$\qquad$

> [5528]-101
> M.A./ M.Sc.
> MATHEMATICS
> MT-501: Real Analysis
> (2013 Pattern) (Semester - I) (Credit System)

## Time : 3Hours]

[Max. Marks: 50
Instructions to the candidates:

1) Attempt any five questions.
2) Figures to the right indicate full marks.

Q1) a) Define exterior measure of a set $E \subseteq \mathbb{R}^{d}$. Show that the exterior measure of rectangle $\mathbb{R}$ is equal to its volume.
b) If $E \subseteq \mathbb{R}^{d}$ then prove that $m_{*}(E)=\inf m_{*}(\vartheta)$ where the infimum is taken over all open subsets $\vartheta$ containing $E$.
c) Show that cantor set C has exterior measure zero.

Q2) a) Prove that closed sets are measurable.
b) If $f$ is measurable function and $f=g$ a.e. then prove that $g$ is measurable.[3]
c) Prove that countable intersection of measurable sets is measurable.

Q3) a) State and prove monotone covergence theorem.
b) State Littlewood's three principles.
c) Define support of a measurable real valued function $f$ with suitable example.

Q4) a) Prove that the integral of Lebesgue integral functions is linear, additive, monotonic and satisfy the triangular inequlity.
b) Suppose $f(x, y)$ is non-negative mesurable function on $\mathbb{R}^{d^{1}} \times \mathbb{R}^{d 2}$ then prove that for almost every $y \in \mathbb{R}^{d 2}$ the slice $f^{y}$ is measurable on $\mathbb{R}^{d 1}$ [3]
c) Give an example of non-measurable function.

Q5) a) If $E=E_{1} \times E_{2}$ is measurable subset of $\mathbb{R}^{d}$ and $m^{*}\left(E_{2}\right)>0$. Then prove that $E_{1}$ is measurable, $E_{1} \subseteq \mathbb{R}^{d_{1}}, E_{2} \subseteq \mathbb{R}^{d_{2}}$.
 integrable on $\mathbb{R}^{d}$ if $\mathrm{a}<\mathrm{d}$ and $g$ is integrable on $\mathbb{R}^{d}$ if $\mathrm{b}>\mathrm{d}$.
c) $\operatorname{Let} f(t)=\sin t, t \in\left[0, \frac{\pi}{2}\right]$. Find total variation of $f$.

Q6) a) Suppose $f(x)$ is integrable on $\mathbb{R}^{d}$ then prove that $f^{*}$ satisfies

$$
\begin{equation*}
m\left(\left\{x \in \mathbb{R}^{d} / f^{*}(x)>\alpha\right\}\right)=\frac{A}{\alpha}\|f\|_{L^{\prime}}\left(\mathbb{R}^{d}\right) . \tag{5}
\end{equation*}
$$

b) Suppose $F$ is real valued and bounded variation on $[a, b]$. Then prove that $T_{F}(a, x)=P_{F}(a, x)+N_{F}(a, x), a \leq x \leq b$.
c) If $\int_{E} f=0$ and $f(x) \geq 0$ on E then show that $f=0$ a.e. on $E$.

Q7) a) If $\mathrm{B}=\left\{\mathrm{B}_{1}, \mathrm{~B}_{2}, \ldots \ldots \ldots, \mathrm{~B}_{\mathrm{N}}\right\}$ be a finite collection of open balls in $\mathbb{R}^{d}$ then prove that there exists a disjoint sub collection $B_{i}, B_{i_{i}}, B_{i_{i}}, \ldots \ldots . . ., B_{i_{k}}$ of B such that $M\left(\bigcup_{n=1}^{N} B_{i}\right) \leq 3^{d} \sum_{j=1}^{k} m\left(B_{i j}\right)$.
b) State and prove Egorov's theorem.

Q8) a) Define Good Kernels. Suppose $\phi$ is non negative bounded function in $\mathbb{R}^{d}$ that is supported on the unit ball $|x| \leq 1$ such that $\int_{\mathbb{R}^{d}} \phi(x) d x=1$ and define $K_{\delta}(x)=\frac{1}{\delta} \phi\left(\frac{x}{\delta}\right)$. Show that $\mathrm{K}_{\delta}$ is good kernel.
b) State and prove rising sun Lemma.

## * * *

$\square$

# MT-502: Advanced Calculus. <br> (2013 Pattern) (Semester - I) (Credit System) 

## Time : 3Hours]

[Max. Marks: 50
Instructions to the candidates:

1) Attempt any five questions.
2) Figures to the right indicate full marks.

Q1) a) Define directional derivative of a scalar field. Show that the existence of all directional derivatives at a point need not imply continuity of a function at that point.
b) Give an example of a function $f(x, y)$ of two variables, which is continuous in each variable separately, but is discontinuous as a function of two variables together. Justify.
c) State the Implicit function theorem.

Q2) a) State and prove the chain rule for derivatives of vector fields.
b) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ and $g: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be two vector fields defined a $\bar{f}(x, y)=e^{x+2 y} \bar{i}+\sin (y+2 x) \bar{j} ;$ $\bar{g}(u, v, w)=\left(u+2 V^{2}+3 W^{3}\right) \bar{i}+\left(2 V-u^{2}\right) \bar{j}$ compute the Jacobian matrix $D \bar{h}(1,-1,1)$, where $\bar{h}=\bar{f} \cdot \bar{g}$.
c) Find the directional derivative of scalar field $f(x, y, z)=3 x-5 y+2 z$ at $(2,2,1)$ in the direction of outward normal to the sphere $x^{2}+y^{2}+z^{2}=9$.

Q3) a) State and prove second fundamental theorem of calculus for line integrals.
b) Let $\bar{f}$ be a vector field continuous on an open connected set S in $\mathbb{R}^{n}$. If the line integral of $\bar{f}$ is zero around every piecewise smooth closed path in S , then prove that the line integral of $\bar{f}$ is independent of the path in S .
c) Let the two equations $e^{u} \cos V=x$ and $e^{u} \sin V=y$ define $u$ and $v$ as functions of $x$ and $y$, say $\mathrm{u}=\mathrm{U}(x, y)$ and $\mathrm{v}=\mathrm{V}(x, y)$. Find explicit formulas for $\mathrm{U}(x, y)$ and $\mathrm{V}(x, y)$, valid for $x>0$.

Q4) a) Let $\bar{\alpha}$ and $\bar{\beta}$ be equivalent piecewise smooth paths. Prove that, $\int_{c} \bar{f} \cdot d \bar{\alpha}=\int_{c} \bar{f} \cdot d \bar{\beta}$ if $\bar{\alpha}$ and $\bar{\beta}$ trace out C in the same direction, and $\int_{c} \bar{f} \cdot d \bar{\alpha}=-\int_{c} \bar{f} \cdot d \bar{\beta}$ if $\bar{\alpha}$ and $\bar{\beta}$ trace out $c$ in opposite directions.
b) Compute the value of the line integral $\int_{c} \frac{d x+d y}{|x|+|y|}$, where $c$ is the square with vertices $(1,0),(0,1),(-1,0)$ and $(0,-1)$ traversed once in a counterclockwise direction.
c) A force field $\bar{f}$ in 3-space is given by $\bar{f}(x, y, z)=x \bar{i}+y \bar{j}+(x z-y) \bar{k}$. Compute the work done by this force in moving a particle from $(0,0,0)$ to $(1,2,4)$ along the line segment joining these two points.

Q5) a) Define step function over rectangle $Q$. Define double integral of a step function over rectangle $Q$. If $f$ is a constant function on interior of rectangle $Q$, Find the double integral of $f$ over $Q$.
b) Evaluate the double integral $\iint_{Q} y^{-3} e^{t / y} d x d y$, where $Q=[0, \mathrm{t}] \times[1, t], t>0$, by repeated integration, given that each integral exists.
c) Transform the integral to polar coordinates and compute its value

$$
\int_{0}^{2 a}\left[\int_{0}^{\sqrt{2 a x-x^{2}}}\left(x^{2}+y^{2}\right) d y\right] d x
$$

[The letter a denotes a positive constant]

Q6) a) Define a simple parametric surface. If $T=[0,2 \pi] \times\left[0, \frac{\pi}{2}\right]$ under the map $\bar{r}(u, v)=a \cos u \cos v \bar{i}+a \sin u \cos v \bar{j}+a \sin v \bar{k}$ maps to a surface S , find singular points of this surface. Also, explain, whether $S$ is simple.
b) Compute the fundamental vector product of $\bar{r}(u, v)=a u \cos v \bar{i}+b u \sin v \bar{j}+u^{2} \bar{k}$
c) Using surface integral, compute the surface are a of a hemisphere of radius a and centre at origin.

Q7) a) Let $\bar{f}(x, y)=P(x, y) \bar{i}+Q(x, y) \bar{j}$ be a vector field that is continuously differentiable on an open simply connected set S in the plane. Prove that $\bar{f}$ is a gradient on S if and only if $\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}$ everywhere on S .
b) Use a suitable linear transformation to evaluate the double integral $\iint_{S} e^{(y-x) /(y+x)} \cdot d x d y$, where $S$ is the triangle bounded by the line $x+y=2$ and the two coordinate axes.

Q8) a) State and prove Gauss divergence theorem.
b) Determine the Jacobian matrix and compute the curl and divergence of $\bar{F}$, where $\bar{F}(x, y, z)=\left(x^{2}+y z\right) \bar{i}+\left(y^{2}+x z\right) \bar{j}+\left(z^{2}+x y\right) \bar{k}$.

## * * *

$\square$

## Time : 3 Hours]

[Max. Marks : 50
Instructions to the candidates:

1) Attempt any five questions.
2) Figures to the right indicate full marks.

Q1) a) State and prove two step subgroup test.
b) For any $a$ and $b$ from a group and any integer $n$, prove that $\left(a^{-1} b a\right)^{n}=a^{-1} b^{n} a$.
c) State and prove Sock-Shoes property.

Q2) a) Let $|a|=n$. Then prove that
i) $\left\langle a^{i}\right\rangle=\left\langle a^{j}\right\rangle$ if and only if $\operatorname{gcd}(n, i)=\operatorname{gcd}(n, j)$.
ii) $\quad\left|a^{i}\right|=\left|a^{j}\right|$ if and only if $\operatorname{gcd}(n, i)=\operatorname{gcd}(n, j)$.
b) Prove that every permutation of a finite set can be written as a cycle or as a product of disjoint cycles.
c) Show that $A_{B}$ contains an element of order 15 .

Q3) a) For every positive integer $n$, prove that $\operatorname{Aut}(\mathrm{Z} n)$ is isomorphic to $\mathrm{U}(n)$.
b) Let $\phi: \mathrm{G} \rightarrow \overline{\mathrm{G}}$ be an isomorphism. Then prove that $|a|=|\phi(a)|, \forall a \in \mathrm{G}$.
c) Find $\operatorname{Inn}\left(\mathrm{D}_{4}\right)$.

Q4) a) State and prove orbit stabilizer theorem.
b) For any group G, prove that $\frac{G}{Z(G)}$ is isomorphic to $\operatorname{Inn}(G)$.

Q5) a) Determine groups of order 99 .
b) State and prove $\mathrm{G} / \mathrm{Z}$ theorem.
c) Determine all the homomorphism from Zn to Zn .

Q6) a) State and prove first isomorphism theorem.
b) Let $\phi: \mathrm{G} \rightarrow \overline{\mathrm{G}}$ be a homomorphism and $g \in \mathrm{G}$. Then prove that if $|g|$ is finite then $|\phi(g)|$ divides $|g|$.
c) Find all elements of order 5 in $Z_{25} \oplus Z_{5}$.

Q7) a) Let $\mathrm{G}=\{1,8,12,14,18,20,27,31,34,38,44,47,51,53,57,64\}$ be the group under multiplication modulo 65 . Show that $\mathrm{G} \approx \mathrm{Z}_{4} \oplus \mathrm{Z}_{4}$.
b) Define Sylow p-subgroup and state Sylow's three theorems.
c) Find conjugacy class of all elements in $\mathrm{D}_{4}$.

Q8) a) Prove that, every group of order $p^{2}$, where $p$ is a prime, is isomorphic to $\mathrm{Z}_{p^{2}}$ or $\mathrm{Z}_{p} \oplus \mathrm{Z}_{p}$.
b) State Lagrange's theorem. Is the converse of this theorem true? Give justification.

## $7 \quad 7 \quad \rightarrow$

$\square$

# MT-504 : Numerical Analysis <br> (2013 Pattern) (Semester-I) (Credit System) 

Time : 3 Hours]
[Max. Marks : 50
Instructions to the candidates:

1) Solve any five questions out of eight questions.
2) Figures to the right indicate full marks.

Q1) a) Prove that the order of convergence of secant method is approximately $1.618 \quad(\alpha=1.618)$ and asymptotic error constant $\lambda \approx \mathrm{C}^{1 / \alpha}=\left(\frac{f^{\prime \prime}(p)}{2 f^{\prime}(p)}\right)^{(\alpha-1)}$.
b) Verify the equation $x^{3}-2 x-5=0$ has a root on the real line, perform five iterations of secant method, using $p_{0}=1, p_{1}=2$.
c) Show that when Newton's method is applied to the equation $\frac{1}{x}-a=0$, the resulting iteration function is $g(x)=x(2-a x)$.

Q2) a) Apply Steffensen method to the iteration function $g(x)=e^{-x}$ using the starting value of $\hat{p}_{0}=0$. Perform four iteration. Compute the absolute error of each approximation and verify that the convergence is quadratic to ten digit, the fixed point is $p=0.5671432904$.
b) Compute each of the following limits and determine the corresponding rate of convergence.
i) $\lim _{n \rightarrow \infty} \frac{n-1}{n^{3}+2}$
ii) $\quad \lim _{n \rightarrow \infty}(\sqrt{n+1}-\sqrt{n})$
c) Show that the order of convergence of Newton's Method is two.

Q3) a) Solve the following system of equation using Gaussian elimination with partial pivoting.
$0.25 x+0.35 y+0.15 z=0.60$
$0.20 x+0.20 y+0.25 z=0.90$
$0.15 x+0.20 y+0.25 z=0.70$
b) Construct Householder matrix H for $w=\left[\begin{array}{llll}\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2}\end{array}\right]^{\mathrm{T}}$.
c) Compute the condition number $\mathrm{K}_{x}$ for the matrix

$$
A=\left[\begin{array}{ccc}
1 & 1 / 2 & 1 / 3 \\
1 / 2 & 1 / 3 & 1 / 4 \\
1 / 3 & 1 / 4 & 1 / 5
\end{array}\right]
$$

Q4) a) Solve the following system of linear equations by Gauss-Seidel method, start with $x^{(0)}=\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]^{\mathrm{T}}$ (Perform 3 iterations)

$$
\begin{array}{cc}
4 x-y & =2 \\
-x+4 y-z & =4 \\
-y+4 z & =10
\end{array}
$$

b) Solve the following system of linear equations by SOR, start with $x^{(0)}=\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]^{\mathrm{T}}, w=0.9$ (Perform 2 iterations).

$$
\begin{array}{cc}
5 x_{1}+x_{2}+2 x_{3} & =10 \\
-3 x_{1}+9 x_{2}+4 x_{3} & =-14 \\
x_{1}+2 x_{2}-7 x_{3} & =-33
\end{array}
$$

c) Define the terms:
i) Rate of covergence
ii) The Lagrange Polynomial $\mathrm{L}_{n, j}(x)$

Q5) a) For the matrix $\mathrm{A}=\left[\begin{array}{ccc}15 & 7 & -7 \\ -1 & 1 & 1 \\ 13 & 7 & -5\end{array}\right]$ with initial vector $x^{(0)}=\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]^{\mathrm{T}}$.
Perform three iteration of power method to find dominant eigenvalue and corresponding eigenvector.
b) Derive the following forward difference approximation for the second derivative. $f^{\prime \prime}\left(x_{0}\right) \approx \frac{f\left(x_{0}\right)-2 f\left(x_{0}+h\right)+f\left(x_{0}+2 h\right)}{h^{2}}$.
c) Find the vector valued function F associated with the following system and compute the Jacobian F.

$$
\begin{aligned}
5 \cos x+6 \cos y-10 & =0 \\
5 \sin x+6 \sin y-4 & =0
\end{aligned}
$$

Q6) a) Derive the Open Newton-Cotes formula with $n=2$;

$$
\int_{a}^{b} f(x)=\frac{b-a}{3}[2 f(a+\Delta x)-f(a+2 \Delta x)+2 f(a+3 \Delta x)],
$$

where $\Delta x=\frac{b-a}{4}$
b) For a matrix $A=\left[\begin{array}{ccc}2 & 7 & 5 \\ 6 & 20 & 10 \\ 4 & 3 & 0\end{array}\right]$ determine matrices $L, U$ and $P$ such that $\mathrm{LU}=\mathrm{PA}$ using Gaussian elimination with Scaled partial pivoting.
c) If $f(x)=\ln (x)$ find $f^{\prime}(2)$ for $h=1.0,0.01$.

Q7) a) Verify that the composite midpoint rule has rate of convergence $\mathrm{O}\left(h^{2}\right)$ by approximating the value of $\int_{0}^{1} \sqrt{1+x^{3}} d x$.
b) Use Householder's method to reduce the following symmetric matrix to tridiagonal form.

$$
A=\left[\begin{array}{cccc}
-1 & -2 & 1 & 2 \\
-2 & 3 & 0 & -2 \\
1 & 0 & 2 & 1 \\
2 & -2 & 1 & 4
\end{array}\right]
$$

Q8) a) Apply Euler's method to approximate solution of initial value problem, $\frac{d x}{d t}=t x^{3}-x, 0 \leq t \leq 1, x(0)=1$, using 4 steps. Find the corresponding error in each step.
b) Find solution of the initial value problem, $\frac{d x}{d t}=1+\frac{x}{t}, 1 \leq t \leq 6, x(1)=1$ using Second order Range Kutta method with a step size $h=1$.

## $7 \rightarrow 7$

## Time : 3 Hours]

[Max. Marks : 50
Instructions to the candidates:

1) Attempt any five questions.
2) Figures to the right indicate full marks.

Q1) a) State and prove sturm comparision theorem.
b) Test the equation $\sin y d x-\cos x d y=0$ for exactness and solve it if it exact.
c) If K is a given non-zero constant, show that the function $y=c e^{k x}$ is the only solution of the differential equation $\frac{d y}{d x}=k y$

Q2) a) Let $u(x)$ be any non-trivial solution of $u$ " $+q(x) u=0$ where $q(x)>0$ for all $x>0$ and if $\int_{1}^{\infty} q(x) d x=\infty$, then prove that $\mathrm{u}(x)$ has infinitely many zeros on the positive x -Axis.
b) Show that $x=0$ is regular singular point of $2 x^{2} y^{\prime \prime}+x(2 x+1) y^{\prime}-y=0$ and hence find two independent Frobenius series solution of if.

Q3) a) Solve the Euler's equidimensional equation $x^{2} y^{\prime \prime}+p x y^{\prime}+q y=0$ by change of independent variable $x=e^{z}$ where $\mathrm{p}, \mathrm{q}$ are constants
b) Find a particular solution of $y^{\prime \prime}+y=\sin x$
c) Show that $e^{x}$ and $e^{-x}$ are linearly independent solutions of $y^{\prime \prime}-y=0$ on any interval

Q4) a) State and prove sturm separation theorem.
b) Find the particular solution of $y^{\prime \prime}+y=$ cosecx by using method of variation of parameters.
c) Write general form of legendre's equation and Bessel's equation

Q5) a) Show that the function $f(x, y)=x y^{2}$ satisfies Lips chitz condition on any rectangle $a \leq x \leq b$ and $c \leq y \leq d$; but it does not satisfy lips chitz condition on any strip $a \leq x \leq b$ and $-\infty<y<\infty$
b) Find the general solution near $x=0$ of the hypergeometric equation $x(1-x) y^{\prime \prime}+[c-(1+a+b) x] y^{\prime}-a b y=0$ where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are constants.

Q6) a) Show that $e^{x}=\lim _{b \rightarrow \infty} F\left(a, b, a, \frac{x}{b}\right)$
b) Show that the series $y=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+--$ is a solution of differential equation $y^{\prime \prime}+y=0$
c) Define : Principle of superposition

Q7) a) Solve $(1+x) y^{\prime}=P y$ with $y(0)=1$ by using series method
b) Show that the substitution $z=a x+b y+c$ changes $y^{\prime}=f(a x+b y+c)$ into an equation with separable variables hence solve $y^{\prime}=(x+y)^{2}$
c) Solve the differential equation $(x+y) d x-(x-y) d y=0$

Q8) a) Solve the following system.

$$
\begin{align*}
& \frac{d x}{d t}=x+y \\
& \frac{d y}{d t}=4 x-2 y \tag{5}
\end{align*}
$$

b) If $y_{1}(x)$ and $y_{2}(x)$ are two solutions of equation $y^{\prime \prime}+p(x) y^{\prime}+Q(x) y=0$ on an interval $[\mathrm{a}, \mathrm{b}]$ having common zero in this interval. Then show that $y_{1}(x)$ and $y_{2}(x)$ are constant multiples of each other on $[\mathrm{a}, \mathrm{b}]$
c) State Picard's existance and uniqueness theorem.
$\square$

## Time : 3 Hours]

[Max. Marks : 50

## Instructions to the candidates:

1) Attempt any five questions.
2) Figures to the right indicate full marks.

Q1) a) Suppose $f=u+i v$ is complex valued function defined on an open set $\Omega$. If $u$ and $v$ are continuously differentiable and satisfy the Cauchy Riemann equations on $\Omega$, then show that $f$ is holomorphic and $f^{\prime}(z)=\frac{\partial f}{\partial z}$.
b) If $f$ is a continuous function on an open set $\Omega$ and $\gamma$ is a curve in $\Omega$, then show that $\left|\int_{\gamma} f(z) d z\right| \leq \operatorname{Sup}_{z \in \gamma}|f(z)|$. length $(\gamma)$.
c) Show that $4 \frac{\partial}{\partial z} \frac{\partial}{\partial \bar{z}}=4 \frac{\partial}{\partial \bar{z}} \frac{\partial}{\partial z}=\Delta$, where $\Delta$ is the Laplacian $\Delta=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}$.

Q2) a) Show that a holomorphic function in an open disc has a primitive in that disc.
b) If $f$ is a holomorphic function in a region $\Omega$ and $f^{\prime}=0$, then show that $f$ is a constant.
c) Show that the power series $\sum_{n=1}^{\infty} \frac{z^{n}}{n}$ converges conditionally at every point of unit circle except at $z=1$.

Q3) a) If $f$ is a holomorphic function in an open set $\Omega$, then show that $f$ has infinitely many complex derivatives in $\Omega$. Further, show that if $\mathrm{C} \subseteq \Omega$ is a circle whose interior is also contained in $\Omega$, then $f^{(n)}(z)=\frac{n!}{2 \pi i} \int_{\mathrm{C}} \frac{f(\zeta)}{(\zeta-z)^{n+1}} d \zeta$.
b) If $f^{+}$and $f^{-}$are holomorphic functions in $\Omega^{+}$and $\Omega^{-}$respectively, that extends continuously to an interval $\mathrm{I} \subseteq \mathbb{R}$ and $f^{+}(x)=f^{-}(x)$ for all $x \in \mathrm{I}$, then show that the function $f$ defined by $f(z)=\left\{\begin{array}{ll}f^{+}(z) & \text { if } z \in \Omega^{+} \\ f^{+}(z)=f^{-}(z) & \text { if } z \in \mathrm{I} \\ f^{-}(z) & \text { if } z \in \Omega^{-}\end{array}\right.$is holomorphic on all of $\Omega$.
c) State Runge's approximation theorem.

Q4) a) If $\Omega$ is an open set in $\mathbb{C}$ and $T \subseteq \Omega$ is a triangle whose interior is also contained in $\Omega$, then show that $\int_{\mathrm{T}} f(z) d z=0$, wherever $f$ is holomorphic in $\Omega$.
b) Let $\mathrm{F}(z, s)$ be defined for $(z, s) \in \Omega \times[0,1]$, where $\Omega$ is an open set in $\mathbb{C}$. Suppose F satisfies the following properties :
i) $\mathrm{F}(z, s)$ is holomorphic in $z$ for each $s$.
ii) F is continuous on $\Omega \times[0,1]$, then show that $f$ defined on $\Omega$ by

$$
f(z)=\int_{0}^{1} \mathrm{~F}(z, s) d s \text { is holomorphic. }
$$

Q5) a) Suppose $f$ is holomorphic in a region $\Omega$ and $f\left(z_{0}\right)=\mathrm{O}, z_{0} \in \Omega$ and $f$ does not vanish identically in $\Omega$, then show that there exists a neighbourhood U of $z_{0}$, a non-vanishing holomorphic function $g$ on U , a unique positive integer $n$ such that $f(z)=\left(z-z_{0}\right)^{n} g(z)$, for all $z$ in $U$.
b) Show that $\int_{0}^{\infty} \frac{1-\cos x}{x^{2}} d x=\frac{\pi}{2}$.

Q6) a) Suppose that $f$ is holomorphic in an open set $\Omega$ containing a circle C and its interior except for a pole $z_{0}$ inside C , then show that

$$
\begin{equation*}
\int_{\mathrm{C}} f(z) d z=2 \pi i \operatorname{Res}_{z=z_{0}} f(z) . \tag{5}
\end{equation*}
$$

b) Show that $f$ has an isolated singularity at a point $z_{0}$, then show that $z_{0}$ is a pole of $f$ if and only if $|f(z)| \rightarrow \infty$ as $z \rightarrow z_{0}$.
c) Find the residue of $f(z)=\frac{\tan z}{z^{2}}$ at $z=\frac{\pi}{2} i$.

Q7) a) Suppose that $f$ and $g$ are holomorphic in an open set containing a circle C and its interior. If $|f(z)|>|g(z)|$ for all $z \in \mathrm{C}$, then show that $f$ and $f+g$ have same number of zeros inside the circle C.
b) Suppose $f$ is holomorphic in $\mathrm{D}_{r}\left(z_{0}\right)-\left\{z_{0}\right\}$ and has essential singularity at $z_{0}$, then show that image of $\mathrm{D}_{r}\left(z_{0}\right)-\left\{z_{0}\right\}$ under $f$ is dense in $\mathbb{C}$.
c) Evaluate $\int_{\mid z=2} \frac{z^{4}}{z^{5}-1} d z$.

Q8) a) If $f$ is holomorphic and non-constant in a region $\Omega$, then show that $f$ is an open map.
b) Find the number of zeros of $f(z)=z^{7}-2 z^{5}+6 z^{3}-z+1$ in open unit disc.
c) State Maximum Modulus theorem.


Time : 3 Hours]
[Max. Marks : 50
Instructions to the candidates:

1) Attempt any Five questions.
2) Figures to the right indicate full marks.

Q1) a) If $R$ is a commutative ring with unity 1 then prove that $A \in M n(R)$ is a unit if and only if it's determinant, $\operatorname{det}(\mathrm{A})$, is a unit in $R$.
b) Show that the element $\overline{5}+\overline{6} x+1 \overline{2} x^{2}$ is unit in the ring $Z_{24}[x]$.
c) Suppose $R$ denotes the matrix ring $M_{2}(\mathbb{Z})$. Find a matrix $A \in R$ such that A is a zero divisor but not a nilpotent.

Q2) a) If $I \subseteq J$ are both two sided ideals in a ring $R$, then prove that is naturally isomorphic to $R / J$.
b) Prove that the characteristic of a local ring is either zero or power of a prime.
c) Prove or disprove: The ring $\mathrm{Z}_{6}[x]$ is an integral domain.

Q3) a) If R is a commutative ring with unity and if $\mathrm{P}(x)=a_{0}+a_{1} x+\ldots .+a_{r} x^{r} \in \mathrm{R}[x]$ is unit in $\mathrm{R}[x]$ then prove that $a_{0}$ is unit in R and $a_{1}, a_{2}, \ldots ., a_{r}$ are all nilpotent elements in R .
b) Let X be a non-empty set. Let $\mathrm{P}(\mathrm{X})$ denote the ring of power set of X under addition is the symmetric difference of sets, and multiplication is the intersection of sets. Find units and idempotents of $\mathrm{P}(\mathrm{X})$.
c) Show that $\frac{\mathrm{Q}[x]}{\langle x+2\rangle}$ is a field.

Q4) a) Let $a$ and $b$ are nilpotent elements of a commutative ring R then prove that $a+b$ is nilpotent in R .
b) Let $f: \mathrm{R} \rightarrow \mathrm{S}$ be a homomorphism of ring. If R and S are commutative then prove that inverse image of a prime ideal in S is a prime ideal in R .[4]
c) Show that field of fraction of $\mathrm{z}[i]$ is $\mathrm{Q}[i]$.

Q5) a) Prove that every Euclidean domain is principal ideal domain.
b) Show that $1+x+x^{2}+\ldots .+x^{\mathrm{P}-1}$ is irreducible in $\mathbb{Z}[x]$ for any prime $\mathrm{P} .[5]$

Q6) a) Let R be a factorization domain in which every irreducible element is prime. Prove that $R$ is UFD.
b) With usual notations prove that $\sqrt{(9)}=\sqrt{(27)}=\sqrt{(3)}$.
c) Define local ring. Give an example of non-local ring.

Q7) a) For a commutative integral domain R with unity. Prove that the following are equivalent.
i) $\quad \mathrm{R}$ is field
ii) $\mathrm{R}[x]$ is Euclidean domain
iii) $\mathrm{R}[x]$ is PID.
b) With usual notation show that $\frac{\mathrm{Q}[x]}{\left\langle 1+x^{2}\right\rangle} \cong \mathrm{Q}[i]$.

Q8) a) Show that vector space is a free module.
b) State and prove chur's lemma for simple modules.


## MATHEMATICS

# MT-604 : Linear Algebra (2013 Pattern) (Semester-II) (Credit System) 

## Time : 3 Hours]

[Max. Marks: 50
Instructions to the candidates:

1) Solve any five questions out of Eight questions.
2) Figures to the right indicate full marks.

Q1) a) Let V be the vector space of $n \times n$ matrices over F , where char $\mathrm{F} \neq 2$. Let $V_{1}$ and $V_{2}$ be the subsets of symmetric and skew symmetric matrices respectively. Show that $V$ is the direct sum of subspaces $V_{1}$ and $V_{2}$.[5]
b) Let $\mathrm{W}_{1}, \mathrm{~W}_{2}, \mathrm{~W}_{3}$ be subspaces of a vector space V such that $\mathrm{W}_{1} \supset \mathrm{~W}_{2}$. Show that $\mathrm{W}_{1} \cap\left(\mathrm{~W}_{2}+\mathrm{W}_{3}\right)=\mathrm{W}_{2}+\left(\mathrm{W}_{1} \cap \mathrm{~W}_{3}\right)$.
c) Find a basis of a vector space $\mathbb{C}^{2}$ over $\mathbb{R}$.

Q2) a) If a subset S of V generates V , then there is a subset B of S which is linearly independent and generates V .
b) Let V be a finitely generated vector space and let S be a linearly independent subset of V . Then prove that there is a basis of V which contains S.
c) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear mapping. Find $f(a, b)$ if $f(1,0)=(2,3)$; $f(0,1)=(-1,1)$.

Q3) a) Let W be a subspace of a finite-dimensional vector space V. Let $\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$ be a basis of W and let $\left\{e_{1}, e_{2}, \ldots, e_{m}, f_{1}, f_{2}, \ldots ., f_{n}\right\}$ be a basis of V containing that of W . Show that $\left\{f_{1}+\mathrm{W}, f_{2}+\mathrm{W}, \ldots ., f_{n}+\mathrm{W}\right\}$ is a basis of $\mathrm{V} / \mathrm{W}$.
b) Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be defined by $f\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}, x_{1}+x_{2}, x_{1}+x_{2}+x_{3}\right)$. Find $\operatorname{Im} f$ and $\operatorname{ker} f$.
c) Regarding $\mathbb{C}$ and $\mathbb{R}$ as vector spaces over $\mathbb{R}$, write down a basis of $\mathbb{C} / \mathbb{R}$.

Q4) a) Let $\mathrm{U}, \mathrm{V}$ be a vector space over F . Then prove that $\operatorname{Hom}(\mathrm{U}, \mathrm{V})$ is a vector space over F. Moreover, if $\operatorname{dim} \mathrm{U}=m$ and $\operatorname{dim} \mathrm{V}=n$, then $\operatorname{dim} \operatorname{Hom}(\mathrm{U}, \mathrm{V})=m \cdot n$.
b) Let $f \in \operatorname{Hom}(\mathrm{~V}, \mathrm{~V})$. Prove that $\operatorname{Im} f=\operatorname{Im} f^{2}$ if and only if $\operatorname{ker} f=\operatorname{ker} f^{2}$.
c) Let $f \in \operatorname{Hom}(\mathrm{~V}, \mathrm{~V})$. Define a mapping $f^{*}: \mathrm{V}^{*} \rightarrow \mathrm{~V}^{*}$ by $\left(f^{*}(\phi)\right)(v)=\phi(f(v)), v \in \mathrm{~V}$. Show that $f^{*} \in \operatorname{Hom}\left(\mathrm{~V}^{*}, \mathrm{~V}^{*}\right)$.

Q5) a) For any given matrix $A$, prove that there exist inversible matrices $P, Q$ such that $\mathrm{PAQ}=\left[\begin{array}{cc}\mathrm{I}_{r} & 0 \\ 0 & 0\end{array}\right]$.
b) Let $\phi \in \operatorname{Hom}(\mathrm{V}, \mathrm{V})$ and let $f(t)$ be a polynomial over F such that $f(\phi)=0$. If $f(t)=g(t) h(t)$ is a factorization of $f(t)$ into relatively prime polynomials $g(t), h(t)$, then prove that $\mathrm{V}=\operatorname{ker} g(\phi) \oplus \operatorname{ker} h(\phi)$.
c) Show that if A is non zero idempotent then 0,1 are the only eigenvalues of A.

Q6) a) Reduce the following matrix to Jordan canonical form:

$$
A=\left[\begin{array}{ccc}
2 & 2 & 3 \\
1 & 3 & 3 \\
-1 & -2 & -2
\end{array}\right]
$$

b) If $\lambda, \mu$ are distinct eigenvalues of $A$, then prove that $\operatorname{ker}(\mathrm{A}-\lambda \mathrm{I})^{p} \subseteq \operatorname{Im}(\mathrm{~A}-\mu \mathrm{I})^{q}$ for all positive integers $p$ and $q$.
c) Define left radical and right radical of a bilinear form $B$.

Q7) a) Let H be a hermitian form on V . Then a linear mapping T of V into itself is H-unitary if and only if $\mathrm{H}(\mathrm{T} x, \mathrm{~T} x)=\mathrm{H}(x, x), \forall x \in \mathrm{~V}$.
b) State and prove principal axis theorem.

Q8) a) Reduce the quadratic form $4 x^{2}+y^{2}-8 z^{2}+4 x y-4 x z+8 y z$ to the diagonal form $\lambda_{1} x^{\prime 2}+\lambda_{2} y^{\prime 2}+\lambda_{3} z^{\prime 2}$ by an orthogonal transformation of coordinates.
b) Reduce the equation $x^{2}+y^{2}+z^{2}-4 x y-4 y z-4 z x-3=0$ to its standard form by rotation and translation of axes, and identify the quadratic surface.

## $\rightarrow \rightarrow \rightarrow$

[5528]-205
M. A. / M. Sc.

MATHEMATICS

## MT- 605: Partial Differential Equations (2013 Pattern) (Semester - II) (Credit System)

## Time : 3 Hours]

[Max. Marks:50
Instructions to the candidates:

1) Attempt any five questions.
2) Figures to the right indicate full marks.

Q1) a) Eliminate the parameters a and b from the equation

$$
\begin{equation*}
\mathrm{z}^{2}\left(1+a^{3}\right)=8(x+a y+b)^{3} \tag{4}
\end{equation*}
$$

b) Find the general solution of $\left(z^{2}-2 y z-y^{2}\right) p+x(y+z) q=x(y-z)$. [4]
c) State the conditions for the equations $\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{p}, \mathrm{q})=0$ and $\mathrm{g}(x, y, z, p, q)=0$ to be compatiable on the domain D .

Q2) a) Find the general solution of $\left(y^{2}+y z+z^{2}\right) d x+\left(z^{2}+x z+x^{2}\right) d y+\left(y^{2}+x y+x^{2}\right) d z=0$.
b) Show that the equations $x p=y q$ and $z(x p+y q)=2 x y$ are compatible. Also find their common solution.
c) Find the complete integral of $p^{2}+q^{2}=x+y$.

Q3) a) If $\mathrm{h}_{1}=0$ and $\mathrm{h}_{2}=0$ are compatible with $\mathrm{f}=0$, then prove that $\mathrm{h}_{1}$ and $\mathrm{h}_{2}$ satisfy:
$\frac{\partial(f, h)}{\partial\left(x, u_{x}\right)}+\frac{\partial(f, h)}{\partial\left(y, u_{y}\right)}+\frac{\partial(f, h)}{\partial\left(z, u_{z}\right)}=0$
where $h_{i, i}=1,2$
b) Find the complete integral of the equation $z^{2}=$ pqxy by Charpit's method.
c) Verify that the equation is integrable $y z(y+z) d x+x z(x+z) d y+x y(x+y) d z$ $=0$.

Q4) a) Find the general integral of the differential equation $(x-y) y^{2} p+(y-x) x^{2} q=\left(x^{2}+y^{2}\right) z$ and the particular solution through curve $\mathrm{C} x z=a^{2}, y=0$
b) Find by the method of characteristic, the integral surface of $p q=z$ which passes through curve $x_{0}=0, y_{0}=s, z_{0}=s^{2}$
c) Derive the analytic expression for the Monge cone at $\left(x_{0}, y_{0}, z_{0}\right)$.

Q5) a) Verify that the equation is integrable and find the corresponding integral

$$
\begin{equation*}
\left(y^{2}+y z\right) d x+\left(z^{2}+x z\right) d y+\left(y^{2}-x y\right) d z=0 . \tag{4}
\end{equation*}
$$

b) Find d' Alembert's solution of one dimensional wave equation which describes the vibration of infinite string.
c) Reduce the equation

$$
\begin{equation*}
\mathrm{U}_{\mathrm{xx}}+2 \mathrm{U}_{\mathrm{xy}}+17 \mathrm{U}_{\mathrm{yy}=0} \text { to canonical form and solve it. } \tag{3}
\end{equation*}
$$

Q6) a) State and prove Kelvin's inversion theorem.
b) Find the solution of the Heat - equation in an infinite rod which is defined as: $U_{t}=k U_{x x}, \quad-\infty<x<\infty, t>0$

$$
\begin{equation*}
U(x, 0)=f(x) \quad, \quad-\infty<x<\infty \tag{5}
\end{equation*}
$$

Q7) a) If $\mathrm{U}(x, y)$ is harmonic in a bounded domain D and continuous in $\bar{D}=D \cup B$. Then U attains It's maximum on the boundary B of D . [4]
b) State and prove Harnack's theorem.
c) Classify the following equation into hyperbolic, parabolic or elliptic type $u_{x x}+2(1+\alpha y) u_{y z}=0$.

Q8) a) Use Duhamel's principle and solve the non homogeneous wave equation $\quad u_{t t}-c^{2} u_{x x}=F(x, t),-\infty<x<\infty, t>0$ with conditions $\quad u(x, 0)=u_{t(x, 0)}=0-\infty<x<\infty$.
b) State Dirichlet's problem for rectangle and find it's solutions.

## * * *

## M.A./ M.Sc. <br> MATHEMATICS <br> MT-701: Combinatorics <br> (2013 Pattern) (Credit System) (Semester - III)

## Time : 3Hours]

[Max. Marks: 50
Instructions to the candidates:

1) Attempt any five questions.
2) Figures to the right indicate full marks.

Q1) a) A computer password consists of 3 alphabets followed by 3 or 4 digits, find
i) The total number of passwords that can be created,
ii) The number of passwords in which no alphabet and no digit repeats.
b) Given 5 distinct pair of gloves, 10 distinct gloves in all, how many ways are there to distribute two gloves to each of 5 girls, if each girl gets one left had glove and one right hand glove?
c) How many five digit numbers are there that are the same when the order of their digits is inverted?

Q2) a) How many arrangements of letters in REPETITION are there with first E occurring before the first T?
b) Prove by a combinatorial argument

$$
\binom{n}{0}+\binom{n}{1}+\binom{n}{2}+\ldots+\binom{n}{n}=2^{n}
$$

c) A student must answer 5 out of 10 questions on a test,. including at least 2 of the first 5 questions. How many subsets of 5 questions can be answered?

Q3) a) Show with generating function that every positive integer can be written as a unique sum of distinct powers of 2 .
b) Find the coefficient of $x^{12}$ in $\frac{x+3}{1-2 x+x^{2}}$.
c) Find the generating function for $a_{r}$ the number of ways to distribute $r$ identical objects into four different boxes with between three and six objects in each box.

Q4) a) How many r-digit ternery sequences are there with
i) An even number of zeros?
ii) An even number of zeros and even number of ones?
b) Find a recurrence relation for the amount of money in a saving account after $n$ years, if the interest rate is 6 percent/year, and Rs. 50 is added to the start of each year.
c) Find the exponential generating function for the number of ways to distribute $r$ people into six different rooms with between two and four in each room.

Q5) a) Find ordinary generating function whose coefficient $a_{r}=3 r^{2}$. Hence evaluate the sum $0+3+12+$ $\qquad$ $+3 n^{2}$.
b) Show that an $=A n^{\log 2 c}+\left(\frac{2 d}{2-c}\right) n$ be a solution of recurrence relation $a_{n}=c_{a n / 2}+d n$. where $\mathrm{A}, \mathrm{c}, \mathrm{d}$ are constants with $\mathrm{C}>2$.

Q6) a) Solve the recurrence relation $\mathrm{an}=2 \mathrm{a}_{\mathrm{n}-1}+(-1)^{\mathrm{n}}, \mathrm{a}_{0}=2$.
b) How many arrangements of the digits $0,1,2, \ldots . . . . . . . .9$ are there that do not end with an 8 and do not begin with a 3 ?
c) Show that $\binom{n}{1}+6\binom{n}{2}+6\binom{n}{3}=n^{3}$

Q7) a) Solve the recurrence relation $\mathrm{an}=\mathrm{a}_{\mathrm{n}-1}+2$ using generating function.
b) Use Inclusion-Exclusion formula to find number of $m$-digit decimal sequences (using digits $0,1,2$ .9) in which digits 1,2,3 all appear.
c) How many numbers greater than $30,00,000$ can be formed by arrangements of 1,1,2,2,4,6,6,?

Q8) a) What is the probability that if $n$ people randomely reach into a dark close at to retrieve their hats, no person will pick his own hat?
b) How many ways are there to send six different birthday cards, denoted $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{6}$ to three aunts and three uncles, denoted by $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}$, $\mathrm{U}_{1}, \mathrm{U}_{2}, \mathrm{U}_{3}$ if aunt $\mathrm{A}_{1}$ would not like Card $\mathrm{C}_{2}$ and $\mathrm{C}_{4}$; if $\mathrm{A}_{2}$ would not like $\mathrm{C}_{1}$ and $\mathrm{C}_{5}$; If $\mathrm{A}_{3}$ likes all cards if $\mathrm{u}_{1}$ would not like $\mathrm{C}_{1}$ and $\mathrm{C}_{5} ; \mathrm{U}_{2}$ would not like $\mathrm{C}_{4}$; and if $\mathrm{U}_{3}$ would not like $\mathrm{C}_{6}$.
$\square$

MT-702: Field Theory
(2013 Pattern) (Semester - III) (Credit System)

## Time : 3Hours]

[Max. Marks : 50
Instructions to the candidates:

1) Attempt any five questions.
2) Figures to the right indicate full marks

Q1) a) Let F be a field and $p(x) \in \mathrm{F}[x]$ be an irreducible polynomial of degree n over F . Let $\mathrm{k}=\mathrm{F}(x) /\langle p(x)\rangle$ and $\theta=x \bmod (\langle p(x)\rangle) \in k$.Then prove that the set $\left\{1, \theta, \theta^{2} \ldots \ldots \ldots . \theta^{n-1}\right\}$ is a basis for the vector space K over F.
b) Show that a field k generated over F by a finite number of algebraic elements of degree $n_{1}, n_{2}, \ldots \ldots \ldots \ldots . . n_{k}$. is algebraic of degree less than or equal to $n_{1}, n_{2} \ldots \ldots \ldots \ldots . . n_{k}$.
c) Find the minimal polynomial of $\alpha=\sqrt{2}-\sqrt{3}$ over Q .

Q2) a) Show that any quadratic extension k of any field F of characteristic not equal to 2 is Galois.
b) Find the smallest extension of Q having root of polynomial $x^{4}-2$.
c) Let $F$ be a field and $\alpha, \beta$ are algebraic over $F$ then prove that $\alpha \pm \beta, \alpha \beta$ and $\frac{\alpha}{\beta}(\beta \neq o)$ are all algebraic over F .

Q3) a) Show that Galois group of $x^{p^{n}}-x$ over $\mathbb{F}_{p}$ is a cyclic group of order $n$.
b) Show that $x^{3}-\sqrt{2}$ is irreducible polynomial over $Q(\sqrt{2})$.
c) If F is a field and $\overline{\mathrm{F}}$ is an algebraic closure of F then prove that $\overline{(\overline{\mathrm{F}})}=\overline{\mathrm{F}}$.[2]

Q4) a) If the degree of the extension $\mathrm{K} / \mathrm{F}$ is a prime p then show that any subfield $E$ of $k$ containing $F$ is either $K$ or $F$.
b) If F is a field of characteristic p and $f(x) \in F[x]$ then prove that $D_{x}(f(x))=0$ if and only if $f(x)=g\left(x^{p}\right)$ for some $g(x) \in \mathrm{F}[x]$.
c) Is $\mathrm{f}(x)=\left(x^{2}-2\right)^{\mathrm{n}}$ separable over Q? Justify.

Q5) a) Show that the degree of extension of the splitting field for $x^{3}-2 \in Q[x]$ is 6 .
b) Find the discriminant of the polynomial $\mathrm{f}(x)=x^{3}-2 \mathrm{x}+4$. Is the Galois group of $\mathrm{f}(x)$ solvable? Justify.
c) Define the $\mathrm{p}^{\text {th }}$ cyclotomic polynomial $\Phi_{\mathrm{n}}(x)$. Find $\phi_{n}(x)$ for $\mathrm{n}=1,2,3 \cdot[2]$

Q6) a) Define elementary symmetric function and state the fundamental theorem on symmetric function.
b) Show that $\cos 20^{\circ}$ and $\sin 20^{\circ}$ can not be constructed by using straightedge and compass.
c) Find a fixed field of $\operatorname{Aut}(Q(\sqrt{2}) / \mathrm{Q})$.

Q7) a) If $G=\left\{\sigma_{1}=1, \sigma_{2}, \ldots \ldots . . . . . . . ., \sigma_{\mathrm{n}}\right\}$ be a subgroup of automorphisms of a field and F be the fixed field then prove that $[\mathrm{K}: \mathrm{F}]=|G|$.
b) Show that any two splitting fields for a polynomial $\mathrm{f}(x) \in F[x]$ over a field F are isomorphic.

Q8) a) Find a Galois group of the polynomial $f(x)=x^{3}-2 \in Q[x]$.
b) Prove that cyclotomic polynomial $\Phi_{\mathrm{n}}(x)$ is a monic polynomial in $\mathbb{Z}[x]$ of degree $\Phi(\mathrm{n})$

# MT-703 : Functional Analysis (2013 Pattern) (Semester-III) (Credit System) 

Time : 3 Hours]
[Max. Marks : 50
Instructions to the candidates:

1) Attempt any five questions.
2) Figures to the right indicates full marks.

Q1) a) If H is a C-Hilbert space and $\mathrm{A} \in \mathrm{B}(\mathrm{H})$, then prove that A is hermitian if and only if $\langle\mathrm{A} h, h\rangle \in \mathbb{R}$ for all $h$ in H .
b) Define unilateral shift, and find its adjoint.
c) Define Volterra operator.

Q2) a) Prove that the Bergman space for a open set $G$ of $\mathbb{C}$ is a Hilbert space.[5]
b) If $A$ is a subset of Hilbert space $H$, then prove that $\left(A^{\perp}\right)^{\perp}$ is the closed linear span of A in H .
c) Give an example of a convex set in a Hilbert space.

Q3) a) State and prove Riesz representation theorem for a Hilbert space. [5]
b) Two Hilbert spaces are isomorphic if and only if they have the same dimensions.

Q4) a) Prove that an operator $T$ on a Hilbert space $H$ is compact if and only if $\mathrm{T}^{*}$ is compact.
b) If T is a compact operator on a Hilbert space $H, \lambda \neq 0$ and $\inf \{\|(\mathrm{T}-\lambda) h\| /\|h\|=1\}=0$, then prove that $\lambda$ is an eigenvalue of T . [3]
c) Give an example of idempotent on a Hilbert space which is not an projection.

Q5) a) State and prove the uniform boundedness principle.
b) If X is a normed space, then prove that $\mathrm{X}^{*}$ is a Banach space.

Q6) a) State and prove closed graph theorem.
b) Let X and Y are normed spaces with $\operatorname{dim} \mathrm{X}<\infty$. If $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{Y}$ is a linear transformation, then prove that T is continuous.
c) State Hahn-Banach theorem.

Q7) a) If $\|\cdot\|_{1}$ and $\|\cdot\|_{2}$ are two norms on the vector space X , then prove that these norms are equivalent if and only if there are positive constants c and C such that $c\|x\|_{1} \leq\|x\|_{2} \leq \mathrm{C}\|x\|_{1}$.
b) If $A$ is a normal operator and $\lambda \in \mathbb{F}$, then prove that $\operatorname{ker}(\mathrm{A}-\lambda)=\operatorname{ker}(\mathrm{A}-\lambda)^{*}$, and $\operatorname{ker}(\mathrm{A}-\lambda)$ is reducing subspace for $\mathrm{A} .[3]$
c) Define reflexive space and give an example.

Q8) a) Let $\phi:[-\pi, \pi] \rightarrow \mathbb{C}$ be defined by $\phi(t)=e^{i t}$ and $\mathrm{M}_{\phi}: \mathrm{L}^{2}[-\pi, \pi] \rightarrow \mathrm{L}^{2}[-\pi, \pi]$ be the operator defined by $\mathrm{M}_{\phi}(f)=\phi f$. Find $\mathrm{M}_{\phi}^{*}$ and $\left\|\mathrm{M}_{\phi}\right\|$.
b) Let $\mathrm{M}=\left\{\left\{x_{n}\right\} \in l^{2} / x_{n}=0\right.$ for all but finitely many $\left.n\right\}$. Is M a closed subspace of $l^{2}$ ? Justify.
c) State spectral theorem for compact self-adjoint operator.

## 

$\square$
P2723
[5528]-401
[Total No. of Pages : 2
M.A./M.Sc.

MATHEMATICS

## MT-801 : Number Theory

(2013 Pattern) (Semester - IV) (Credit System)

## Time : 3 Hours]

[Max. Marks: 50

## Instructions to the candidates:

1) Attempt any five questions.
2) Figures to the right indicate full marks.

Q1) a) If $(a, m)=1$ then prove that $a^{\phi(m)} \equiv 1(\bmod m)$.
b) Show that the congruence $x^{2} \equiv 1\left(\bmod 2^{\alpha}\right)$ has one solution when $\alpha=1$, two solutions when $\alpha=2$ and precisely the four solutions $1,2^{\alpha-1}-1$, $2^{\alpha-1}+1,-1$ when $\alpha \geq 3$.
c) Is $x^{2} \equiv-2(\bmod 61)$ has solution? Justify.

Q2) a) If $p$ is an odd prime and $(a, 2 p)=1$ then prove that $\left(\frac{a}{p}\right)=(-1)^{t}$ where

$$
\begin{equation*}
t=\sum_{j=1}^{(p-1) / 2}\left[\frac{j a}{p}\right] \tag{5}
\end{equation*}
$$

b) Show that the product of three consecutive integers is divisible by 504 if the middle one is cube.
c) Let $f(x)=x^{2}+x+7$. Find all roots of the congruence $f(x) \equiv 0(\bmod 15)$.

Q3) a) State and prove Mobius inversion formula.
b) What is the highest power of 2 dividing $533!$ ?
c) Is $22 x+40 y=1$ has solution? Justify.

Q4) a) State and prove Wilson's theorem.
b) Prove that $\sum_{d / n} d=\sum_{d / n} \frac{n}{d}$.
c) Find the value of the Legendre symbol $\left(\frac{2}{5}\right)$.

Q5) a) Prove that the number $\sum_{j=1}^{\infty} 10^{-j!}$ is transcendental.
b) Prove that the quadratic residues modulo $p$ are congruent to $1^{2}, 2^{2}, 3^{2}, \ldots \ldots . .,\{(p-1) / 2\}^{2}$ where $p$ is an odd prime.

Q6) a) Let $a, b$ and $c$ be integers with not both $a$ and $b$ equal to 0 and let $g=$ g.c.d. $(a, b)$. If $g \nmid c$ then show that the equation $a x+b y=c$ has no solution in integers. If $g \mid c$ then show that $a x+b y=c$ has infinitely many solutions and are of the form $x=x_{1}+\frac{k b}{g}, y=y_{1}-\frac{k a}{g}$ where $k$ is an integer and $\left(x_{1}, y_{1}\right)$ is one integral solution.
b) Find all integers that give the remainders $1,0,5$ when divided by $4,3,7$ respectively.

Q7) a) If $\xi$ is an algebraic number of degree $n$ then prove that every number in $\mathbb{Q}(\xi)$ can be written uniquely in the form $a_{0}+a_{1} \xi+\ldots \ldots \ldots .+a_{n-1} \xi^{n-1}$ where the $a_{i}$ are rational numbers.
b) Prove that the number of positive irreducible fractions $\leq 1$ with denominator $\leq n$ is $\phi(1)+\phi(2)+\ldots \ldots .+\phi(n)$.
c) Prove that $1+i$ is a prime in $\mathbb{Q}(i)$.

Q8) a) State and prove Gaussian Reciprocity Law.
b) Prove that $\sum_{j=1}^{p-1}\left(\frac{j}{p}\right)=0, p$ is an odd prime.
c) Find $d(14), \sigma(14)$.


# MT-803 : Fourier Analysis and Boundary Value Problems (2013 Pattern) (Semester-IV) (Credit System) 

## Time : 3 Hours]

[Max. Marks : 50

## Instructions to the candidates:

1) Attempt any five questions.
2) Figures to the right indicate full marks.

Q1) a) Let $f$ denote a function such that (i) $f$ is continuous on the interval $-\pi \leq x \leq \pi$ (ii) $f(-\pi)=f(\pi)$ (iii)Its derivative $f^{\prime}$ is piecewise continuous on the interval $-\pi<x<\pi$. If $a_{n}$ and $b_{n}$ are Fourier coefficients $a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x, b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin n x d x$ for function $f$, then prove that Fourier series $\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right)$ converges absolutely and uniformly to $f(x)$ on the interval $-\pi \leq x \leq \pi$.
b) Find the Fourier series for the function $f(x)=x(-\pi<x<\pi)$.
c) Find the Fourier cosine series for the function $f(x)=\pi-x(0<x<\pi)$.[2]

Q2) a) If a function $\mathrm{G}(u)$ is piecewise continuous on the interval $(0<u<\pi)$, then prove that $\lim _{\mathrm{N} \rightarrow \infty} \int_{0}^{\pi} \mathrm{G}(u) \sin \left(\frac{u}{2}+\mathrm{N} u\right) d u=0$ where N denotes positive integers.
b) Find the Fourier sine series for the function $f(x)=x(0<x<1)$.
c) Prove or disprove all Fourier series are differentiable.

Q3) a) Solve the following boundary value problem.
$y_{t t}(x, t)=a^{2} y_{x x}(x, t) \quad(0<x<c, t>0)$
$y(0, t)=0, y(c, t)=0, y_{f}(x, 0)=0$
$y(x, 0)=f(x)(0 \leq x \leq c)$
b) Solve the following boundary value problem.
$u_{t}(x, t)=k u_{x x}(x, t)(0<x<\pi, t>0)$
$u(0, t)=0, u(\pi, t)=0, u(x, 0)=f(x)$

Q4) a) Solve the following boundary value problem.
$u_{x x}(x, y)+u_{y y}(x, y)=0(0<x<a, 0<y<b)$
$u(0, y)=0, u(a, y)=0(0<y<b)$
$u(x, 0)=f(x), u(x, b)=0(0<x<a)$
b) Solve the following boundary value problem.
$\rho^{2} u_{\rho \rho}(\rho, \phi)+\rho u_{\rho}(\rho, \phi)+u_{\phi \phi}(\rho, \phi)=0(1<\rho<b, 0<\phi<\pi)$
$u(\rho, 0)=0, u(\rho, \pi)=0(1<\rho<b)$
$u(1, \phi)=0, u(b, \phi)=u_{0}(0<\phi<\pi)$

Q5) a) Prove that a necessary and sufficient condition for an orthonormal set $\left\{\phi_{n}(x)\right\}(n=1,2,3 \ldots$.$) to be complete is that for each function f$ in the space considered Parseval's equation $\sum_{n=1}^{\infty} \mathrm{C}_{n}^{2}=\|f\|^{2}$ where $\mathrm{C}_{n}$ are the Fourier constants $\mathrm{C}_{n}=\left(f, \phi_{n}\right)$ be satisfied.
b) Show that the function $\psi_{1}(x)=1$ and $\psi_{2}(x)=x$ are orthogonal on the interval $-1<x<1$ and determine constants $A$ and $B$ such that $\psi_{3}(x)=1+\mathrm{A} x+\mathrm{B} x^{2}$ is orthogonal to both $\psi_{1}(x)$ and $\psi_{2}(x)$ on the interval.
c) Show that each of the functions $y_{1}=\frac{1}{x}$ and $y_{2}=\frac{1}{1+x}$ satisfies the nonlinear differential equation $y^{\prime}+y^{2}=0$. Then show that the sum $y_{1}+y_{2}$ fails to satisfy that equation.

Q6) a) If $\lambda_{m}$ and $\lambda_{n}$ are distinct eigenvalues of the Sturm-Liouville problem $\left[r(x) \mathrm{X}^{\prime}(x)\right]^{\prime}+[q(x)+\lambda p(x)] \mathrm{X}(x)=0 \quad(a<x<b) \quad$ under the condition $a_{1} \mathrm{X}(a)+a_{2} \mathrm{X}^{\prime}(a)=0, b_{1} \mathrm{X}(b)+b_{2} \mathrm{X}^{\prime}(b)=0$, then prove that corresponding eigen functions $\mathrm{X}_{m}(x)$ and $\mathrm{X}_{n}(x)$ are orthogonal with respect to weight function $p(x)$ on the interval $a<x<b$.
b) Find the eigenvalues and the normalized eigen functions of Sturm-Liouville problem. $\mathrm{X}^{\prime \prime}+\lambda \mathrm{X}=0, \mathrm{X}(0)=0, h \mathrm{X}(1)+\mathrm{X}^{\prime}(1)=0(h>0)$.
c) If $m$ and $n$ are positive integers, then show that $\int_{0}^{\pi} \cos m x \cos n x d x=\left\{\begin{array}{cl}0 & \text { when } m \neq n \\ \frac{\pi}{2} & \text { when } m=n\end{array}\right.$

Q7) a) Solve the Bessel's differential equation $x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-n^{2}\right) y=0$.
b) Establish the recurrence relation
$\frac{d}{d x}\left[x^{-n} \mathrm{~J}_{n}(x)\right]=-x^{-n} \mathrm{~J}_{n+1}(x)(n=0,1,2, \ldots)$.
c) Show that $\sqrt{1}=1$ and verify that $\sqrt{(n+1)}=n$ ! when $n=0,1,2,3, \ldots$.

Q8) a) Prove that the eigen values and corresponding eigen functions of singular Sturm-Liouville problem $\left[\left(1-x^{2}\right) \mathrm{X}^{\prime}(x)\right]^{\prime}+\lambda \mathrm{X}^{\prime}(x)=0(-1<x<1)$ are $\lambda_{n}=n(n+1)$ and $\mathrm{X}_{n}(x)=\mathrm{P}_{n}(x)(n=0,1,2, \ldots)$ where $\mathrm{P}_{n}(x)$ are Legendre polynomials. Also prove that the set $\left\{\mathrm{P}_{n}(x)\right\}(n=0,1,2, \ldots)$ is orthogonal on the interval $-1<x<1$, with weight function unity.
b) Derive the Rodrigue's formula $\mathrm{P}_{n}(x)=\frac{1}{2^{n} n!} \frac{d^{n}}{d x^{n}}\left(x^{2}-1\right)^{n}$.
c) Verify that the Legendre polynomials $P_{2}(x)=\frac{1}{2}\left(3 x^{2}-1\right)$, $P_{3}(x)=\frac{1}{2}\left(5 x^{3}-3 x\right)$ form an orthogonal set on the interval $-1<x<1 .[2]$


