(s, t))$.
ii) State Gauss divergence theorem.

\square

MATHEMATICS

MT-503 : Linear Algebra
 (2008 Pattern) (Semester-I)

Time : 3 Hours]

[Max. Marks: 80
Instructions to the candidates:

1) Attempt any five questions.
2) Figures to the right indicates full marks.
3) V denotes a finite dimensional vector space over the field K.

Q1) a) Let X and Y be finite subsets of a vector space V . If Y is a linearly independent and $V=\langle X\rangle$, then prove that $|Y| \leq|X|$.
b) Find dimensions of the following subspaces of the vector space $\mathbb{R}^{n \times n}$ of all $n \times n$ matrices over \mathbb{R} :

$$
\begin{aligned}
& \mathrm{W}_{1}=\left\{\mathrm{A} \in \mathbb{R}^{n \times n} / \mathrm{A}=\mathrm{A}^{t}\right\} \\
& \mathrm{W}_{2}=\left\{\mathrm{A} \in \mathbb{R}^{n \times n} / \mathrm{A}=-\mathrm{A}^{t}\right\} \\
& \mathrm{W}_{3}=\left\{\mathrm{A} \in \mathbb{R}^{n \times n} / \text { trace } \mathrm{A}=0\right\}
\end{aligned}
$$

c) Let $\mathrm{T}: \mathbb{R}[x] \rightarrow \mathbb{R}[x]$ be defined by $\mathrm{T}(p(x))=x p(x)$. Show that T is a linear operator on $\mathbb{R}[x]$. Also if D is the differential operator on $\mathbb{R}[x]$, then show that $\mathrm{DT}-\mathrm{TD}=\mathrm{I}$.

Q2) a) State and prove first and second isomorphism theorem for vector spaces.
b) Let $\mathrm{W}=\left\langle[1,2,1,0,1]^{t},[1,0,1,1,1]^{t},[1,2,1,3,1]^{t}\right\rangle$ a subspace of \mathbb{R}^{5}. Find a basis of $\mathbb{R}^{5} / \mathrm{W}$.
c) Give a one-one linear map $\mathrm{T}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$. Can this map be onto? Justify.[5]

Q3) a) Let $\mathrm{W}_{1}, \ldots, \mathrm{W}_{m}$ be subspaces of a vector space V . If
i) $\mathrm{V}=\mathrm{W}_{1}+\ldots \ldots .+\mathrm{W}_{m}$, and
ii) For each $\mathrm{k}, \mathrm{W}_{k} \cap \sum_{i \neq k} \mathrm{~W}_{i}=\{0\}$ then prove that $\mathrm{V} \simeq \mathrm{W}_{1} \oplus \ldots \ldots . \oplus \mathrm{W}_{m}$.
b) Let D be the differential operator on the vector space $\mathbb{R}_{4}[x]$. Find the matrix of D with respect to the basis $\left\{1, x, x^{2}, x^{3}, x^{5}\right\}$.
c) Let A and B be similar matrices over \mathbb{R}. Show that A and B have same characteristic polynomials.

Q4) a) State and prove primary decomposition theorem.
b) Let A be a 5×5 matrix with minimal polynomial $x^{3}(x-1)$. What can be its characteristic polynomial? Is A diagonalizable? Is A invertible?
c) Show that if λ is an eigen value of T and $p(x) \in k[x]$, then $p(\lambda)$ is an eigen value of $p(\mathrm{~T})$.

Q5) a) Define geometric multiplicity and algebraic multiplicity of an eigen value of an operator. Prove that the geometric multiplicity of an eigen value cannot exceed its algebraic multiplicity.
b) Write all possible Jordan Canonical form of the matrix whose characteristic polynomial is $\left(x^{3}-1\right)^{2}$.
c) What do you mean by a diagonalizable matrix. Give two non-diagonal 3×3 matrices A and B such that A is diagonalizable but B is not diagonalizable.

Q6) a) Explain the rational canonical form of a matrix. Prove that two matrices are similar if and only if they have same rational canonical forms.
b) Define an inner product on the vector space of $n \times n$ matrices over \mathbb{C}. Show that $\left|\operatorname{tr}\left(\mathrm{AB}^{*}\right)\right| \leq \sqrt{\operatorname{tr}\left(\mathrm{AA}^{*}\right) \operatorname{tr}\left(\mathrm{BB}^{*}\right)} \leq \frac{\operatorname{tr}\left(\mathrm{AA}^{*}\right)+\operatorname{tr}\left(\mathrm{BB}^{*}\right)}{2}$ for $\mathrm{A}, \mathrm{B} \in \mathbb{C}^{n \times n}$.
c) Prove the polarization identities for the inner product space.

Q7) a) State and prove Riesz representation theorem for finite dimensional inner product space.
b) Let T be a self adjoint operator on an inner product space V. Prove that
i) For all $v \in \mathrm{~V},\langle\mathrm{~T} v, v\rangle$ is real,
ii) If $\langle\mathrm{T} v, v\rangle=0$, for all $v \in \mathrm{~V}$, then $\mathrm{T} \equiv 0$.
c) Let T be a self adjoint operator on a finite dimensional inner product space V . Then prove that T is positive definite if and only if all eigen values of T are positive.

Q8) a) Let V be a finite dimensional inner product space and let $\mathrm{T} \in \mathrm{L}(\mathrm{V})$. Then prove that the following statements are equivalent.
i) T is unitary.
ii) $\langle T u, T v\rangle=\langle u, v\rangle$, for all $u, v \in \mathrm{~V}$.
iii) $\quad\|\mathrm{T} u\|=\|u\|$, for all $u \in \mathrm{~V}$.
b) Find a polar decomposition of the following matrix.
$\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$
c) Prove that a bilinear form is reflexive if and only if it is either symmetric or alternating.

$\rightarrow \rightarrow \rightarrow$

\square

Time : 3Hours

[Max. Marks: 80
Instructions to the candidates:

1) Attempt any five questions.
2) Figures to the right indicate full marks.

Q1) a) State and prove wilson's Theorem.
b) Solve the congruence $x^{2}+x+7 \equiv 0(\bmod 15)$.
c) What are the last two digits of 3^{545}.

Q2) a) Let p be a prime. Prove that $x^{2} \equiv-1(\bmod p)$ has a solution if and only if $\mathrm{p}=2$ or $p \equiv 1(\bmod 4)$.
b) Solve the set of congruences $x \equiv 1(\bmod 4), x \equiv 0(\bmod 3), x \equiv 5(\bmod 7)$
c) Exhibit reduced residue system modulo7 composed entirely of powers of 3.

Q3) a) Let a be an integer and p be an odd prime and $(\mathrm{a}, \mathrm{p})=1$. Consider the integers $\mathrm{a}, 2 \mathrm{a}, 3 \mathrm{a}, \ldots\left(\frac{p-1}{2}\right) \mathrm{a}$ and their least positive residues modulo p. If n denotes the number of these residues that exceed $\frac{p}{2}$ then prove that $\left(\frac{a}{p}\right)=(-1)^{n}$.
b) Let a and b be integers and p be a prime, $\mathrm{P}>2$, such that $(\mathrm{a}, \mathrm{p})=(\mathrm{b}, \mathrm{p})=1$. Prove that if $x^{2} \equiv a(\bmod p)$ and $x^{2} \equiv b(\bmod p)$ are not solvable then $x^{2} \equiv a b(\bmod p)$ is solvable .
c) Prove that 3 is quadratic residue of 13 but a quadratic non-residue of 7 .

Q4) a) Let Q be an odd positive integer then prove that
i) $\left(\frac{-1}{Q}\right)=(-1)^{\frac{Q-1}{2}}$
ii) $\quad\left(\frac{2}{Q}\right)=(-1)^{\frac{Q^{2}-1}{8}}$
b) Verify that $x^{2} \equiv 10(\bmod 89)$ is solvable.
c) Find all primes p such that $\left(\frac{-2}{p}\right)=1$.

Q5) a) Let $\mathrm{f}(\mathrm{n})$ be a multiplicative function and let $\mathrm{F}(n)=\sum_{d / n} f(d)$ then prove that $\mathrm{F}(\mathrm{n})$ is multiplicative function.
b) Prove that $\prod_{d / n} d=n^{d(\mathrm{n}) / 2}$ for any positive integer n .
c) For what real number x.
i) $[x+3]=[x]+3$
ii) $[9 x]=9$
iii) $[x+3]=x+3$

Q6) a) Let p be a prime, prove that the largest exponent e such that P^{e} / n ! is

$$
\begin{equation*}
e=\sum_{i=1}^{\infty}\left[\frac{n}{p^{i}}\right] . \tag{6}
\end{equation*}
$$

b) Evaluate $\sum_{j=1}^{\infty} \mu(j!)$
c) Find all integers x and y such that $147 x+258 y=369$.

Q7) a) Let $\mathrm{f}(x)$ ba a monic polynomial with integral coefficients, $\mathrm{f}(x)=\mathrm{g}(x) \mathrm{h}(\mathrm{x})$ where $\mathrm{g}(x)$ and $\mathrm{h}(x)$ are monic polynomials with rational coefficients then prove that $\mathrm{g}(x)$ and $\mathrm{h}(x)$ has integral coefficients.
b) Let α be an integer in $Q(\sqrt{m})$ such that $\mathrm{N}(\alpha)= \pm \mathrm{p}$ then prove that α is a prime in $Q(\sqrt{m})$
c) If α and $\beta \neq 0$ are integers in $Q(\sqrt{m})$ and α / β then prove that α / β and $N(\alpha) \mid N(\beta)$.

Q8) a) Prove that the fields $Q(\sqrt{m})$ for $\mathrm{m}=-1,-2,-3,-7,2,3$ are Euclidean so have unique factorisation property.
b) Prove that the reciprocal of a unit is a unit and the set of units in an algebraic number field form a multiplicative group.
c) Prove that $\sqrt{3}+1$ and $\sqrt{3}-1$ are associates in $Q(\sqrt{3})$.
Time : 3Hours]
Instructions to the candidates:[Max. Marks : 801) Attempt any five questions.2) Figures to the right indicate full marks
Q1) a) If $\left\{\mathrm{T}_{\alpha}\right\} \alpha \in J$ is a collection of topologies on X then show that $\cap \tau_{\alpha}$ is again topology on X . Give an example to show that $\cup \tau_{\alpha}$ may not be a topology on X [8]
b) Prove that countable union of countable sets is again countable. [5]
c) Define:Basis for a topology τ on X with an example. [3]
Q2) a) Prove that every compact Hausdorff space is regular. [8]
b) Define order topology on set X having simple order relation with morethan one element..[5]
c) State intermediate value theorem [3]
Q3) a) State and prove Pasting lemma. [8]
b) Show that every retraction map is a quotient map. [5]
c) State Tietz extension theorem. [3]
Q4) a) State and prove tube lemma. [8]
b) Prove that continuous image of connected set is again connected. [5]
c) Define:[3]

1) Lower limit Topology on \mathbb{R}
2) K-topology on \mathbb{R}
3) Upper limit Topology on \mathbb{R}

Q5) a) State and prove Urysohns lemma.
b) State and prove Lebesgue number lemma.

Q6) a) State and prove Tychnoff's theorem.
b) Let $\Delta=\{x \times x \mid x \in X\}$ be the set in $\mathrm{X} \times \mathrm{X}$ where X is a topological space. Then show that X is Hausdorff space if and only if Δ is closed in $\times \times \times$.
c) Prove that $[0,1]$ and $[1,2]$ are homeomorphic.

Q7) a) Prove that compactness implies limit point compactness. but not conversally.
b) Let $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{X} \times \mathrm{Y}$ is a map given by $f(\mathrm{a})=\left(f_{1}(a), f_{2}(a)\right) \forall a \in \mathrm{~A}$ then prove that f is continuous if and only if $\mathrm{f}_{1}: \mathrm{A} \rightarrow \mathrm{X}$ and $\mathrm{f}_{2}: \mathrm{A} \rightarrow \mathrm{Y}$ are continuous

Q8) a) Let $\{\mathrm{A} \alpha\} \alpha \in J$ be the arbitrary collection of subsets of X , then show that $\bigcup_{\alpha \in J} \bar{A}_{\alpha} \subseteq \overline{\bigcup_{\alpha \in J} A_{\alpha}}$ but not conversally.
b) Prove that continuous image of a compact set is gain compact.
c) Show that every retraction map is quotient map.

SEAT No. : \square
[Total No. of Pages : 2
M.A./M.Sc.

MATHEMATICS
MT-603 : Groups and Rings
(2008 Pattern) (Semester-II)
Time : 3 Hours]
[Max. Marks: 80
Instructions to the candidates:

1) Attempt any Five questions.
2) Figures to the right indicate full marks.

Q1) a) Define normal subgroup. Give an example of a group which is non abelian but has a proper normal subgroup. Justify the answer.
b) Find the inverse of the element $A=\left[\begin{array}{ll}1 & 3 \\ 2 & 5\end{array}\right]$ in $\operatorname{GL}\left(2, \mathbb{Z}_{11}\right)$.
c) Prove that a cyclic group is isomorphic to \mathbb{Z} or \mathbb{Z}_{n}, for some $n \in \mathbb{N}$.[6]

Q2) a) Let H be finite subset of a group G . Then prove that H is a subgroup of G if and only if H is closed under the operation of G. $\operatorname{Can}(\mathbb{Z},+)$ contain a finite subgroup other than (0)? Justify.
b) Give examples of two non isomorphic groups of order 4 with justification.[5]
c) Prove that every subgroup of a cyclic group is cyclic. Moreover prove that, if $|\langle a\rangle|=n$, then the order of any subgroup of $\langle a\rangle$ is a divisor of n; and for each positive divisor k of n, the group $\langle a\rangle$ has exactly one subgroup of order k.

Q3) a) Suppose that H is a proper subgroup of \mathbb{Z} under addition and H contains 10 and 14. Determine H .
b) Let G be a finite abelian group and let p be a prime that divides the order of G . Then prove that G has an element of order p.
c) Let G be a finite group and p be a prime. If p^{k} divides $|\mathrm{G}|$, then prove that G has at least one subgroup of order p^{k}.

Q4) a) Find the inverse and the order of each of the following permutations in S_{14}.
i) (1139)(2410)(71265)
ii) $\quad(12103134)(715)(289)$.
b) If N is a normal subgroup of a group G and $|\mathrm{G} / \mathrm{N}|=m$, show that $x^{m} \in \mathrm{~N}$ for all x in G .
c) State and prove the Lagrange's theorem for finite groups. Is the converse of the theorem true? Justify.

Q5) a) State and prove the orbit stabilizer theorem.
b) Is $(\mathbb{R},+)$ isomorphic to $\left(\mathbb{R}^{*}, \times\right)$? Justify your answer.
c) If $\tau=(6104)\left(\begin{array}{ll}5 & 11\end{array}\right), \rho=\left(\begin{array}{llll}5 & 6 & 3 & 1\end{array}\right)(9210) \in \mathrm{S}_{19}$. Then find $\tau^{-1} \rho \tau$ and $\rho^{-1} \tau \rho$.

Q6) a) Prove that if G is a group, then set of automorphisms of $\mathrm{G}, \operatorname{Aut}(\mathrm{G})$ is a group.
b) Determine all the homomorphisms from \mathbb{Z}_{20} to \mathbb{Z}_{24}.
c) Find all the non isomorphic abelian groups of order 4900 .

Q7) a) Let H be an index 2 subgroup at group G. Prove that $a^{2} \in \mathrm{H}, \forall a \in \mathrm{G} .[5]$
b) Find the group of inner automorphisms of dihedral group D_{4} i.e. find $\operatorname{Inn}\left(D_{4}\right)$.
c) let G be a finite group and let p be a prime. Then prove that the number of Sylow p-subgroups of G is equal to 1 modulo p and divides $|\mathrm{G}|$. Also prove that, any two Sylow p subgroups of G are conjugate.

Q8) a) Suppose that G is an abelian group with an odd number of elements. Show that the product of all of the elements of G is the identity.
b) Prove that the group of order 56 is not simple.
c) Let p be a prime integer and let G be a group such $|\mathrm{G}|=p^{2}$. Prove that G is abelian.

$7 \rightarrow 7$

 M.A./M.Sc.

MATHEMATICS
MT-604 : Complex Analysis
(2008 Pattern) (Semester-II)

Time : 3 Hours]

[Max. Marks : 80
Instructions to the candidates:

1) Solve any five questions.
2) Figures to the right indicate full marks.

Q1) a) State and prove Liouville's theorem. Using it, prove that $\sin z$ is an unbounded function on \mathbb{C}.
b) Let R be the radius of convergence of the power series $\sum a_{n} z^{n}$. Prove that $\mathrm{R}=\lim \left|\frac{a_{n}}{a_{n+1}}\right|$.
c) Let $\gamma(t)=e^{i t}, 0 \leq t \leq 2 \pi$. Then evaluate the integrals:
i) $\int_{\gamma} \frac{e^{i z}}{z^{2}} d z$
ii) $\int_{\gamma} \frac{d z}{(z-2)^{5}}$

Q2) a) Let $u: \mathbb{C} \rightarrow \mathbb{C}$ be a harmonic function. Prove that u has a harmonic conjugate.
b) Prove that if both f and \bar{f} are analytic on \mathbb{C}, then f is constant.
c) Prove that a Mobius transformation takes circles onto circles.

Q3) a) Find a Mobius transformation which takes right half plane onto the unit disc.
b) Find the radius of convergence for the following series:
i) $\quad \sum 3^{n} z^{n}$
ii) $\quad \sum \frac{z^{n}}{n!}$
c) Show that if $f=u+i v$ is analytic on \mathbb{C}, then u, v and $u v$ are harmonic functions.

Q4) a) Let f be analytic in the disc $\mathrm{B}(a, \mathrm{R})$ and let γ be a closed rectifiable curve in $\mathrm{B}(a, \mathrm{R})$. Prove that $\int_{\gamma} f=0$.
b) Let f be analytic in $\mathrm{B}(a, \mathrm{R})$ and suppose $f(a)=0$. Show that a is a zero of multiplicity m if and only if $f^{(m-1)}(a)=\ldots=f(a)=0$ and $f^{(m)}(a) \neq 0$.
c) Let G be simply connected and $f: \mathrm{G} \rightarrow \mathbb{C}$ be analytic in G. Prove that f has a primitive in G .

Q5) a) State and prove the Casorati-Weierstrass theorem.
b) Find a Mobius transformation which map the points $0,1, \infty$ onto the points $0,1 / 2,1$, respectively.
c) Identify the analytic function f on the unit disc such that

$$
f(1 / n)=\frac{n}{2 n+1} \text { for } n=2,3, \ldots \ldots
$$

Q6) a) Suppose f has an isolated singularity at $z=a$. Prove that $z=a$ is a removable singularity if and only if $\lim _{z \rightarrow a}(z-a) f(z)=0$.
b) Classify the singularities of the following functions:
i) $\frac{\sin z}{z(z-2)}$
ii) $\sin (1 / z)$
c) Let f and g be entire functions such that $f g \equiv 0$. Prove that $f \equiv 0$ or $g \equiv 0$.

Q7) a) State:
i) Morera's theorem
ii) Open mapping theorem
iii) Goursat's theorem
b) Let f be analytic and non-vanishing in a region G. Prove that there is analytic g such that $f(z)=e^{g(z)}$.
c) State and prove Schwarz's lemma.

Q8) a) State Rouche's theorem. Using it, prove the fundamental theorem of algebra.
b) Let f be a non-constant analytic function on a bounded open set G and is continuous on $\overline{\mathrm{G}}$. Prove that either f has a zero in G or $|f|$ assumes its minimum value on the boundary of G .
c) Using residue theorem, show that $\int_{0}^{\infty} \frac{\sin x}{x} d x=\frac{\pi}{2}$.

$\rightarrow \rightarrow \rightarrow$

Time : 3 Hours]

[Max. Marks: 80
Instructions to the candidates:

1) Attempt any five questions.
2) Figures to the right indicate full marks.

Q1) a) Eliminate the arbitrary function from the function $\mathrm{F}\left(x+y, x^{2}+y^{2}+z^{2}\right)$ and find the corresponding partial differential Equations.
b) Find the general solution of $z(z-y) d x+z(z+x) d y+x(x+y) d z=0$.
c) Define the following terms and example of each
i) Linear equation
ii) Non-linear equation

Q2) a) Find general solution of $y^{2} p-x y q=x(z-2 y)$.
b) State the conditions for equation $f(x, y, z, p, q)=0$ and $g(x, y, z, p, q)=0$ to be compatible on the Domain D.
c) Find the complete integral of $p^{2}+q^{2}=x+y$.

Q3) a) If $h_{1}=0$ and $h_{2}=0$ are compatible with $f=0$, then, prove that h_{1} and h_{2} satisfy $\frac{\partial(f, h)}{\partial\left(x, u_{x}\right)}+\frac{\partial(f, h)}{\partial\left(y, u_{y}\right)}+\frac{\partial(f, h)}{\partial\left(z, u_{z}\right)}=0$ where $h_{i}, i=1,2$.
b) Verify that the equation is integrable

$$
\begin{equation*}
y z(y+z) d x+z x(x+z) d y+x y(x+y) d z=0 . \tag{6}
\end{equation*}
$$

c) State auxiliary equations of Jacobi's method of Non-linear partial differential equations.

Q4) a) Reduce the equation $\mathrm{U}_{x x}+2 \mathrm{U}_{x y}+17 \mathrm{U}_{y y}$ to canonical form and solve it.[6]
b) State and prove Kelvin's inversion theorem.
c) Find the two initial strips of equation $z=\frac{1}{2}\left(p^{2}+q^{2}\right)+(p-x)(q-y)$ which passes through X -axis.

Q5) a) State and prove Harnack's theorem.
b) Verify that the pfaffian differential equation is integrable and find its primitive of $(1+y z) d x+z(z-x) d y-(1+x y) d z=0$.
c) Find auxiliary of equations $z^{2}=p q x y$ by charpit's method.

Q6) a) Find the solution of the Heat-equation in an infinite rod which is defined

$$
\text { as } \begin{array}{cc}
\mathrm{U}_{t}=k \mathrm{U}_{x x}, & -\infty<x<\infty, t>0 \tag{6}\\
\mathrm{U}(x, 0)=f(x), & -\infty<x<\infty
\end{array} .
$$

b) State Dirichlet problem for rectangle and its solution.
c) Classify the following equation into hyperbolic, elliptic, parabolic type $\mathrm{U}_{x x}+2(1+\alpha y) \mathrm{U}_{y z}=0$.

Q7) a) Prove that the pfaffian differential equation $\mathrm{X} \cdot d r=\mathrm{P}(x, y, z) d x+\mathrm{Q}(x, y, z) d y+\mathrm{R}(x, y, z) d z=0$ is integrable iff $\mathrm{X} \cdot(n r) \mathrm{X}=0$.
b) Use Duhamel's principle and solve the non-homogeneous wave equation $\mathrm{U}_{t t}-\mathrm{C}^{2} \mathrm{U}_{x x}=\mathrm{F}(x, t), t>0$ with conditions $u(x, 0)=f(x), 0<x<l$, $u_{t}(x, 0)=g(x), 0<x<l, u(0, t)=u(1, t)=0, t>0$.

Q8) a) Find the solution by method of characteristic, the integral surface of $p q=z$ which pass through curve $x z=a^{2}, y=0$.
b) State Dirichlet's problem for rectangle and find it's solution.

\&ٌ\&

[5528]-26
 M.A./M.Sc.
 MATHEMATICS
 MT-606: Object Oriented Programming Using C++ (2008 Pattern) (Semester - II)

Time : 3 Hours]

[Max. Marks : 50
Instructions to the candidates:

1) Question 1 is compulsory.
2) Attempt any two from questions 2, 3, 4.
3) Figures to the right indicate full marks.

Q1) Attempt the following questions.
a) Write a short note on function prototype.
b) What is data encapsulation?
c) What is use of scope resolution operator?
d) Write a function to read a matrix of size $m \times n$ from the keyboard using 'for' loop.
e) Write a function to find LCM of two numbers.
f) Give an example of structure in $\mathrm{C}++$.
g) Write a note on operator 'new'.
h) Write a note on function overloading.
i) Which operator we cannot overload?
j) What is difference between private and protected members?

Q2) a) Define a class 'complex' having two data members 'real' and 'imaginary'. Overload necessary constructors, and overload operators + and -. Find addition and substraction of two complex numbers.
b) Illustrate by example the use of virtual functions.

Q3) a) Illustrate by example use of static member functions.
b) Write a note on inline functions.

Q4) a) Write a note on compile time polymorphism and run time polymorphism.
b) Write a note on const member function.
\qquad

MT-701: Functional Analysis
 (2008 Pattern) (Semester - III)

Time : 3Hours]

[Max. Marks: 80
Instructions to the candidates:

1) Attempt any five questions.
2) All questions carry equal marks.
3) Figures to the right indicate full marks.

Q1) a) State and prove the uniform boundedness principle.
b) Show that if the conjugate space of a normed linear space X is separable then X is separable.
c) Show that the orthogonal subset of inner product space is linearly independent.

Q2) a) Show that any two norms on a finite dimensional normed linear space are equivalent.
b) Let X be a normed linear space and let E be a convex subset of X. Prove that interior E° and closure \bar{E} of E is convex and also prove that If $E^{\circ} \neq \phi$, then $\bar{E}=\overline{E^{\circ}}$.
c) Let $k(\mathrm{~s}, \mathrm{t})$ be a square integrable function on the unit square $[0,1] \times[0,1]$. For $x \in L^{2}[0,1]$, let $(A x)(s)=\int_{0}^{1} k(s, t) x(t) d t, 0 \leq s \leq 1$. Show that A is a bounded operator on $L^{2}[0,1]$. Show also that A is self adjoint if $k(s, t)=\overline{k(s, t)}$ for all (s, t)

Q3) a) Let X be a normed linear space, Y be a subspace of X and $g \in Y^{\prime}$. Prove that there is some $f \in X^{\prime}$ such that $f / Y=g$ and $\|f\|=\|g\|$.
b) Prove that a normed space X is Banach if and only if every absolutely summable series of elements in X is summable in X.
c) Does there exists a discontinuous linear function from an infinite dimensional normed linear space X to a normed linear space Y ? Justify your answer.

Q4) a) Let X be a normed space and $P: X \rightarrow X$ be a projection. Prove that P is closed map if and only if the subspaces $R(P)$ and $Z(P)$ are closed. [6]
b) Let $B(X, Y)$ be the set of all continuous linear maps from a normed linear space X to a normed linear space Y. Prove that if Y is Banach then $B(X, Y)$ is Banach.
c) Let X and Y be normed linear spaces and $F: X \rightarrow Y$ be a linear map. Show that F is continuous at origin if and only if it is continuous on X.

Q5) a) Let X be an inner product space. For all $x, y \in X$, prove that $|\langle x, y\rangle| \leq\langle x, x\rangle\langle y, y\rangle$ and equality holds if and only if the set $\{x, y\}$ is linearly dependent.
b) Show that a nonzero normed space X is Banach if and only if the set $S=\{x \in X:\|x\|=1\}$ is complete.
c) Consider $X=\left(\ell^{1},\|\cdot\|_{1}\right)$, a normed linear space. Define $f: \ell^{1} \rightarrow \mathbb{R}$ by $f(x)=\sum_{i=1}^{\infty} x_{i}$. Shows that f is a bounded linear functional with $\|f\|=1$.

Q6) a) Let H be a Hilbert space and $A \in B L(H)$. Prove that there is a unique $B \in B L(H)$ such that for all $x, y \in H,\langle A(x), \mathrm{y}\rangle=\langle\mathrm{x}, B(\mathrm{y})\rangle$.
b) Show that even a discontinuous linear map can have a closed graph. Does this contradict the closed graph theorem? Explain.
c) Let F be a subspace of an inner product space X and $x \in X$. Show that $y \in F$ is a best approximation from F to x if and only if $x-y \perp F$.

Q7) a) Let H be a Hilbert space and $A \in B L(H)$. Prove that the closure of $R(A)$ equals $Z\left(A^{*}\right)^{\perp}$ and the closure of $R\left(A^{*}\right)$ equals $Z(A)^{\perp}$.
b) Let H be a Hilbert space and $A \in B L(H)$. Prove that $\left\|A^{*}\right\|=\|A\|$ and $\left\|A^{*} A\right\|=\|A\|^{2}$.
c) Let T be an operator on a finite dimensional Hilbert space H and $M_{1}, M_{2}, \ldots . . M_{n}$ be all the eigenspaces of H. If T is normal, then prove that the $M_{i}^{\prime} s$ spans H. [4]

Q8) a) Let H be a Hilbert space. Prove the $A \in B L(H)$ can be expressed as $A=B+i C$, where B and C are self adjoint operators on H.
b) If M is a linear subspace of a Hilbert space H, then show that M is closed if and only if $M=M^{\perp \perp}$.
c) If T is an operator on a Hilbert space H with $\langle T x, x\rangle=0$ for all $x \in H$ then prove that $T=0$.

* *

\square
M.A./ M.Sc. MATHEMATICS
MT-702: Ring Theory (2008 Pattern) (Semester - III)

Time : 3Hours]

[Max. Marks : 80
Instructions to the candidates:

1) Attempt any five questions.
2) Figures to the right indicate full marks.
3) All the symbols have their usual meanings.

Q1) a) State and prove first isomorphism theorem for rings. [6]
b) If F is a field, then show that $F[x]$ is an Euclidean domain.
c) Show that a prime number p divides an integer of the form $n^{2}+1$ if and only if p is either 2 or $p \equiv 1(\bmod 4)$.

Q2) a) State and prove Chinese Remainder theorem for rings.
b) Prove that every non-zero prime ideal in a PID is maximal ideal.
c) Let F be a field and let $p(x) \in F[x]$. Then show that $p(x)$ has a factor of degree one if and only if $p(x)$ has a root in F.

Q3) a) Let R be commutative ring with unity. Then show that an ideal P in ring R is prime ideal if and only if R / P is an integral domain.
b) Prove that in an integral domain, a prime element is always irreducible.[4]
c) Give any two examples of module M over ring R.

Q4) a) Let M be an R-module. Let A and B be submodules of M with $A \subset B$, then show that $(M / A) /(B / A) \cong M / B$.
b) Let R be an integral domain and let Q be the field of fractions of R. If a field F contains a subring R^{\prime} isomorphic to R, then show that subfield of F generated by R^{\prime} is isomorphic to Q.

Q5) a) Prove that in a ring with identity every proper ideal is contained in a maximal ideal.
b) If R is any commutative ring such that $R[x]$ is PID, then prove that R is necessarily a field.
c) Define free module along with suitable example.

Q6) a) Is inverse image of maximal ideal under a ring homomorphism a maximal ideal? Is image of prime ideal under ring homomorphism a prime ideal?
b) Show that ring $\mathbb{Z}[2 i]$ is an integral domain but not UFD.
c) If N is a submodule of M, then annihilator of N in R is defined as $\operatorname{Ann}(N)=\{r \in R: r n=0$, for all $n \in N\}$. Then show that $\operatorname{Ann}(N)$ is an ideal of R.

Q7) a) Prove that every PID is UFD.
b) Show that every ideal in a Euclidean domain is principal.
c) Show that the polynomial $f(x)=x^{4}+10 x+5 \in \mathbb{Z}[x]$ is irreducible. (State all the results which will be used.)

Q8) a) Is field (i) an integral domain (ii) PID? Justify your answer.
b) Show that $\mathbb{R}[x] /\left\langle x^{2}+1>\right.$ is field and $\mathbb{Z}[x] /\langle x\rangle$ is an integral domain. [8]
c) Let R be a ring and let M be an R-module. Show that a subset N of M is submodule of M if and only if $N \neq \phi$ and $x+\alpha y \in N$, for all $\alpha \in R$ and for all $x, y \in N$.

1) Attempt any five questions.
2) Figures to the right indicate full marks.

Q1) a) Explain the terms:
i) Canonical pendulum
ii) Generalized momentum
iii) Kepler's third law of planetary motion
b) A particle of mass m moves in one dimension such that it has the Langrangian $\mathrm{L}=\frac{m^{2} x^{4}}{12}+m x^{2} \mathrm{~V}(x)-\mathrm{V}^{2}(x)$, where V is some differentiable function of x. Find the equation of motion for $x(t)$ and describe the physical nature of the system on the basis of this equation.[4]
c) Show that the Langrange's equation of Motion can also be written as

$$
\begin{equation*}
\frac{\partial \mathrm{L}}{\partial t}-\frac{d}{d t}\left(\mathrm{~L}-\sum \dot{q}_{j} \frac{\partial \mathrm{~L}}{\partial \dot{q}_{j}}\right)=0 . \tag{6}
\end{equation*}
$$

Q2) a) Explain Atwood machine and discuss its motion.
b) Find E-L differential equation satisfied by twice differentiable function $y(x)$ which extremizes the functional $\mathrm{I}(y(x))=\int_{x_{1}}^{x_{2}} f\left(x, y, y^{\prime}\right) d x$ where y is prescribed at the end points.
c) Explain the Basic lemma.

Q3) a) State and prove the Principle of least action.
b) Show that the kinetic energy of the system can always be written as the sum of three homogeneous functions of the generalized velocities.

Q4) a) Describe the Routh's Procedure to solve the problem involving cyclic and non-cyclic co-ordinates.
b) Prove that angular momentum of a particle in a central force field remains constant.
c) Show that the Hamilton's Principle $\delta \int_{t_{0}}^{t} \mathrm{~L} d t=0$ also holds for the non-conservative system.

Q5) a) Find the extremals for an isoperimetric problem $\mathrm{I}(y(x))=\int_{0}^{1}\left(y^{\prime 2}-y^{2}\right) d x$, subject to the conditions that $\int_{0}^{1} y d x=1, y(0)=0, y(\pi)=1$.
b) For 2-D harmonic oscillator, the Hamiltonian is of the form $\mathrm{H}\left(x, y . \mathrm{P}_{x}, \mathrm{P}_{y}\right)=\frac{1}{2 m}\left(\mathrm{P}_{x}^{2}+\mathrm{P}_{y}^{2}\right)+\frac{1}{2} k\left(x^{2}+y^{2}\right)$. Show that the quantity $\left(x \mathrm{P}_{y}-y \mathrm{P}_{x}\right)$ is conserved.
c) Explain the Hamilton's Principle.

Q6) a) Prove that central force motion is always motion in a plane.
b) Prove the Kepler's first law of planetary motion.

Q7) a) Show that the transformation $\mathrm{P}=\frac{1}{2}\left(p^{2}+q^{2}\right), \mathrm{Q}=\tan ^{-1} \frac{q}{p}$ is canonical.
b) Prove that Poisson brackets are invariant under canonical transformation.

Q8) a) If the matrix of transformation form space set of axes to body set of axes is equivalent to a rotation through an angle χ about some axis through the origin then show that

$$
\cos \left(\frac{\chi}{2}\right)=\cos \left(\frac{\phi+\varphi}{2}\right) \cdot \cos \left(\frac{\theta}{2}\right) .
$$

b) Obtain the Lagrangian for the system of two bodies moving under central force field.

$\rightarrow \rightarrow \rightarrow$

[5528]-34
 M.A./ M.Sc.
 MATHEMATICS
 MT-704: Measure and Integration (2008 Pattern) (Semester - III)

[Total No. of Pages :4

Time : 3Hours]

[Max. Marks: 80
Instructions to the candidates:

1) Attempt any five questions.
2) Figures to the right indicate full marks.
3) All symbols have their usual meanings.

Q1) a) If E_{i}^{\prime} 's are with $\mu E_{1}<\infty$ and $E_{i} \supset E_{i+1}$ then prove that

$$
\begin{equation*}
\mu\left(\bigcap_{i=1}^{\infty} E_{i}\right)=\lim _{n \rightarrow \infty} \mu E_{n} . \tag{6}
\end{equation*}
$$

b) Define a σ-algebra. Show that the class of measurable sets \mathscr{M} is a $\sigma-$ algebra.
c) Show that every countable set has measure zero.

Q2) a) Let $\left\{\left(X_{\alpha}, \mathscr{B}_{\alpha}, \mu_{\alpha}\right)\right\}$ be a collection of measurable spaces, and suppose that the sets $\left\{X_{\alpha}\right\}$ are disjoint and define

$$
X=\bigcup X_{\alpha}, \mathscr{B}=\left\{B:(\alpha)\left[B \cap X_{\alpha} \in \mathscr{B}_{\alpha}\right]\right\} \text { and } \mu(B)=\sum \mu_{\alpha}\left(B \cap X_{\alpha}\right) .
$$

i) Show that \mathscr{B} is a σ-algebra.
ii) Show that μ is a measure.
b) Let c be any real number and let f and g be real valued measurable functions defined on the same measurable set E. Show that $f+c, c f, f+g, f-g$ and $f g$ are measurable.

Q3) a) Let \mathscr{R} be σ-ring and \mathscr{B} be the smallest σ-algebra containing \mathscr{R} if μ is measure on \mathscr{R}, define $\bar{\mu}$ on \mathscr{B} by $\bar{\mu} E=\mu E$ if $E \in \mathscr{R}$ and $\bar{\mu} E=\infty$ if $E \in \mathscr{R} .^{\prime}$ Then show that $\bar{\mu}$ is a measure on \mathscr{B}.
b) Show that for any set A and real number $\in>0$, there is an open set O containing A such that $\mu^{*}(O) \leq \mu^{*}(A)+\epsilon$.
c) Let E and F are measurable sets, $f \in L(E, \mu)$ and $\mu(E \Delta F)=0$, then show that $f \in L(F, \mu)$ and $\int_{F} f d \mu=\int_{F} f d \mu$.

Q4) a) Let $<f_{n}>$ be sequence of non-negative measurable functions that converges almost everywhere on a set E to a function f. Then show that $\int_{E} f \leq \underline{\lim } \int_{E} f_{n}$.
b) i) Show that, if f is integrable, then the set $\{x: f(x) \neq 0\}$ is a σ-finite measure.
ii) Show that, if f is integrable, $f \geq 0$, then $f=\lim \phi_{n}$ for some increasing sequence of simple functions each of which vanishes outside a set of finite measure.
c) If μ is a measure on a ring \mathscr{R}, then show that ρ defined by

$$
\begin{equation*}
\rho(A, B)=\mu(A \Delta B) \text { is a pseudometric on } \mathscr{R} \text {. } \tag{4}
\end{equation*}
$$

Q5) a) Let v be a signed measure on the measurable space (X, \mathscr{B}) then prove that there is a positive set A and a negative set B such that $X=A \bigcup B$ and $A \bigcap B=\phi$
b) Let (X, \mathscr{B}) be a measurable space and $<\mu_{n}>$ a sequance of measures on \mathscr{B} such that $\mu_{n}+1$ $E \mu_{n} E$ and $\mu E=\lim \mu_{n} E$ for each $\mathrm{E} \in \mathscr{B}$. Then show that μ is a measure on \mathscr{B}.
c) Show that the function $x^{-1} \sin x$ is Riemann integrable on $(-\infty, \infty)$ but its Lebesgue integral does not exist.

Q6) a) Let (X, \mathscr{B}, μ) be a σ-finite measure space, and let v be a measure defined on \mathscr{B} which is absolutely continuous with respect to μ. Then prove that there is a nonnegative measurable function f such that for each set E in \mathscr{B} we have $v E=\int_{E} f d \mu$.
b) Let μ be a measure on an algebra \mathscr{G} and μ^{*} the outer measure induced by μ. Then prove that the restriction $\bar{\mu}$ of μ^{*} to the μ^{*} measurable sets is an extension of μ to σ-algebra containing \mathscr{G}.
c) Define Hausdroff outer measure. Show that Hausdroff outer measure is invariant under translation.

Q7) a) If μ is a measure on a ring \mathscr{R} and the set function μ^{*} is defined on
$\mathscr{H}(\mathscr{R})$ by $\mu^{*}(E)=\inf \left[\sum_{n=1}^{\infty} \mu\left(E_{n}\right): E_{n} \in \mathscr{R}, n=1,2, \ldots, E \subset \bigcup_{n=1}^{\infty} E_{n}\right]$.

Then show that i) for $\mathrm{E} \in \mathscr{R}, \mu^{*}(E)=\mu(E)$, ii) μ^{*} is an outer measure on $\mathscr{H}(\mathscr{R})$.
b) If μ is a σ-finite measure on a aring \mathscr{R} then show that it has unique extension
to the $\sigma-\operatorname{ring} \mathscr{\mathscr { L }}(\mathscr{R})$.
c) Let μ^{*} be a topologically regular outer measure on X then prove that each Borel set is μ^{*}-measurable.

Q8) a) Define Borel set. Let E be a subset of X such that $E \bigcap K$ is a Borel set for each compact set K. Then show that E is a Borel set.
b) Let μ be a finite measure defined on a σ-algebra \mathscr{M} which contains all the Baire sets of locally compact space X. If μ is inner regular then show that μ is regular.
c) Let μ^{*} be a topologically regular outer measure on X. Then each Borel set is μ^{*}-measurable.

[5528]-35

 M.A/M.Sc.

 M.A/M.Sc.
 MATHEMATICS
 MT 705: Graph Theory
 (2008 Pattern) (Semester -III)

[Total No. of Pages : 2

Time : 3 Hours]

[Max. Marks: 80
Instructions to the candidates:

1) Solve any five questions out of eight questions.
2) Figures to the right indicate full marks.
3) Use of non programmable scientific calculator is allowed.

Q1) a) Prove that every u, v-walk contains a u, v-path.
b) Show that every closed odd walk contains an odd cycle.
c) Write down the Adjacency and Incidence matrices of the following graph G.

Q2) a) Prove that if every vertex of a graph G has degree at least 2, then G contains a cycle.
b) Prove that a simple graph and its complement cannot both be disconnected.
c) Write down the graphs of
i) K_{10}
ii) C_{7}

Q3) a) If G is a graph then show that $\sum_{u \in(G)} d(v)=2 e(G)$
b) Prove that the nonnegative integers $\mathrm{d}_{1}, \ldots \ldots . \mathrm{d}_{\mathrm{n}}$ are the vertex degrees of some graph if and only if $\sum d i$ is even.

Q4) a) Prove that, there are n^{n-2} distinct labelled trees on n vertices.
b) Show that every tree with at least two vertices has at least two leaves. Deleting a leaf from an n-vertex tree produces a tree with $n-1$ vertices.

Q5) a) Show that Peterson Graph has diameter 2
b) Prove that in a connected weighted graph G, Kruskal's Algorithm constructs a minimum-weight spanning tree.

Q6) a) By using Dijkstra's Algorithm find shortest route from vertex u to e. [8]

b) State and prove Hall's marriage theorem.

Q7) a) Let G be an X, Y-bigraph having a matching that saturates X and Let S and T be subsets of X such that $|N(S) \neq(S)|$ and $|N(T)=|(T)|$. Prove that

$$
\begin{equation*}
|N(S \cap T)|=(S \cap T) \tag{8}
\end{equation*}
$$

b) If G is a 3-regular graph, then prove that $K(G)=K^{\prime}(G)$.

Q8) a) Let G be an n -vertex simple graph other than Kn . Prove that if G is not k connected, then G has a separating set of size $\mathrm{k}-1$.
b) Prove that a graph is 2 -connected if and only if it has an ear decomposition. Furthermore, every cycle in a 2 -connected graph is the initial cycle in some car decomposition.

Instructions to the candidates:

1) Attempt any five question of the following.
2) Figures to the right indicate full marks.

Q1) a) If K is algebraically closed then prove that every irreducible polynomial in $\mathrm{K}[x]$ is of deqree L
b) Let E be an extension of a field F. Define the group of F-automorphisms of E with an Example.
c) Prove that $\sqrt{2}+\sqrt{3}$ is algebraic over \mathbb{Q}.

Q2) a) Show that squaring the circle and doubling the cube are impossible by using rural and compass.
b) If E is a finite extension of a field F then prove that $|G(E \mid F)| \leq[E: F]$.[5]
c) Show that IR is not a normal extension of \mathbb{Q}.

Q3) a) If K is a splitting field of $\mathrm{f}(x) \in \mathrm{F}[x]$ over F then show that K is an algebraic extension of F
b) Determine the minimal polynomial for the element $1+i$ over \mathbb{Q}.
c) Examine whether the polynomial $\mathrm{x}^{4}+\mathrm{x}+1 \mathrm{GQ}[\mathrm{x}]$ is a separable polynomial.

Q4) a) Let E be a finite separable extension of a field F and H is a subgroup of $\mathrm{G}(\mathrm{E} / \mathrm{F})$ then prove that $\mathrm{G}\left(\mathrm{E} / \mathrm{E}_{\mathrm{H}}\right)=\mathrm{H}$ and $\left[\mathrm{E}: \mathrm{E}_{\mathrm{H}}\right]=\left|\mathrm{G}\left(\mathrm{E} \mid \mathrm{E}_{\mathrm{H}}\right)\right|$.
b) If $[\mathrm{F}(\alpha): \mathrm{F}]$ is odd then prove that $\mathrm{F}(\alpha)=\mathrm{F}\left(\alpha^{2}\right)$.
c) Is $\mathrm{f}(x)=x^{2}+x+1 \in \mathbb{Z}_{2}[x]$ irreducible over \mathbb{Z}_{2}.? Justify.

Q5) a) Show that the polynomial $x^{7}-10 x^{5}+15 x+5$ is not solvable by radicals over \mathbb{Q}.
b) Let $\mathrm{F}=\mathbb{Q}(\sqrt{2})$ and $\mathrm{E}=\mathbb{Q}(\sqrt[4]{2})$. Show that E is a normal extension of F and F is a normal extension of \mathbb{Q} but E is not a normal extension of \mathbb{Q}
c) If $\mathrm{f}(x)$ is an irreducible polynomial over F then prove that $\mathrm{f}(x)$ has a multiple root iff $\mathrm{f}^{1}(x)=0$

Q6) a) Show that the group $\mathrm{G}=\mathrm{G}(\mathbb{Q}(\sqrt[3]{2}) / \mathbb{Q})$ of \mathbb{Q}-automorphisms of $\mathbb{Q}(\sqrt[3]{2})$ is trivial.
b) Let \mathbb{Q} be a root of $x^{\mathrm{p}}-x$-L over a field F of characteristic P then show that $F(Q)$ is a separable extension of F.
c) Construct a field with g-elements.

Q7) a) Show that Galois group of $x^{4}+1 \in \mathrm{Q}(x)$ is the klein four -group.
b) If E is a Galois extension of F and K is any subfield of E containing F then prove that $\mathrm{K}=\mathrm{E}_{\mathrm{G}(\mathrm{LK})}$

Q8) a) Show that $\mathbb{Q}(\sqrt{2}, \sqrt{3})=\mathbb{Q}(\sqrt{2+} \sqrt{3})$
b) If L is algebraic over K and K is algebraic over a field F then prove that L is algebraic over F .
\square

Time : 3 Hours]

[Max. Marks: 80
Instructions to the candidates:

1) Attempt any Five questions.
2) Figures to the right indicate full marks.

Q1) a) Define the differential operator d and for any k-form ω, show that $d(d \omega)=0$.
b) Let A be open in \mathbb{R}^{k} and let $f: \mathrm{A} \rightarrow \mathbb{R}$ be of class C^{∞}. Show that the graph of f is a k-manifold in \mathbb{R}^{k+1}.
c) Define volume of parametrized surface in \mathbb{R}^{n}.

Q2) a) Let U be an open set in \mathbb{R}^{n} and $f: \mathrm{U} \rightarrow \mathbb{R}^{n}$ be of class C^{r}. Let $\mathrm{M}=\{x: f(x)=0\}$ and $\mathrm{N}=\{x: f(x) \geq 0\}$. If M is nonempty and $\mathrm{D} f(x)$ has rank one at each point of M , then prove that N is an n-manifold in \mathbb{R}^{n} and $\partial \mathrm{N}=\mathrm{M}$.
b) Define an exact form and give an example.
c) Give an example of a manifold without boundary. Justify.

Q3) a) Define orientation of a manifold M and induced orientation on $\partial \mathrm{M}$. [4]
b) State Stoke's theorem.
c) Suppose M is a 2-manifold in \mathbb{R}^{3} whose intersection with the plane $z=t$ is the circle $(x-t)^{2}+(y-t)^{2}=1+t ; z=t$ if $0 \leq t \leq 1$ and is empty otherwise. Find the area of M.

Q4) a) What is the dimension of $\mathrm{A}^{k}(\mathrm{~V})$, the space of alternating k-tensors on an n dimensional vector space V? Justify.
b) State Green's theorem for compact, oriented 2-manifold.
c) Define a closed form and give an example.

Q5) a) Let F be a k-tensor. With usual notation, if $\mathrm{AF}=\sum_{\sigma \in \mathrm{S}_{k}}(\operatorname{sign} \sigma) \mathrm{F}^{\sigma}$, then prove that AF is an alternating tensor. Find AF if F is already alternating.[7]
b) If $\omega=x^{2} y z d x+x y^{2} z d y+z e^{y} x d z$ and $\eta=y z \cos x d x+x y z d y+4 x y z^{2} d z$, then find $(\omega \wedge \eta)$.
c) Is $[0,1] \times[0,1]$ a manifold in \mathbb{R}^{2} ? Justify.

Q6) a) Let M be a k-manifold in \mathbb{R}^{n}. If $\partial \mathrm{M}$ is nonempty, then prove that $\partial \mathrm{M}$ is a $k-1$ manifold without boundary.
b) If $\omega=x^{2} y^{2} z^{2} d x+x z \sin y d y+e^{x} y z d z$ find $d \omega$.
c) Let $\mathrm{O}(3)$ denote the set of all orthogonal 3 by 3 matrices. Show that it is a compact 3-manifold in \mathbb{R}^{9} without boundary.

Q7) a) If ω and η are k and l forms respectively, then prove that $d(\omega \wedge \eta)=d \omega \wedge \eta+(-1)^{k} \omega \wedge d \eta$.
b) Let $\omega=y^{2} z d x+x^{2} z d y+x^{2} y d z$, and $\alpha(u, v)=\left(u-v, u v, u^{2}\right)$. Find $\alpha^{*}(d \omega)$.

Q8) a) With usual notation, show that $\alpha^{*}(d \omega)=d\left(\alpha^{*} \omega\right)$.
b) Let $\mathrm{A}=\mathbb{R}^{2}-\{0\}$. If $\omega=\frac{x d x+y d y}{x^{2}+y^{2}}$, then show that ω is closed and exact on A .

$\rightarrow \quad \rightarrow \quad \rightarrow$

Time : 3 Hours]

[Max. Marks: 80
Instructions to the candidates:

1) Solve any five questions.
2) Figures to the right indicate full marks.

Q1) a) Show that the relation of being of the same homotopy type is an equivalence relation.
b) What is strong deformation retract? Show that S^{n} is a strong deformation retract of $\mathbb{R}^{n+1} \backslash 0$.
c) Show that the unit closed solid n-sphere B^{n} is a contractible space.

Q2) a) Let $x_{0}, x_{1} \in \mathrm{X}$. If there is a path in X from x_{0} to x_{1} then show that the groups $\pi_{1}\left(\mathrm{X}, x_{0}\right)$ and $\pi_{1}\left(\mathrm{X}, x_{1}\right)$ are isomorphic.
b) Let $f: \mathrm{X} \rightarrow \mathrm{Y}$ be a continuous map of topological spaces. If $x_{0} \in \mathrm{X}$ then prove that there is a homomorphism $f^{*}: \pi_{1}\left(\mathrm{X}, x_{0}\right) \rightarrow \pi_{1}\left(\mathrm{Y}, f\left(x_{0}\right)\right)$ induced by f.
c) Show that a contractible space has trivial fundamental group.

Q3) a) Show that fundamental group of circle is isomorphic to additive group of integers.
b) The circle S^{1} is not a retract of the disc B^{2}.
c) What is the fundamental group of torus? Explain why?

Q4) a) Define the term covering space. Also give two examples of covering spaces with justification.
b) Show that $f: \mathrm{S}^{1} \rightarrow \mathrm{~S}^{1}$ given by $f(z)=z^{3}$ is a covering projection.
c) What is a local homeomorphism? Show that a covering map is local homeomorphism.

Q5) a) Is every local homeomorphism a covering map? Justify your answer.[4]
b) Define the terms fibration and fiber and give two examples of each. [4]
c) Suppose that $p: \mathrm{E} \rightarrow \mathrm{B}$ is a fibration such that every fiber has no non-null path then show that p has unique path lifting.

Q6) a) Show that two different complexes may have the same polyhedron. [4]
b) Show how to define simplicial mapping. Is simplicial mapping continuous?
c) Show that \mathbb{R}^{n} is homeomorphic to \mathbb{R}^{m} if and only if $n=m$.

Q7) a) Let $f: \mathrm{X} \rightarrow \mathrm{Y}$ be a homeomorphism and X has the fixed point property. Then show that Y has the fixed point property.
b) Explain the terms with suitable examples: Geometrically independent set in \mathbb{R}^{n}; Simplex; Simplicial complex; oriented simplex.

Q8) a) Define the term homotopy equivalent spaces. Also give examples of spaces that are homotopy equivalent but are not homeomorphic.
b) Let X be a topological space and $x_{0} \in \mathrm{X}$. Define a group operation on elements of $\pi_{1}\left(\mathrm{X}, x_{0}\right)$ and show that the operation is a well defined operation.
c) Let X and Y be of the same homotopy type and $f: \mathrm{X} \rightarrow \mathrm{Y}$ be a homotopy equivalence. Then show that $f^{*}: \pi_{1}(\mathrm{X}, x) \rightarrow \pi_{1}(\mathrm{Y}, f(x))$ is an isomorphism for any $x \in \mathrm{X}$.

$7 \rightarrow 7$

MATHEMATICS

MT- 805: Lattice Theory (2008 Course) (Old) (Semester - IV)

Time : 3.00 Hours]
[Max. Marks:80

Instructions to the candidates:

1) Attempt any five questions.
2) Figures to the right indicate full marks.

Q1) a) Show that $N_{5} \cong L \times K$ implies that L or K has only one element.
b) Let the algebra (L, \wedge, \vee) be a lattice, set $a \leq b$ if and only if $a=a \wedge b$ then prove that (L, \leq) is a poset and as a poset it is lattice.
c) Draw all non isomorphic lattices with 6 elements.

Q2) a) Let Θ be a congruence relation on L, and $a \in L$ then prove that $[a] \Theta$ is a convex sublattice.
b) Prove that sublattice of modular lattice is modular.
c) Let L be a lattice. Prove that subset I of L is an ideal if and only if following two conditions hold.
i) $\quad a, b \in I$ implies that $a \vee b \in I$,
ii) $\quad x \in L$ and $a \in I$ with $x \leq a$ implies that $x \in I$.

Q3) a) Define a congruence relation and show that a reflexive binary relation θ on a lattice L is a congruence relation if and only if the following three properties are satisfied, for $x, y, z \in \mathrm{~L}$:
i) $\quad x \equiv y(\theta)$ if and only if $x \wedge y=x \vee y(\theta)$.
ii) $x \leq y \leq z \quad x \equiv y(\theta)$, and $y \equiv z(\theta)$ imply that $x \equiv z(\theta)$.
iii) $\quad x \leq y \quad x \equiv y(\theta)$ imply that $x \wedge t \equiv y \wedge t(\theta)$ and $x \vee t \equiv y \vee t(\theta)$.
b) Prove that I is a prime ideal of L if and only if there is a homomorphism ϕ of L onto C_{2} with $I=\phi^{-1}(0)$.

Q4) a) Let L, L_{1}, K, K_{1} be lattices with $L \simeq L_{1}$ and $K \simeq K_{1}$, then prove that $L \times L_{1} \simeq K_{1} \times K$.
b) Prove that collection of all complemented elements in a distributive lattice forms a sublattice.
c) If in a poset $\mathrm{P}, \wedge \mathrm{H}$ exists for all $\mathrm{H} \subset \mathrm{P}$ then prove that P is complete lattice.

Q5) a) Let L be a lattice and let $a \in L$ then prove that following conditions are equivalent.
i) $\quad a$ is standard.
ii) Let α_{a} be the binary relation on L defined as: $x \equiv y\left(\bmod \alpha_{a}\right)$ if $(x \wedge y) \vee a_{1}=x \vee y$ for some $a_{1} \leq a$. Then α_{a} is a congruence relation.
iii) a is distributive and $a \vee x=a \vee y$ and $a \wedge x=a \wedge y$ imply that $x=y$.
b) Let L be distributive lattice, $a, b \in L$ and $a \neq b$, then prove that ther exist a prime ideal P of L containing exactly one of a and b.
c) Show that the ideal lattice, $\operatorname{ID}(L)$ is conditionally complemented for any lattice L.

Q6) a) Prove that a lattice L is modular if and only if it does not contain a sublattice isomorphic to pentagon $\left(N_{5}\right)$.
b) Let L be a lattice of finite length. If L is semimodular then prove that any two maximal chains of L are of the same length.

Q7) a) Prove that in a distributive lattice, $a \wedge x=a \wedge y$ and $a \vee x=a \vee y$ together implies that $x=y$.
b) State and prove the Jordan-HÖlder theorem for semimodular lattices.[7]
c) State and prove the Stones separation theorem.

Q8) a) Let L be a semimodular lattice. If p and q are atoms of $L, a \in L$, and $a<a \vee q \leq a \vee p$, then prove that $a \vee p=a \vee q$.
b) Let $I=\left\{a_{1}, \ldots, a_{\mathrm{n}}\right\}$ be a set of n atoms of a semimodular lattice. Then prove that the following conditions are equivalent.
i) I is independent.
ii) $\quad\left(a_{1} \vee \ldots \vee a_{i}\right) \wedge a_{i+1}=0$, for $i=1,2, \ldots ., n-1$.
iii) $\quad h\left(a_{1} \vee \ldots \vee a_{n}\right)=n$.

* * *

