[5828]-101
 M.A./M.Sc.
 MATHEMATICS

 MTUT 111 : LINEAR ALGEBRA

 MTUT 111 : LINEAR ALGEBRA
 (2019 Pattern) (Credit System) (Semseter - I)

Time: 3 Hours]
[Max. Marks : 70
Instructions to the candidates:

1) Attempt any five questions.
2) Figures to the right side indicate full marks.

Q1) a) Prove that, a linear transformation $T \in L(V, V)$ is invertible if and only if T is one to one and onto.
b) Let $S \in L(V, V)$ be given by
$S\left(\mathrm{u}_{1}\right)=\mathrm{u}_{1}+\mathrm{u}_{2}$
$S\left(u_{2}\right)=-u_{1}-u_{2}$
Where, $\left\{\mathrm{u}_{1}, \mathrm{u}_{2}\right\}$ is a basis for V .
i) Find the rank and nullity of s.
ii) Check S is invertible or not
c) Test the linear transformation $\mathrm{T}: \mathrm{R}_{3} \rightarrow \mathrm{R}_{2}$ defined by the system of equation $y_{1}=x_{1}-2 x_{2}+x_{3}$
$y_{2}=x_{1}+x_{3}$
Determine whether the system T is one to one.
Q2) a) If s is a subspace of V containing the vectors $a_{1}, \ldots \ldots . a_{m}$, then every linear combination of $a_{1}, \ldots . ., a_{m}$ belongs to s.
b) Let A, B, C be points in R_{2}. Then prove that $\overrightarrow{A B}+\overrightarrow{\mathrm{BC}}=\overrightarrow{\mathrm{AC}}$.
c) Determine whether the following set of points are vertices of parallelogram or not
$\langle 0,0\rangle,\langle 1,1\rangle,\langle 4,2\rangle,\langle 3,1\rangle$
Q3) a) State and prove the cauchy-schwarz Inequality.
b) For vectors $a=\left\langle\alpha_{1}, \alpha_{2}\right\rangle, b=\left\langle\beta_{1}, \beta_{2}\right\rangle$ Define their inner product $(\mathrm{a}, \mathrm{b})=\alpha_{1} \beta_{1}+\alpha_{2} \beta_{2}$
Show that, the inner product satiesfies the following
i) $(\mathrm{a}, \mathrm{b})=(\mathrm{b}, \mathrm{a})$
ii) $(\mathrm{a}, \mathrm{b}+\mathrm{c})=(\mathrm{a}, \mathrm{b})+(\mathrm{a}, \mathrm{c})$
c) Show that, the functions $\mathrm{fn}(\mathrm{x})=\sin \mathrm{nx}, \mathrm{n}=1,2, \ldots .$. . form an orthonormal set in the vector space $c([-\pi, \pi])$ of continuous real valued functions on the closed interval $[-\pi, \pi]$ with respect to the inner product $(f \cdot g)=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cdot g(x) d x$
for continuous functions $\mathrm{f}, \mathrm{g} \in \mathrm{c}([-\pi, \pi])$

Q4) a) Let V be the vector space over F and suppose there exist non-zero linear transformations $\left\{\mathrm{E}_{1}, \ldots, \mathrm{E}_{\mathrm{s}}\right\}$ in $\mathrm{L}(\mathrm{V}, \mathrm{V})$ such that the following conditions are satiesfied.
i) $1=\mathrm{E}_{1}+\mathrm{E}_{2}+\ldots \ldots .+\mathrm{Es}$
ii) $\quad E_{i} E_{j}=E_{j} E_{i}=0$, if $i \neq j, 1 \leq i, j \leq s$

Then show that,
$\mathrm{E}_{\mathrm{i}}^{2}=\mathrm{E}_{\mathrm{i}}, 1 \leq \mathrm{i} \leq \mathrm{s}$ and
V is the direct sum
$\mathrm{V}=\mathrm{E}_{1} \mathrm{~V} \oplus \mathrm{E}_{2} \mathrm{~V} \oplus \ldots \ldots . . \oplus \mathrm{E}_{\mathrm{s}} \mathrm{V}$ and each subspace $\mathrm{E}_{\mathrm{i}} \mathrm{V}$ is different from zero.
b) Let T be linear transformation on a vector space over the complex number such that
$\mathrm{T}\left(\mathrm{v}_{1}\right)=\mathrm{v}_{1}+2 \mathrm{v}_{2}$
$T\left(v_{2}\right)=4 v_{1}+3 v_{2}$
Where $\left\{\mathrm{v}_{1}=(1,0), \mathrm{v}_{2}=(0,1)\right\}$ is a basis for the vector space then find
i) Characteristic polynomial of T .
ii) Minimal polynomial of T .
iii) Characteristic roots of T.
iv) Characteristic vector of T .

Q5) a) Let U and V be finite dimensional vector spaces over F. Let $S_{1}, S_{2} \in L(U, U)$ and Let $\mathrm{T}_{1}, \mathrm{~T}_{2}, \in \mathrm{~L}\left(\mathrm{~V}_{1} \mathrm{~V}\right)$ Then prove that, $\left(\mathrm{S}_{1} \otimes \mathrm{~T}_{1}\right)\left(\mathrm{S}_{2} \otimes \mathrm{~T}_{2}\right)=\mathrm{S}_{1} \mathrm{~S}_{2} \otimes \mathrm{~T}_{1} \mathrm{~T}_{2}$
b) Find the perpendicular distance from the point $(1,5)$ to the line passing through the points $(1,1)$ and $(-2,0)$ by using Gram schmidt process.[6]
c) Find the rational canonical form over the field of rational numbers of matrix A,
where $A=\left[\begin{array}{ll}2 & -1 \\ 1 & -1\end{array}\right]$

Q6) a) Let V be a vector space over a field F and let Y be a subspace of V . Then prove that, the relation \mathfrak{R} on the set V defined by $\mathrm{v} \Re \mathrm{v}^{\prime}$ if $\mathrm{v}-\mathrm{v} ' \in \mathrm{Y}$ is an equivalence relation.
b) Let $T \in L\left(V_{1} V\right)$, let $\left\{\mathrm{V}_{1}, \ldots \ldots ., \mathrm{V}_{\mathrm{n}}\right\}$ be a basis of V and $\left\{\mathrm{f}_{1}, \ldots . . \mathrm{f}_{\mathrm{n}}\right\}$ the dual basis of V^{*}, Let A be the matrix of T with respect to the basis $\left\{\mathrm{V}_{1}, \ldots \ldots \ldots . \mathrm{V}_{\mathrm{n}}\right\}$. Then prove that, the matrix of T^{*} with respect to the basis $\left\{\mathrm{f}_{1}, \ldots . . \mathrm{f}_{\mathrm{n}}\right\}$ is the transpose matrix ${ }^{\mathrm{t}} \mathrm{A}$.
c) If $f\left(x_{1}, x_{2}\right)=x_{1}{ }^{2}-6 x_{1} x_{2}-5 x_{2}{ }^{2}$ Find symmetric matrix A whose quadratic equation is $f\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)$.

Q7) a) If V be a vector space over an algebraically closed field F , then prove that every irreducible invariant subspace w relative to $\mathrm{T} \in \mathrm{L}(\mathrm{V}, \mathrm{V})$ has dimension1.
b) Compute $\left(\mathrm{A}_{1} \dot{\times} \mathrm{B}_{1}\right)\left(\mathrm{A}_{2} \dot{\times} \mathrm{B}_{2}\right)$
where, $A_{1}=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right), B_{1}=\left(\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right)$

$$
\mathrm{A}_{2}=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right), \quad \mathrm{B}_{2}=\left(\begin{array}{cc}
-1 & 0 \\
1 & 0
\end{array}\right)
$$

c) Define an Unitary transformation

Show that, $A=\left(\begin{array}{cc}0 & i \\ -i & 0\end{array}\right)$
is unitary matrix

Q8) a) Let T be an invertible linear transformation on a vector space V over C with Hermition scalar product then prove that T can be expressed in the form $\mathrm{T}=\mathrm{US}$, where S is positive and U is unitary.
b) Let T be a normal transformation on V . Then prove that, there exist common characteristic vectors for T and T^{\prime}. For such a vector $\mathrm{v}, \mathrm{Tv}=$ av and $\mathrm{T}^{\prime} \mathrm{v}=\bar{a} \mathrm{v}$
c) Test the matrix $A=\left(\begin{array}{cc}2 & 1 \\ 0 & -1\end{array}\right)$ is similar to diagonal matrix in $M_{2}(R)$. If so, find the matrix D and S such that $\mathrm{D}=\mathrm{S}^{-1} \mathrm{AS}$.

[5828]-102
 M.A./M.Sc.
 MATHEMATICS
 MTUT 112 : Real Analysis
 (CBCS) (2019 Pattern) (Semseter - I)

Time: 3 Hours]

[Max. Marks : 70

Instructions to the candidates:

1) Attempt any five questions.
2) Figures to the right indicate full marks.

Q1) a) i) Let f and g are measurable functions on E. Prove that $f \cup g$ and $f \cap g$ are measurable.
ii) Prove that countable set has outer measure zero.
b) i) Let f be a Lipschitz function on $[a, b]$ show that f is of bounded variation of $[a, b]$ and $T_{v}(f) \leq c(b-a)$. Where $|f(u)-f(v)| \leq c|u-v|$, for all u, v in $[a, b]$.
ii) Let f be a function defined on $[0,1]$ as
$f(x)=\left\{\begin{array}{clr}x \sin \left(\frac{\pi}{x}\right) & & \text { if } \\ 0 & , & 0<x \leq 1 \\ 0 & , & \text { if }\end{array}\right.$
show that f is not of bounded variation

Q2) a) Prove that any set E of real numbers with positive outer measure contains a subset that fails to be measurable.
b) Let $\left\{E_{k}\right\}^{\infty}$ is is any countable collection of sets which are disjoint or not, then prove that $m^{*}\left(\bigcup_{k=1}^{\infty} E_{k}\right) \leq \sum_{k=1}^{\infty} m^{*}\left(E_{k}\right)$

Q3) a) Let f be a simple function defined on E . Then prove that for each $\in>0$, there is a continuous function g on \mathbb{R} and a closed set F contained in E for which $f \equiv g$ on F and $m(E \sim F)<\epsilon$.
b) Let the function f have a measurable domain E, then the following statements are equivalent.
i) For each real number c the set $\{x \in \mathrm{E} / \mathrm{f}(x)>c\}$ is measurable.
ii) For each real number c , the set $\{x \in \mathrm{E} / \mathrm{f}(x) \geq c\}$ is measurable.
iii) For each real number c , the set $\{x \in \mathrm{E} / \mathrm{f}(x)<c\}$ is measurable.

Q4) a) Let the function f be monotone on the closed, bounded interval $[\mathrm{a}, \mathrm{b}]$. Then prove that f is absolutely continuous on $[\mathrm{a}, \mathrm{b}]$ if and only if

$$
\begin{equation*}
\int_{a}^{b} f^{\prime}=f(b)-f(a) \tag{7}
\end{equation*}
$$

b) Define, $f(x)=\left\{\begin{array}{cc}x^{2} \cos \left(\frac{1}{x^{2}}\right), & \text { if } x \neq 0, \\ 0, \text { if } x=0, & x \in[-1,1]\end{array}\right.$

Is f of bounded variation on $[-1,1]$? Justify.

Q5) a) Let $\left\{\mathrm{E}_{\mathrm{k}}\right\}^{\infty}{ }_{\mathrm{k}=1}$ is a countable disjoint collection of measurable sets then prove that $\bigcup_{k=1}^{\infty} E_{k}$ is also measurable and $m\left(\bigcup_{k=1}^{\infty} E_{k}\right)=\sum_{k=1}^{\infty} m\left(E_{k}\right)$.
b) Let $\left\{f_{n}\right\}^{\infty}{ }_{n=1}$ be an increasing sequence of continuous functions on $[a, b]$ to function f on $[a, b]$. Show that $\left\{f_{n}\right\}^{\infty}{ }_{n=1}$ converges uniformly on $[a, b]$.

Q6) a) Let f be an extended real valued function on E .
i) If f is measurable on E and $f=g$ almost every where on E. Prove that g is measurable.
ii) For a measurable subset D of E , prove that f is measurable on E if and only if the restrictions of f to D and $\mathrm{E} \sim \mathrm{D}$ are measurable.
b) Define an absolutely continuous function. With a suitable example prove that the function f is absolutely continuous but not Lipschitz's on closed and bounded interval.

Q7) a) Let the function f be continuous on the closed, bounded interval [a, b]. The family of divided difference functions $\left\{\text { Diff }_{h}\right\}_{0<h \leq 1}$ is uniformly integrable over $[a, b]$ then prove that f is absolutely continuous on $[a, b]$.
b) Let A and B are any two disjoint subsets of \mathbb{R}. Show that m^{*} $(A \cup B)=m^{*}(A)+m^{*}(B)$.

Q8) a) Prove that the Cantor set C is closed, uncountable set of measure zero.[7]
b) Let E be a measurable set of finite outer measure. For each $\in>0$ there is a finite disjoint collection of open intervals $\left\{I_{k}\right\}_{k=1}^{\infty}$ if $\theta=\bigcup_{k=1}^{n} I_{k}$ then prove that $\mathrm{m}^{*}(\mathrm{E} \sim \theta)+\mathrm{m}^{*}(\theta \sim \mathrm{E})>\in$.

M.A./M.Sc. (Semester - I)
 MATHEMATICS

MTUT 115 : Ordinary Differential Equations (2019 Pattern) (CBCS)

Time : 3 Hours]

[Max. Marks : 70

Instructions to the candidates :

1) Figures to the right indicate full marks.
2) Attempt any five questions.

Q1) Attempt the following:
a) i) Show that the function $\phi(x)=\frac{2}{3}+e^{-3 x}$ is the solution of the equation

$$
\begin{equation*}
y^{\prime}+3 y=2 . \tag{2}
\end{equation*}
$$

ii) Show that every solution of the equation $x^{2} y^{\prime}+2 x y=1$ on $(0, \infty)$ tends to zero as $x \rightarrow \infty$.
b) Explain the method of solving the equation $y^{\prime}+a y=b(x)$, where a is constant and $b(x)$ is continuous function.

Q2) a) i) Show that $\phi(x)=e^{-a x} \int_{x_{0}}^{x} e^{a t} b(t) d t$ is a solution of the equation $y^{\prime}+a y=b(x)$.
ii) If $\phi(x)$ is the solution of the equation $y^{\prime}+$ iy $=x$ such that $\phi(0)=2$ then find $\phi(\pi)$.
[4]
b) Solve the equation $\mathrm{L} y^{\prime}+\mathrm{R} y=\mathrm{E}$ where L, R and E are constants. Also show that every solution of it tends to E / R as $x \rightarrow \infty$.

Q3) a) Show that by Formal substitution $\mathrm{Z}=y^{1-k}$ transforms the equation $y^{\prime}+\alpha(x) y=\beta(x) y^{k}$ into $Z^{\prime}+(1-k) \alpha(x) Z=(1-k) \beta(x)$. Hence Find all the solutions of $y^{\prime}-2 x y=x y^{2}$.
b) Show that every solution of the constant coefficient equation $y^{\prime \prime}+a_{1} y^{\prime}+a_{2} y=0$ tends to 0 as $x \rightarrow \infty$ if and only if the real parts of the roots of the characteristics polynomial are negative.

Q4) a) Compute $\mathrm{W}\left(\phi_{1}, \phi_{2}, \phi_{3}\right)(x)$ at a point $x=0$ for the function $\phi_{1}=e^{x}, \phi_{2}=$ $x e^{x}$ and $\phi_{3}=x^{2} e^{x}$.
[7]
b) If $\phi(x)$ is a function having continuous derivative on $[0, \infty)$ such that $\phi^{\prime}(x)+2 \phi(x) \leq 1, \forall x \varepsilon[0, \infty)$ and $\phi(0)=0$. Then show that $\phi(x)<\frac{1}{2}$ for $x \geq 0$.

Q5) a) Find solution of the equation $y^{\prime \prime}-y^{\prime}-2 y=e^{-x}$.
b) i) Compute three linearly independent solutions of the equation

$$
y^{\prime \prime \prime}-4 y^{\prime}=0 .
$$

ii) Find the solution of the initial value problem

$$
\begin{equation*}
y^{\prime \prime}+(1+4 i) y^{\prime}+y=0 \text { with } y(0)=0=y^{\prime}(0) \tag{4}
\end{equation*}
$$

Q6) a) Explain the method for solving non-homogeneous equation with constant co-efficient of order n.
b) Define Wronskian of ϕ_{1}, ϕ_{2}. Hence, show that two solutions ϕ_{1} and ϕ_{2} of $y^{\prime \prime}+a_{1} y^{\prime}+a_{2} y=0$ are linearly independent on an interval I if and only if $\mathrm{W}\left(\phi_{1}, \phi_{2}\right) \neq 0, \forall x \in \mathrm{I}$.

Q7) a) Explain the method of reduction of order for solving $n^{\text {th }}$ order homogeneous equation.
b) Show that $\phi_{1}(x)=|x|^{i}$ and $\phi_{2}(x)=|x|^{-i}$ are linearly independent solutions of the equation $x^{2} y^{\prime \prime}+x y^{\prime}+y=0$.
[7]

Q8）a）Explain the variable separable method for first order differential equation $y^{\prime}=\mathrm{F}(x, y)$ ．
b）Show that the function $\phi(x)=\frac{y_{0}}{1-y_{0}\left(x-x_{0}\right)}$ which passes through the point $\left(x_{0}, y_{0}\right)$ is a solution of the equation $y^{\prime}=y^{2}$ ．

ふゥゥ

M.A./M.Sc. (Semester - I)

MATHEMATICS
MTUT 114 : Advance Calculus (2019 Pattern)

Time : 3 Hours]

[Max. Marks : 70

Instructions to the candidates :

1) Figures to the right indicate full marks.
2) Attempt any five questions.

Q1) A) If the derivative $f^{\prime}(a+t y: y)$ exist, for each t in the interval $0 \leq t \leq 1$. Then show that for some real θ in the open interval $0<\theta<1$, we have,
$\mathrm{F}(a+y)-\mathrm{F}(a)=\mathrm{F}^{\prime}(z: y)$, where $z=a+\theta y$
B) Evaluate the directional derivative of the scaler field $\mathrm{F}(x, y, z)=x^{2}+2 y^{2}+3 z^{2}$ at point $(1,1,0)$ in the direction of $\bar{i}-\bar{j}+2 \overline{\mathrm{k}}$.
C) Determine the set of point (x, y) at which function f is continuous, where $F(x, y)=\tan \left(\frac{x^{2}}{y}\right)$.

Q2) A) A particle of Mass m moves along a curve under the action of a force field $\overline{\mathrm{F}}$. If the speed of the particle at time t is $\bar{v}(t)$, it's kinetic energy is defined to be $\frac{1}{2} m \bar{v}^{2}(t)$. Prove that, the change in kinetic energy in any time interval is equal to the work-done by $\overline{\mathrm{F}}$ during this time interval.[6]
B) Find the gradient vector of the function $\mathrm{F}(x, y, z)=\log \left(x^{2}+2 y^{2}-3 z^{2}\right)$.
C) Make a sketch to describe the level set corresponding to given values of C for $f(x, y)=x^{2}+y^{2}, \quad \mathrm{C}=0,1,4,9$

Q3) A) If A_{1}, A_{2} are open subset of \mathbb{R}, then prove that $A_{1} \times A_{2}$ is open subset of \mathbb{R}^{2}.
B) Calculate the line integral of the vector field $\overline{\mathrm{F}}$ along the path described. $\bar{F}(x, y, z)=\left(y^{2}-z^{2}\right) \bar{i}+2 y z \bar{j}-x^{2} \bar{k}$, along the
path $\bar{\alpha}(t)=t \bar{i}+t^{2} \bar{j}+t^{3} \bar{k}, 0 \leq t \leq 1$
C) Give any two basic properties of line integral.

Q4) A) Prove that, if $\overline{\mathrm{T}}$ denotes unit tangent vector, then $\int \bar{f} \cdot d \bar{\alpha}=\int \phi d s$.[6]
B) Find the amount of work done by the force, $f(x, y)=\left(x^{2}-y^{2}\right) \bar{i}+2 x y \bar{j}$ in moving a particle (in counterclockwise direction) once around these square bounded by the coordinate axes and the line $x=a$ and $y=a$, $a>0$.

Q5) A) Prove that, if ϕ be real-valued function that is continuous on an interval $[a, b]$. Then the graph of ϕ has content zero.
B) Evaluate $\iiint_{S} x y z d x d y d z$,
where $\mathrm{S}=\left\{(x, y, z) / x^{2}+y^{2}+z^{2} \leq 1, x \geq 0 y \geq 0, z \geq 0\right\}$

Q6) A) Determine the region S and interchange the order of integration
[6]

$$
\int_{0}^{1}\left[\int_{x^{2}}^{x} F(x, y) d y\right] d x
$$

B) Use Green's theorem to evaluate the line integral $\oint_{C} y^{2} d x+x d y$, when C is the square with vertices $(0,0),(2,0),(2,2),(0,2)$
C) Define simply connected plane set.

Q7）A）If r and R be smoothly equivalent function related by equation $R(s, t)=$ $\mathrm{r}[\mathrm{G}(\mathrm{s}, \mathrm{t})]$ ，where $\mathrm{G}=u \bar{i}+v \bar{j}$ is a one to one continuously differentiable mapping of a region B in the st plane onto a region A in the uv－plane． Then show that
［6］
$\frac{\partial R}{\partial s} \times \frac{\partial R}{\partial t}=\left(\frac{\partial r}{\partial \mathrm{u}} \times \frac{\partial r}{\partial \mathrm{v}}\right) \frac{\partial(\mathrm{u}, \mathrm{v})}{\partial(s, t)}$

Where，the partial derivatives $\frac{\partial r}{\partial \mathrm{u}}$ and $\frac{\partial r}{\partial \mathrm{v}}$ are to be evaluated at point （ $\mathrm{U}(\mathrm{s}, \mathrm{t}), \mathrm{V}(\mathrm{s} . \mathrm{t}))$ ．

B）Define：
i） $\operatorname{Curl} \overline{\mathrm{F}}$
ii） $\operatorname{Div} \overline{\mathrm{F}}$ ，for vector field $\overline{\mathrm{F}}$
C）Write any two methods of representation of surface and explain it．

Q8）A）Prove that，Fundamental vector product is normal to the surface．
B）Determine whether or not a vector field $\overline{\mathrm{F}}(x, y)=3 x^{2} y \bar{i}+x^{3} y \bar{j}$ is gradient on any open subset of \mathbb{R}^{2} ．

C）Let $\mathrm{T}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a given linear transformation compute the derivative $\mathrm{F}^{\prime}(x ; y)$ for the scaler field defined on \mathbb{R}^{n} by the equation $\mathrm{F}(x)=x \cdot \mathrm{~T}(x)$ ．［4］

なゥゥゥ

[5828]-105
 M.A./M.Sc. MATHEMATICS
 MTUT113 : Group Theory (2019 Pattern) (Semester - I) (Credit System)

Time : 3 Hours]
[Max. Marks : 70
Instructions to the candidates:

1) Attempt any five questions.
2) Figures to the right indicate full marks.

Q1) a) Define a subgroup of a group G. Let H be a non-empty subset of G . Prove that H is a subgroup of G if and only if for $a, b \in \mathrm{H}, a b^{-1} \in \mathrm{H}$.
b) Let G be a group and 'a' be an element of G of order n in G. Prove that $\left.<a^{k}\right\rangle=\left\langle a^{g . c . d(n, k)}\right\rangle$ and $\left|a^{k}\right|=\frac{n}{\text { g.c.d }(n, k)}$ where k is a positive integer.
c) Prove that a group G is Abelian if and only if $(a b)^{-1}=a^{-1} b^{-1}$ for all a, b in G.

Q2) a) Let G be a finite group. Prove that the number of elements of order d is a multiple of $\varphi(d)$.
b) Let S be a finite set and σ denote a permutation of S. Prove that $\sigma=\alpha_{1} \alpha_{2} \ldots \alpha_{\mathrm{n}}$. Where $\alpha_{1}, \alpha_{2} \ldots \alpha_{\mathrm{n}}$ are disjoint cycles.
c) Let $\alpha=(12)(45)$ and $\beta=\left(\begin{array}{ll}1 & 6 \\ 5 & 3\end{array}\right)$ be permutations in S_{6}. Compute each of the following :
i) α^{-1}
ii) $\beta \alpha$
iii) $\alpha \beta$
Q3) a) Prove that every group is isomorphic to a group of permutations. [5]
b) Let G be a group and Aut (G) denote the automorphisms of G then prove that $\operatorname{Aut}(\mathrm{G})$ is a group.
c) Let \mathbb{R}^{+}be the group of positive real numbers under multiplication. Show that the mapping $\phi(x)=\sqrt{x}$ is an automorphism of \mathbb{R}^{+}.
Q4) a) State and prove Lagrange's theorem.
b) Let H and K be two subgroups of a group G define $\mathrm{HK}=\{\mathrm{hk} \mid \mathrm{h} \in \mathrm{H}$, $k \in K\}$, prove that $|H K|=\frac{|H||K|}{|\mathrm{H} \cap \mathrm{K}|}$.
c) Let $G=\{(1),(132)(465)(78),(132)(465),(123)(456),(123)(456)(78)$, (78) \}. Find the following :
i) $\quad \operatorname{orb}_{G}(1), \operatorname{stab}_{G}(1)$
ii) $\operatorname{orb}_{G}(2), \operatorname{orb}_{G}(2)$

Q5) a) Let G and H be finite cyclic group, prove that $\mathrm{G} \oplus H$ is cyclic if and only if $|\mathrm{G}|$ and $|\mathrm{H}|$ are relatively prime.
b) Prove that a group of order 4 is isomorphic to \mathbb{Z}_{4} or $\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$.
c) Find all subgroups of order 3 in $\mathbb{Z}_{9} \oplus \mathbb{Z}_{3}$.

Q6) a) Let G be a group and $\mathrm{Z}(\mathrm{G})$ denote the center of G , prove that $\mathrm{G} / \mathrm{Z}(\mathrm{G}) \approx$ Inn(G) where Inn(G) - inner automorphism of G.
b) Prove that if H is a subgroup of G having index 2 in G then H is normal in G.
c) Prove that an Abelian group of order 33 is cyclic.

Q7) a) State and prove first isomorphism theorem.
b) Let φ be a group homomorphism from G to \bar{G} then prove that Ker ϕ - kernel of ϕ is a normal subgroup of G .
c) Determine all group homomorphism from \mathbb{Z}_{12} to \mathbb{Z}_{30}.

Q8) a) If G is a group of order pq , where p, q are primes $\mathrm{p}<\mathrm{q}$, and p does not divide $q-1$, then prove that G is cyclic and $G \approx \mathbb{Z}_{p q}$.
b) Let G be a group of order 99. Then prove that $G \approx \mathbb{Z}_{99}$ or $G \approx \mathbb{Z}_{3} \oplus \mathbb{Z}_{33}$
c) Show that $\mathrm{cl}(a)=\{a\}$ if and only if $a \in \mathrm{Z}(\mathrm{G})$, where $\mathrm{Z}(\mathrm{G})$ is center of group G and $\mathrm{cl}(a)$ denote conjugacy class of $\mathrm{a} \in \mathrm{G}$.

みมย

[5828]-201
 M.A./M.Sc.

 MATHEMATICS

 MATHEMATICS
 MTUT-121 : Complex Analysis
 (2019 Pattern) (Semester - II) (Credit System)

Time : 3 Hours]
[Max. Marks : 70
Instructions to the candidates:

1) Attempt any five questions.
2) Figures to the right indicate full marks.

Q1) a) If $f: \mathrm{A} \rightarrow \mathbb{C}, g: \mathrm{B} \rightarrow \mathbb{C}, f(\mathrm{~A}) \subset \mathrm{B}$ and $\mathrm{Z}_{0} \in \mathrm{~A}$. Suppose that $f^{\prime}\left(\mathrm{Z}_{0}\right)$ and $g^{\prime}\left(f\left(Z_{0}\right)\right)$ exist then show that $(g o f)^{\prime}\left(Z_{0}\right)$ exists and $(g o f)^{\prime}\left(Z_{0}\right)=g^{\prime}$ $\left(f\left(Z_{0}\right)\right) \cdot f^{\prime}\left(Z_{0}\right)$.
b) Let Z_{1}, Z_{2} be the complex numbers. Then prove the following results.
i) $\quad\left|z_{1}+z_{2}\right|=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+2 \operatorname{Re}\left(z_{1} \bar{z}_{2}\right)$
ii) $\left|z_{1}+z_{2}\right|^{2}+\left|z_{1}-z_{2}\right|^{2}=2\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right)$
iii) $\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|$
c) Identify the real and imaginary parts of the complex number $z=(1+i)^{4}+(1-i)^{4}$.

Q2) a) Let \cup be an open set in \mathbb{R}^{3} and $f: U \rightarrow \mathbb{R}$ be a function having partial derivatives which are continuous at $\left(x_{0}, y_{0}\right)$. Then show that f is frechet differentiable at $\left(x_{0}, y_{0}\right)$.
b) Let $f(x, y)=\frac{x-y}{x+y}$ for $(x, y) \neq(0,0)$. Show that two iterated limits exists but are not equal. Does $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ exists?
c) Use Cauchy Riemann equations to determine whether the function $f(z)=\operatorname{Re}(z)$ is complex differentiable for $\mathrm{z} \in \mathbb{C}$ or not.
d) Compute the value of the integral $\int_{\omega} x d z$ where ω is the line segment from 0 to $1+i$.

Q3) a) Let f be a continuous function in a region Ω and complex differentiable in $\Omega \backslash \mathrm{A}$, where A is discrete subset of Ω. Let T be a triangle completely contained in Ω. Then show that $\int_{\partial \mathrm{T}} f(z) d z=0$.
b) Let f be a complex differentiable in a region Ω. Then prove that f has complex derivatives of all order in Ω. More over if D is a disc whose closure is contained in Ω and z belongs to interior of D then for all integers $n \geq 0$ prove that $f^{(n)}(z)=\frac{n!}{2 \pi i} \int_{\partial \mathrm{D}} \frac{f(\xi)}{(\xi-z)^{n+1}} d \xi$ where $\partial \mathrm{D}$ denotes the boundary of the disc.
c) Evaluate $\int_{\mathrm{C}} \frac{\sin z}{z+3 i} d z$ where $\mathrm{C}:|z-2+3 i|=1$ traversed in counter clockwise direction.

Q4) a) Let $f: \Omega \rightarrow \mathbb{C}$ be a non constant complex differentiable function on a domain Ω. Then prove that there does not exists any point $w \in \Omega$ such that $|f(z)| \leq|\mathrm{f}(w)| \forall z \in \Omega$.
b) Let C be a circle $|z|=3$ traced in the counterclockwise sense for any z with $z \neq 3$ let $g(z)=\int_{\mathrm{C}} \frac{2 w^{2}-w-2}{w-z} d w$. Prove that $g(2)=8 \pi i$. Find $g(4)$.
c) Is the function $f(z)=\frac{z^{2}+1}{z(z-1)}$ meromorphic? Why?
d) Find the value of the integration $\int_{\mathrm{C}} \frac{e^{a z}}{z} d z$. Where C is the unit circle traversed in counterclockwise direction.

Q5) a) Let f be a nonzero holomorphic function in a domain Ω and $a \in \Omega$ be a zero of f of order k. Then prove that there is a unique holomorphic function ϕ in a neighbourhood of a such that $\phi(a) \neq 0$ and $f(z)=(z-a)^{k} . \phi(z) \forall z \in \Omega$.
b) Prove that a nonconstant holomorphic function on an open set is an open mapping.
c) Compute the residues at all singular points of the function

$$
\begin{equation*}
f(z)=\frac{5}{\left(z^{2}-1\right)^{2}} . \tag{4}
\end{equation*}
$$

Q6) a) Let Ω be a holomorphic function on $\mathrm{A}\left(r_{1}, r_{2}\right)$ Let $r_{1}<\rho_{1}<\rho_{2}<r_{2}$. Then for $\rho_{1}<|z|<\rho_{2}$, show that $f(z)=\frac{1}{2 \pi i} \int_{|w|=\rho_{2}} \frac{f(w)}{w-z} d w-\frac{1}{2 \pi i} \int_{|w|=\rho_{1}} \frac{f(w)}{w-z} d w$.
b) Obtain the Laurent series expansion for the function $f(z)=\frac{1}{1-z}$ for the region $\mathrm{A}=\{z /|z-2|>1\}$.
c) Find the function $f(z)$ to evaluate the improper integral $\int_{-\infty}^{\infty} \frac{\cos 3 x}{\left(x^{2}+1\right)^{2}} d x$ by using the complex method.

Q7) a) Find the value of the integral $\int_{0}^{\infty} \frac{2 x^{3}-1}{x^{4}+5 x^{2}+4} d x$.
b) Show that $\int_{0}^{2 \pi} \frac{d \theta}{1+a \sin \theta}=\frac{2 \pi}{\sqrt{1-a^{2}}},-1<a<1$.

Q8) a) Let $f: \mathbb{D} \rightarrow \overline{\mathbb{D}}$ be a holomorphic function such that $f(0)=0$ then prove that $|f(z)| \leq|z|$ and $\mid f^{\prime}(0) \leq 1$. Further prove that the following conditions are equivalent.
i) there exists $Z_{0} \neq 0$ with $\left|z_{0}\right|<1$ and $\left|f\left(z_{0}\right)\right|=\left|z_{0}\right|$
ii) $\quad\left|f^{\prime}(0)\right|=1$.
iii) $f(z)=c z$ for some $|c|=1$.
b) Let f, g be holomorphic in an open set containing the closure $\overline{\mathbb{D}}$ of a disc \mathbb{D} and satisfy the inequality $|f(z)-g(z)|<|g(z)| \forall z \in \partial \mathbb{D}$ then show that f and g have same number of zeros inside c.
c) Find the Cauchy's principal value of $\int_{-\infty}^{\infty} \frac{e^{i a x}}{1-x} d x$ for $\mathrm{H}:|z|<1$. [3]

みみ\&

Time: 3 Hours]
[Max. Marks : 70
Instructions to the candidates:

1) Attempt any Five questions.
2) Figures to the right, indicate full marks.

Q1) a) Let A be a set. prove that there is no injective map $f: p(\mathrm{~A}) \rightarrow \mathrm{A}$ and there is no surjective map $g: \mathrm{A} \rightarrow p(\mathrm{~A})$.
b) Let B be a nonempty set. Then show that the following are equivalent :[4] i) B is countable.
ii) There is surjective function

$$
f: \mathbb{Z}_{+} \rightarrow \mathrm{B}
$$

iii) There is an injective function

$$
g: \mathrm{B} \rightarrow \mathbb{Z}_{+}
$$

c) Show that there is bijective correspondence of $\mathrm{A} \times \mathrm{B}$ with $\mathrm{B} \times \mathrm{A}$.

Q2) a) Show that the topologies of \mathbb{R}_{l} and \mathbb{R}_{k} are strictly finer than the standard topology on \mathbb{R}, but are not comparable with one another.
b) Consider the following topologies on \mathbb{R} :
$\tau_{1}=$ the standard topology,
$\tau_{2}=$ the topology of \mathbb{R}_{k},
$\tau_{3}=$ the finite complement topology,
$\tau_{4}=$ the upper limit topology having all sets $(a, b]$ as basis,
$\tau_{5}=$ the topology having all sets $(-\infty, a)=\{x \mid x<a\}$ as basis.
Determine, for each of these topologies, which of the others it contains.[4]
c) Show that the order topology on the set $X=\{1,2\} \times \mathbb{Z}_{+}$in the dictionary order is not the discrete topology.

Q3) a) Let x be an ordered set in the order topology; let y be a subset of x that is convex in y. Then show that the order topology on y is the same as the topology y inherits as subspace of x.
b) If $\left\{\tau_{\alpha}\right\}$ is a family of topologies on x, show that $\bigcap_{\alpha} \tau_{\alpha}$ is a topology on x. Is $\bigcap_{\alpha} \tau_{\alpha}$ is topology on x ? Justify.
c) Let A be a subset of the topological space x; let A^{\prime} be the set of all limit points of A . Then show that $\overline{\mathrm{A}}=\mathrm{A} \cup \mathrm{A}^{\prime}$.

Q4) a) Show that every simply ordered set is a Hausdorff space in the order topology. The product of two Hausdorff spaces is a Hausdorff space. A subspace of a Hausdorff space is a Hausdorff space.
[7]
b) Let $\rho: \mathrm{X} \rightarrow \mathrm{Y}$ be a quotient map. Let Z be a space and let $g: X \rightarrow \mathrm{Z}$ be a map that is constant on each set $\rho^{-1}(\{y\})$, for $y \in Y$. Then show that g induces a map $f: Y X \rightarrow Z$ such that $f \circ g=g$. The induced map f is continuous if and only if g is continuous; f is quotient map if and only if g is a quotient map.

Q5) a) Prove that a finite Cartesian product of connected spaces is connected.[6]
b) Let τ and τ^{1} be two topologies on X . If $\tau \leq \tau^{1}$, what does connectedness of X in one topology imply about connectedness in the other? Justify? [4]
c) If the sets C and D forms a separation of a topological spaces X and if Y is a connected subspace of X, then prove that Y is entirely within either C or D.

Q6) a) Prove that every compact subspace of Hausdorff space is closed.
b) Define:
i) First countable space,
ii) Second countable space,
iii) Lindelöf space,
iv) Separable space.
c) Let $f: \mathrm{X} \rightarrow \mathrm{Y}$ be a continuous map of the compact metric space (X, dx) to the metric space (Y, dy). Then prove that f is uniformly continuous.[4]

Q7) a) Prove that an arbitrary product of compact spaces is compact in the product topology.
b) Let X be a normal space; let A be a closed subspace of X . Then prove that,
i) Any continuous map of A into the closed interval $[a, b]$ of \mathbb{R} may be extended to a continuous map of all of X into $[a, b]$.
ii) Any continuous map of A into \mathbb{R} may be extended to a continuous map of all of X into \mathbb{R}.

Q8) a) Prove that a subspace of a completely regular space is completely regular. A product of completely regular spaces is completely regular.
b) Show that the sorgenfrey plane \mathbb{R}_{l}^{2} is not normal.

$\nabla \nabla \nabla \nabla$

[5828] - 203
 M.A./M.Sc. (Mathematics)
 MTUT - 123 : RING THEORY
 (2019 Pattern) (Semester - II) (Credit System)

Time : 3 Hours]
[Max. Marks : 70
Instructions to the candidates:

1) Attempt any Five questions.
2) Figures to the right, indicate full marks.

Q1) a) Let R be a ring with 1 and non-units in R form a subgroup of ($R,+$), then prove that char (R) is either 0 or else a power of a prime.
b) If R is the ring of all strictly upper triangular $\mathrm{n} \times \mathrm{n}$ matrices over the ring of integer Z , then show that R is non-commutative ring and each element of R is nilpotent ($n \geq 3$).
c) Give examples of two zero-divisors in matrix ring $\mathrm{M}_{2}(\mathrm{Z})$ whose sum is not a zero divisors in $\mathrm{M}_{2}(\mathrm{Z})$.

Q2) a) Let $\mathrm{R}=\mathbb{Z}[i, j, k]$ be the ring of integral quaterntions. Then prove that the units in R is a group of order 8.
b) Let R be a commutative ring with 1 and I be an ideal in R . Then prove that R / I is a field if and only if I is maximal ideal in R.
c) Prove or dis prove $7-5 \sqrt{2}$ is unit in $\mathrm{Z}[\sqrt{2}]$.

Q3) a) Let R be a ring with 1 . Then prove that R is division ring if and only if (0) and R are the only left ideals in R .
[6]
b) Prove that product of two ideals of the same kind is again an ideal of the same kind.
c) Define local ring and give an example of non-local ring.

Q4) a) For $n \geq 2$, then prove that the ring $z / n z$ has no non-trivial nilpotent element if and only if n is square free.
b) Let I be an ideal in a ring R . Then prove that I is a 2 -sided ideal in R if and only if I is the kernel of some homomorphism $f: \mathrm{R} \rightarrow \mathrm{S}$ for a suitable rings.
c) State Chinese Remainder theorem for a commutative ring R with 1.

Q5) a) Prove that the ring $\operatorname{End}_{\mathrm{K}}(\mathrm{V})$ is a simple ring if and only if V is a finite dimensional vector space over the field K .
b) If I is a 2 -sided ideal of R , then prove that $\mathrm{I}[x]$ is a 2 -sided ideal of $\mathrm{R}[x]$ and also show that ring $[x / /[x]$ is naturally isomorphic to $(\mathrm{R} / \mathrm{I})[x]$.

Q6) a) Prove that every Euclidean domain is a principal ideal domain. What about converse?
b) Prove that the ring $\mathrm{Z}[i]$ of Gaussian integers is Euclidean domain.
c) With usual notations prove that $\sqrt{(9)}=\sqrt{(27)}=\sqrt{(3)}$.

Q7) a) For a commutative integral domain R with unity prove that the following are equivalent.
i) R is field.
ii) $\mathrm{R}[x]$ is Euclidean domain
iii) $\mathrm{R}[x]$ is PID
b) With usual notation show that $\frac{\mathrm{Q}[x]}{\left\langle 1+x^{2}\right\rangle} \cong \mathrm{Q}[i]$.
c) Prove or disprove The polynomial $x^{4}+1$ is irreducible over R .

Q8) a) Show that vector space is free module. [7]
b) State and prove schur's lemma for simple modules.

$\nabla \nabla \nabla \nabla$

SEAT No. : \square

[5828]-204

First Year. M. A./M. Sc.
MATHEMATICS

ADVANCED NUMERICAL ANALYSIS
 (CBCS 2019 Pattern) (Semester - II) (MTUT 124)

Time : 3 Hours]
[Max. Marks : 70
Instructions to the candidates:

1) Figures to the right indicate full marks.
2) Attempt any five questions.

Q1) a) Determine the corresponding rate of convergence for the function.

$$
\begin{equation*}
f(x)=\frac{\cos x-1+\frac{1}{2} x^{2}}{x^{4}} \tag{4}
\end{equation*}
$$

b) Let, f be a twice continuously differentiable function on the interval $[\mathrm{a}, \mathrm{b}]$ with $\mathrm{p} \in(\mathrm{a}, \mathrm{b})$ and $\mathrm{f}(\mathrm{p})=0$ further, suppose that $f^{\prime}(\mathrm{p}) \neq 0$ then, show that there exists a $\delta>0$ such that for $\mathrm{P}_{0} \in \mathrm{I}=[\mathrm{p}-\delta, \mathrm{p}+\delta]$ the sequence $\left\{\mathrm{P}_{\mathrm{n}}\right\}$ generated by Newton's method converges to P .
c) Use the secant method to determine P_{5}, the fifth approximation to root of $f(x)=x^{3}+2 x^{2}-3 x-1$ in $(1,2)$ with $\mathrm{P}_{0}=2, \mathrm{P}_{1}=1$.

Q2) a) The sequence listed below was obtained from fixed point iteration applied to the function $g(x)=e^{-x}$, which has a unique fixed point. Applying Aitken's Δ^{2} - method to the given sequence.
Find $\hat{\mathrm{p}}_{3}, \hat{\mathrm{p}}_{4}$ and $\hat{\mathrm{p}}_{5}$.

1	1.000000
2	0.3678794412
3	0.6922006276
4.	0.5004735006
5	0.6062435351

P.T.O.
b) Show that when Newton's method is applied to the equation $x^{2}-\mathrm{a}=0$, the resulting iteration function is $g(x)=\frac{1}{2}\left(x+\frac{a}{x}\right)$
c) Define :
i) Orthogonal Matrix
ii) Round off Error

Q3) a) Solve the following system of equations by using Gaussian elimination with scaled partial pivoting.

$$
\begin{aligned}
& 2 x_{1}+3 x_{2}+x_{3}=-4 \\
& 4 x_{1}+x_{2}+4 x_{3}=9 \\
& 3 x_{1}+4 x_{2}+6 x_{3}=0
\end{aligned}
$$

b) Show that the matrix $A=\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & 1 & 2 \\ -1 & 0 & 2\end{array}\right]$ has no LU decomposition.
c) Solve the following system by Jacobi method starting with vector $x^{(0)}=\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]^{\mathrm{T}}$ perform two iteration.

$$
\begin{aligned}
& 3 x_{1}+x_{2}=-1 \\
& -x_{1}+2 x_{2}+x_{3}=3 \\
& x_{2}+3 x_{3}=4
\end{aligned}
$$

Q4) a) Solve the following system of linear equations by SOR method, start with $x^{(0)}=\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]^{\mathrm{T}}$ and $w=0.9$ (perform 3 iteration)

$$
\begin{align*}
& 5 x_{1}+x_{2}+2 x_{3}=10 \tag{5}\\
& -3 x_{1}+9 x_{2}+4 x_{3}=-14 \\
& x_{1}+2 x_{2}-7 x_{3}=-33
\end{align*}
$$

b) Solve the following system of non-linear algebric equations by using Broyden's method start with $x^{(0)}=\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]^{\mathrm{T}}$ and (Perform 3 iteration) [5]

$$
\begin{aligned}
& x_{1}^{3}-2 x_{2}-2=0 \\
& x_{1}^{3}-5 x_{3}^{2}+7=0 \\
& x_{2} x_{3}^{2}-1=0
\end{aligned}
$$

c) Let A be an $n \times n$ matrix with eigenvalues λ_{1}, λ_{2}, __ λ_{n} and associated eigenvectors v_{1}, v_{2}, \qquad , v_{n}. then prove that, If $\mathrm{B}=a_{0} \mathrm{I}+a_{1} \mathrm{~A}+a_{2} \mathrm{~A}^{2}+\quad+\mathrm{a}_{\mathrm{m}} \mathrm{A}^{\mathrm{m}}=p(\mathrm{~A})$ where p is the polynomial $p(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+\mathrm{a}_{\mathrm{m}} x^{\mathrm{m}}$, then the eigen values of B are $p\left(\lambda_{1}\right), p\left(\lambda_{2}\right)$, \qquad , $p\left(\lambda_{\mathrm{n}}\right)$. With associated eigenvector v_{1}, v_{2}, \qquad ,v_{n}.

Q5) a) Use the QR factorization of a symmetric Tridiagonal Matrix.

$$
A=\left[\begin{array}{ccc}
4 & 3 & 0 \\
3 & 1 & -1 \\
0 & -1 & 3
\end{array}\right]
$$

Find the product $\mathrm{R}^{(0)} \mathrm{Q}^{(0)}$.
b) Define Householder matrix and show that it is symmetric and orthogonal.
c) For the following differential equation, identify the function $f(t, x)$ and calculate $\frac{d f}{d t}, \frac{d^{2} f}{d t^{2}} \cdot x^{1}=t^{2}-1-2 x^{2}$.

Q6) a) Derive the open Newton - cotes formula with $n=3$:

$$
\begin{aligned}
& \mathrm{I}(f) \approx \mathrm{I}_{3} \text {, open }(f)=\frac{b-a}{24}[11 f(a+\Delta x)+f(a+2 \Delta x)+f(a+3 \Delta x) \\
& +11 f(a+4 \Delta x)]
\end{aligned}
$$

b) Derive the following forward difference approximation for the second derivative : $f^{11}\left(x_{0}\right) \approx \frac{f\left(x_{0}\right)-2 f\left(x_{0}+h\right)+f\left(x_{0}+2 h\right)}{h^{2}}$
c) Show that: If f is continuous on [a, b], g is integrable on [a, b,] and $g(x)$ does not change sign on $[\mathrm{a}, \mathrm{b}]$, then there exist a number $\xi \in[\mathrm{a}, \mathrm{b}]$ such that, $\int_{a}^{b} f(x) g(x) d x=f(\xi) \int_{a}^{b} g(x) d x$.

Q7）a）Use Euler＇s method to solve initial value problem．

$$
\frac{d x}{d t}=t^{2}+x, 0 \leq t \leq 0.03, x(0)=1
$$

b）i）Solve the initial value problem．

$$
\frac{d x}{d t}=1+\frac{x}{t}, 1 \leq \mathrm{t} \leq 1.5, x(1)=1, h=0.25
$$

by using Taylor method of order $\mathrm{N}=2$ ．
ii）Solve the initial value problem．

$$
\frac{d x}{d t}=1+\frac{x}{t}, 1 \leq \mathrm{t} \leq 2, x(1)=1, \mathrm{~h}=0.5
$$

by using Taylor method of order $\mathrm{N}=4$ ．

Q8）a）Evaluate $\int_{-2}^{2} \frac{x}{5+2 x} d x$ by using Trapezoidal rule by dividing the interval ［－2，2］into five equal subintervals．
b）Define ：
i）Relative error
ii）Triangular Matrix
c）Derive the difference equation for the four－step Adams－Bash forth method ：
$\frac{w_{i+1}-w_{i}}{h}=\frac{55}{24} f\left(t_{i}, w_{i}\right)-\frac{59}{24} f\left(t_{i-1}, w_{i-1}\right)+\frac{37}{24} f\left(t_{i-2}, w_{i-2}\right)-\frac{9}{24} f\left(t_{i-3}, w_{i-3}\right)$

Also derive the associated truncation error ：$\tilde{\mathrm{L}}_{\mathrm{i}}=\frac{251 h^{4}}{720} y^{(5)}(\xi)$

煍 煍 煍

Time: 3 Hours]
[Max. Marks : 70 Instructions to the candidates:

1) Figures to the right side indicate full marks.
2) Attempt any 05 questions.

Q1) a) Show that the PDE's $f(x, y, z, p, q)=0$ and $g(x, y, z, p, q)=0$ are compatible .
b) Attempt the following.
i) Find the complete integral of the partial differential Equation $z=p x+q y+p^{2}+q^{2}$ by charpit's method.
ii) Show that the equations $x p=y q, z(x p+y q)=2 x y$ are compatible hence find its solution.

Q2) a) Explain charpits method for separable first order partial differential equation $f(x, p)=g(y, q)$
b) Attempt the following.
i) Obtain the PDE by eliminating the arbitrary constants 'a' and 'b' from $\log (a z-1)=x+a y+b$
ii) Solve $p^{2} x+q^{2} y=z$ by Jacobi's Method.

Q3) a) Prove that if $\alpha_{\gamma} D+\beta_{\gamma} D^{\prime}+\gamma_{\gamma}$ is a factor of $F\left(D, D^{\prime}\right)$ and $\phi_{r}(\xi)$ is an arbitrary function of the single variable ξ, then $u_{\gamma}=\exp \left(\frac{-\gamma_{\gamma} x}{\alpha_{\gamma}}\right)$ $\phi_{\gamma}\left(\beta_{\gamma} x-\alpha_{\gamma} y\right)$ for $\alpha_{\gamma} \neq 0$.
b) Attempt the following
i) Find the complementary function of the partial differential equation.

$$
\begin{equation*}
\frac{\partial^{3} z}{\partial x^{3}}-\frac{2 \partial^{3} z}{\partial x^{2} \partial y}-\frac{\partial^{3} z}{\partial x \partial y^{2}}+\frac{\partial^{3} z}{\partial y^{3}}=e^{x+y} \tag{4}
\end{equation*}
$$

ii) Solve $\left(D+D^{\prime}-1\right)\left(D+2 D^{\prime}-3\right) z=0$

Q4) a) Explain the method of second order partial differential $\mathrm{Rr}+\mathrm{Ss}+\mathrm{Tt}+\mathrm{f}(x, y, z, p, q)=0$ to a cannonical form if $\mathrm{S}^{2}-4 \mathrm{RT}>0$.
b) Attempt the following.
i) Reduce the equation

$$
\frac{\partial^{2} z}{\partial x^{2}}+2 \frac{\partial^{2} z}{\partial x \partial y}+\frac{\partial^{2} z}{\partial y^{2}}=0 \text { to a cannonical form and hence solve it.[5] }
$$

ii) Classify the PDE

1) $u_{x x}+2 u_{x y}+u_{y y}=0$
2) $3 u_{x x}+10 u_{x y}+3 u_{y y}=0$

Q5) a) Derive the Laplace equation of second order partial differential equation.
b) Attempt the following
i) Solve

$$
\begin{align*}
& \text { PDE }: \nabla^{2} u=0,0 \leq x \leq \mathrm{a}, 0 \leq \mathrm{y} \leq \mathrm{b} \\
& \mathrm{BCs}: u(x, b)=u(a, y)=0, u(0, y)=0, u(x, 0)=f(x) \tag{4}
\end{align*}
$$

ii) Find the complete integral of $u_{t}-3 u^{2} u_{x}=0$ with $u(x, 0)=\operatorname{Cos} x$.[4]

Q6) a) Derive the diffusion equation of second order differential equation.
b) Attempt the following.
i) Find by method of separation of variables the solution $u(x, t)$ of the boundary value problem. $u_{t}=3 u_{x x}, t>0,0<x<2, u(0, t)=0$,

$$
\begin{equation*}
u(2, t)=0, t>0, u(x, 0)=x, 0<x<2 \tag{6}
\end{equation*}
$$

ii) Find the characteristics of the partial differential equation

$$
\left(\sin ^{2} x\right) r+(2 \cos x) s-t=0
$$

Q7) a) Find the solution of one dimensional wave equation by cannonical reduction method.
b) Attempt the following
i) Solve the wave equation $u_{t t}=C^{2} u_{x x}$ where $u=P_{0} \cos p t\left(\mathrm{P}_{0}\right.$ is constant) when $x=l$ and $u=0$ when $x=0$.
ii) Find the complete integral of $z^{2}\left(1+p^{2}+q^{2}\right)=1$.

Q8) a) Find the steady state temperature distribution in the thin rectangular plate bounded by lines $x=0, x=\mathrm{a}, \mathrm{y}=0, y=\mathrm{b}$. The edges $x=0, x=\mathrm{a}, y=\mathrm{a}$, are kept at temperature zero while the edge $\mathrm{y}=\mathrm{b}$ is kept at $100^{\circ} \mathrm{C}$. [7]
b) A uniform rod 20 cm in length is instead over its sides. Its ends are kept at $0^{\circ} \mathrm{C}$ its initial temperature is $\sin \left(\frac{\pi x}{20}\right)$ at a distance ' x ' from an end, find temperature $u(x, t)$ at time 't', Given that $\frac{\partial u}{\partial t}=a^{2}\left(\frac{\partial^{2} u}{\partial x^{2}}\right)$.

MTUT - 131 : Functional Analysis

 (2019 Pattern) (Semester - III) (Credit System)
Time : 3 Hours]

[Max. Marks : 70

Instructions to the candidates:

1) Attempt any five of the following questions.
2) Figures to the right side indicate full marks.
3) Symbols have their usual meanings.

Q1) a) Give a definition of normed linear space. Define one norm on vector space \mathbb{R}^{2} Justify.
b) Let M be any closed linear subspace of normed linear space N. Define norm on \mathbf{N} / M by $\|x+\mathbf{M}\|=\operatorname{in} f\{\|x+m\|: m \in \mathbf{M}\}$. Show that \mathbf{N} / M is a normed linear space also, prove that if N is complete then N / M is a Banach space.
c) Consider a norm on \mathbb{R} given by $\|x\|=|x|$ for all $x \in \mathbb{R}$. Show that \mathbb{R} is a Banach space by showing \mathbb{R} is complete.

Q2) a) Let M be a linear subspace of normed linear space N , and Let f be a functional on M if $x_{0} \notin \mathrm{M}$ and $\mathrm{M}_{0}=\mathrm{M}+\left[x_{0}\right]$ then prove that f can be extended to a linear functional f_{0} such that $\left\|f_{0}\right\|=\|f\|$.
b) Let B and B^{\prime} be two Banach spaces and T is a continious linear transformation of B onto B^{\prime}. Then prove that image of each open sphere centred at origine in B contains an open sphere centred at origine in B^{\prime}.[7]

Q3) a) Let $\beta\left(\mathrm{N}, \mathrm{N}^{\prime}\right)$ be the set of all continious linear transformation of N into N^{\prime}. Prove that $\beta\left(N, N^{\prime}\right)$ is a normed linear space. Also, prove that if N^{\prime} is a complete then $\wp\left(\mathrm{N}, \mathrm{N}^{\prime}\right)$ is a Banach space.
b) State and prove the open mapping theorem.
c) Let $\mathrm{T}: \mathrm{N} \rightarrow \mathrm{N}$ be continious linear transformation.

Define $\mathrm{T}^{*}: \mathrm{N}^{*} \rightarrow \mathrm{~N}^{*}$ by $\mathrm{T}^{*}(f)=f \circ \mathrm{~T}$
Prove that $\|T *\| \leq\|T\|$.

Q4) a) Prove that a closed convex subset of Hilbert space H contains a unique vector of smallest norm.
b) Prove that for any two vector's x and y. In a Hilbert space H, $|\langle x, y\rangle| \leq\|x\| \cdot\|y\|$.
c) Let M be a proper closed linear subspace of a Hilbert space H. Prove that there exist's a non zero vector Z_{0} in H such that $\mathrm{Z}_{0} \perp \mathrm{H}$.

Q5) a) Prove that if M is a closed linear subspace of a Hilbert space H then $\mathrm{H}=\mathrm{M} \oplus \mathrm{M}^{\perp}$.
b) Let y be any fixed vector in H . define $f_{y}: \mathrm{H} \rightarrow \mathbb{F}$ by $f_{y}(x)=(x, y)$. Show that f_{y} is linear and continious.
c) Let T be any operator on H for which ($\mathrm{T}(x), x)=0$ for all $x \in \mathrm{H}$. Prove that T is identically zero function, that is $\mathrm{T}(x)=0, \forall x \in \mathrm{H}$.

Q6) a) Let H be a Hilbert space and let $f \in \mathrm{H}^{*}$ be an arbitrary functional. Prove that there exist's a unique vector y in H such that $f(x)=(x, y)$.
b) Prove that T is self adjoint operator on H if and only if $(\mathrm{T}(x), x)$ is real for all x.
c) If N_{1} and N_{2} are normal operator on H such that $N_{1} \circ N_{2}^{*}=N_{2}^{*} \circ N_{1}$ and $\mathrm{N}_{2} \circ \mathrm{~N}_{1}^{*}=\mathrm{N}_{1}^{*} \circ \mathrm{~N}_{2}$ then prove that $\mathrm{N}_{1}+\mathrm{N}_{2}$ is a normal operator.

Q7) a) Let $\mathrm{T}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be given by $\mathrm{T}(x, y, z)=(x, y+z, y)$. Find the matrix of T with respect to basis. $\mathrm{B}\{(1,1,1),(1,1,0),(1,0,0)\}$.
b) Let T be a normal operator. Prove that λ is an eigenvalue of T with eigenvector x if $f \bar{\lambda}$ is a eigenvalue of T^{*} with eigenvector x.
c) Let T be any arbitrary operator on H and N be a normal operator. Prove that if T commutes with N then T commutes with N^{*}.
d) Give a statement of open mapping theorem.

Q8) a) Let $\mathrm{B}=\left\{e_{i}\right\}$ be an ordered basis for Hilbert space H and [T] is a matrix of operator T on H relative to basis B. Prove that the mapping T $\rightarrow[\mathrm{T}]$ is a one-to-one homomorphism.
b) Let T be an operator on H . Prove that T is singular if and only if 0 is a eigenvalue of T .
c) Let M be closed linear subspace of H prove that M is invarient under T if and only if M^{\perp} is invarient under T^{*}.

๑๐(

\square

M.A./M.Sc.

MATHEMATICS
MTUT-132 : Field Theory (2019 CBCS Pattern) (Semester - III)

Time : 3 Hours]

[Max. Marks : 70
Instructions to the candidates:

1) Attempt any five questions of the following.
2) Figures to the right side indicate full marks.

Q1) a) If $\mathrm{P}(x)$ is an irreducible polynomial of degree ' n ' in $\mathrm{F}(x)$ and u is a root of $\mathrm{P}(x)$ in an extension E of F then prove that $\left\{1, u, u^{2}, \ldots \ldots ., u^{\mathrm{n}-1}\right\}$ forms a basis of $\mathrm{F}(u)$ over F . [7]
b) Show that every finite extension of a field F is algebraic.
c) Find the smallest extension of φ having a root $x^{4}-2 \in \mathrm{Q}[x]$.

Q2) a) Show that the polynomial $x^{5}-9 x+3$ is not solvable by radicals.
b) Show that doubling of a circle is not possible by using ruler and compass only.
c) Define radical extension of a field with example.

Q3) a) Let $\mathrm{E}=\mathrm{Q}(\sqrt[3]{2}, \omega)$ where $\omega^{3}=1, \omega \neq 1$, Let $\mathrm{G}=\{1, \sigma\}$ Where $1:\left\{\begin{aligned} \sqrt[3]{2} & \rightarrow \sqrt[3]{2} \\ \omega & \rightarrow \omega\end{aligned}\right.$ and $\sigma:\left\{\begin{aligned} \sqrt[3]{2} & \rightarrow \omega \sqrt[3]{2} \\ \omega & \rightarrow \omega 2\end{aligned}\right.$ are automorphism of E then find E_{G}.
b) Let F be field and E be a finite normal separable extension of F then prove that F is a fixed field of $G(E / F)$.
c) Find the degree of $\mathrm{Q}(\sqrt{2})$ over Q .

Q4) a) Show that the Galois Group of $x^{3}-2 \in \mathrm{Q}[x]$ is the group of symmetrices of the triangle.
b) State fundamental theorem of Galois theory.
c) Is C a normal extension of R?. Justify.

Q5) a) Let F be a field containing $\mathrm{n}^{\text {th }}$ root of unity and E be a finite cyclic extension of degree n over F then prove that E is the splitting field of an irreducible polynomial $x^{n}-a \in \mathrm{~F}[x]$.
b) Prove that every polynomial $f(x) \in \mathrm{Q}[x]$. factors into linear factor in C $[x]$.

Q6) a) Let E be an extension of a field F and $\alpha \in \mathrm{F}$ be algebraic element over F then prove that α is separable over F if and only if $F(\alpha)$ is separable extension of F .
b) Let $f(x) \in \mathrm{F}[x]$ be a polynomial of degree ≥ 1 and α as a root. Then prove that α is a multiple root of $f(x)$ if and only if $f^{1}(\alpha)=0$.

Q7) a) Show that the degree of extension of the spliting field of $x^{3}-2 \in \mathrm{Q}[x]$ is 6 .
b) Prove that a finite extension of a finite field is separable.
c) Show that $x^{p}-x-1$ is irreducible over $\mathbb{Z} \mathrm{p}$.

Q8) a) Show that every polynomial in $\mathrm{K}[x]$ is of degree \perp if K is algebraically closed.
b) If $f(x)=a_{0}+a_{1} x+\ldots \ldots \ldots+a_{\mathrm{n}-1} x^{\mathrm{n}-1}+x^{n} \in \mathbb{Z}[x]$ is a monic polynomial having α as a root in Q then prove that $\alpha \in \mathbb{Z} \& \alpha \mid a_{0}$.
c) If E is an extension of a field F and $[\mathrm{E}: \mathrm{F}]$ is prime then prove that there is no field properly between E and F .

(.) (๐) (๐)

[5828]-303
M.A./M.Sc. - II

MATHEMATICS

MTUT - 133: Programming with Python
 (2019 CBCS Pattern) (Semester - III)

Time : 2 Hours]

[Max. Marks : 35

Instructions to the candidates:

1) Figures to the right side indicate full marks.
2) Question 1 is compulsory.
3) Attempt any 2 questions from Q.2, Q. 3 and Q.4.

Q1) Attempt the following:
a) Explain any 3 features of Python. [3]
b) Explain the chronology of the development of Python. [3]
c) Does Python have data types? [1]

Q2) Attempt the following :
a) i) Write a Python program which accept positive integer and display wheather it is odd or not.
ii) Write a Python program to swap two numbers.
b) Write a note on conditional statements in Python with an example.

Q3) Attempt the following :
a) i) Write a note on string operators in Python.
ii) Explain the meaning of "Tuples are immutable".
b) Write a note on For loop in Python with an example.

Q4) Attempt the following :
a) i) Write a note on functions in Python.
ii) Explain minimum one difference between For loop and While loop
in Python.
b) Write a note on operator overloading in Python.

MTUTO 134 : Discrete Mathematics (2019 Pattern) (Semester - III) (Credit System)

Time : 3 Hours]

[Max. Marks : 70
Instructions to the candidates :

1) Attempt any five questions.
2) Figures to the right indicate full marks.

Q1) a) How many ways are there to pick two different cards from a standard 52 -card deck such that
i) the first card is an Ace and the second card is not a Queen?
ii) the first card is a spade and the second card is not a Queen?
b) Prove that the isomorphism relation defined on set of simple graphs is an equivalence relation.
c) Prove or disprove the following statement.
'If every vertex of a simple graph G has degree Z, then G is cycle.

Q2) a) What is the probability that an arrangement of $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}$ has a and b side by side?
b) If two vertices are nonadjacent in the petersen graph, then prove that they have exactly one common neighbour.
c) If every vertex of a graph G has degree at least Z, then prove that G contains a cycle.

Q3) a) Prove that a graph G is Eulerian if and only if it has at most one nontrivial component and its vertices all have even degree.
[7]
b) Show that number of partitions of an integer r as a sum of m positive integers is equal to the number of partitions of r as a sum of positive integers in which largest is m.
c) Find the coefficient of $\frac{x^{r}}{r!}$ in $\left(1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots \ldots .\right)^{n}$.

Q4) a) Find a recurrence relation for a_{n}, where a_{n} is the number of n-digit ternary sequences without any occurence of the sequence " 012 ".
b) Solve the following recurrence relation.

$$
a_{n}=3 a_{n-1}+4 a_{n-2}, a_{0}=1, a_{1}=1
$$

c) Prove that every graph has an even number of vertices of odd degree.[4]

Q5) a) State and prove Inclusion - Exclusion formula.
b) Let G be an n-vertex graph with $n \geq 1$. Prove that following statements are equivalent.
i) G is connected and has no cycles.
ii) G is connected and has $n-1$ edges.

Q6) a) How many 8-letter words using the 26-letter alphabet (letters can be repeated) either begin or end with vowel?
b) Prove that an X, Y - bigraph G has a matching that saturates X if and only if $|N(S)| \geq|S|$ for all $S \subseteq X$.
c) Find the adjacency matrix for the following graph.

Q7）a）Let T be a tree with average vertex degree a ．Determine $\mathrm{n}(\mathrm{T})$ in terms of a ．
b）Show by a combinatorial argument that
$\binom{n}{0}+\binom{n}{1}+\binom{n}{2}+\ldots .+\binom{n}{n}=2^{n}$
c）If the recurrence relation $a_{n}=\mathrm{C}_{1} a_{n-1}+\mathrm{C}_{2} a_{n-2}$ has a general solution $a_{n}=\mathrm{A}_{1} 3^{n}+\mathrm{A}_{2} 6^{n}$ ，where $\mathrm{A}_{1}, \mathrm{~A}_{2}$ are constants，then find C_{1} and C_{2} ．［4］

Q8）a）Find an exponenitial generating function with
i）$\quad a_{r}=\frac{1}{r+1}$
ii）$a r=r$ ！
b）Use Kruskal＇s algorithm to find the minimum spanning tree for the following weighted graph．

なかっ

[5828]-305
 M.A./M.Sc. (Mathematics)
 MTUTO 135 : MECHANICS
 (2019 Pattern) (Semester - III)

Time : 3 Hours]
[Max. Marks : 70
Instructions to the candidates:

1) Attempt any five questions.
2) Figures to the right indicate full marks.

Q1) a) Explain the principle of virtual work and derive D'Alembert equation of motion.
b) Determine the equation of motion of simple pendulum by using D'Alembert principle.
[5]
c) A particle is constrained to move on the plane curve $x y=\mathrm{C}$, where C is constant under gravity obtain Lagrangian and hence equation of motion.[4]

Q2) a) Show that the Lagrang equation of motion can also be written as

$$
\frac{\partial \mathrm{L}}{\partial t}-\frac{d}{d t}\left(\mathrm{~L}-\sum \dot{q}_{j} \frac{\partial \mathrm{~L}}{\partial q_{j}}\right)=0
$$

b) A particle of mass m is projected with initial velocity u at an angle α with the horizontal. Use Lagranges equation to describe the motion of the projectile.
c) Explain the following terms :
i) Linear Momentum
ii) Angular Momentum

Q3）a）Show that the two Lagrangians $L_{1}=(q+\dot{\mathrm{q}})^{2}, \mathrm{~L}_{2}=\left(\mathrm{q}^{2}+\dot{\mathrm{q}}^{2}\right)$ are equivalent．
b）Prove that if the force acting on a particle is conservative then the total energy is conserved．

Q4）a）Find the curve，which extremizes the functional
$\mathrm{I}(y(x))=\int_{0}^{\pi / 4}\left(y^{\prime \prime 2}-y^{2}+x^{2}\right) d x$
with conditions that $y(0)=0, y^{\prime}(0)=1, y(\pi / 4)=y^{\prime}(\pi / 4)=\frac{1}{\sqrt{2}}$
b）State Hamiltons principle for non conservative system and hence derive from it the Lagranges equation of motion for non conservative holonomic system．

Q5）a）Use Hamiltons principle to find the equation of motion of a simple pendulum．
b）what is Hamiltonian function？Derive the Hamilton＇s Canonical equation of motion from Hamiltonian function．

Q6）a）Write a note on Brachistochrone problem．
b）Deduce Newton＇s Second Law from Hamilton＇s principle．

Q7）a）Prove that field force motion is always motion in plane．
b）Prove Keplars Second Law of planetary motion．
c）Explain Principles of least action．

Q8）a）Show that the Lagranges equations are necessary conditions for the action to have stationary value．
b）Show that the geodesics on a right circular cylinder is a helix．

なかなか

[5828]-306
 M.A./M.Sc. (Mathematics) MTUTO 136 : Advanced Complex Analysis (2019 Pattern) (Semester - III) (CBCS)

Time : 3 Hours]
[Max. Marks : 70
Instructions to the candidates:

1) Attempt any five questions.
2) Figures to the right indicate full marks.

Q1) a) State and prove Morera's theorem.
b) Prove that $\int_{0}^{\infty} \frac{1-\cos x}{x^{2}} d x=\frac{\pi}{2}$.
c) Suppose that f is a holomorphic function in Ω^{+}that extends continuously to I and such that f is real-valued on I. Prove that there exists a function F holomorphic in all of Ω such that $\mathrm{F}=f$ on Ω^{+}. [4]

Q2) a) Prove that every non-constant polynomial $\mathrm{P}(\mathrm{Z})=a_{n} z^{n}+\ldots \ldots .+a_{0}$ with complex coefficients has a root in $\not \subset$.
b) i) If f and g are holomorphic in a region Ω and $f(z)=g(z)$ for all z in some sequence of distinct point with limit point in Ω then prove that $f(z)=g(z)$ throughout Ω.
ii) Show that the complex zeros of $\sin (\pi z)$ are exactly at the integers and each of order 1.
c) Show that $\int_{0}^{\infty} \frac{\sin x}{x} d x=\frac{\pi}{2}$.

Q3) a) If $f: \mathrm{U} \rightarrow \mathrm{V}$ is holomorphic and injective then prove that $f^{\prime}(z) \neq 0$ for all $z \in \mathrm{U}$.
b) Prove that $f(z)=z^{n}$ is a confornal map from the sector $\mathrm{S}=\left\{z \in \mathscr{C} \left\lvert\, 0<\arg (z)<\frac{\pi}{n}\right.\right\}$ to the upper half-plane.
c) Let V and U be open sets in $\not \subset$ and $\mathrm{F}: \mathrm{V} \rightarrow \mathrm{U}$ a holomorphic function. If $\mathrm{u}: \mathrm{U} \rightarrow \not \subset$ is a harmonic function, then prove that uoF is harmonic on V.

Q4) a) Let $\mathrm{F}: \mathbb{D} \rightarrow \mathbb{D}$ be holomorphic with $f(0)=0$.
Then prove the following :
i) $\quad|f(z)| \leq|z|$ for all $z \in \mathbb{D}$.
ii) If for some $z_{0} \neq 0$ we have $\left|f\left(z_{0}\right)\right|=\left|z_{0}\right|$, then f is a rotation.
iii) $\quad\left|f^{\prime}(0)\right| \leq 1$, and if equality holds, then f is a rotation.
b) Let $\mathrm{F}: \mathrm{H} \rightarrow \not \subset$ be a holomorphic function that satisfies $|\mathrm{F}(z)| \leq 1$ and $\mathrm{F}(i)=0$. Prove that $|F(z)| \leq\left|\frac{z-i}{z+i}\right|$ for all $z \in \mathbb{H}$.
c) Define automorphism and give one example.

Q5) a) State and prove Montel's theorem.
b) Prove that any two proper simply connected open subsets in ϕ are conformally equivalent.
c) State the Riemann mapping theorem.

Q6) a) Let z_{0} be a point on the unit circle and if $\mathrm{F}: \mathbb{D} \rightarrow \mathrm{P}$ is a conformal map, then prove that $\mathrm{F}(z)$ tends to a limit as z approaches z_{0} within the unit disc.
b) Show that the function $\int_{0}^{z} \frac{d \xi}{\sqrt{\xi(\xi-1)(\xi-\lambda)}}$, with $\lambda \in \mathbb{R}$ and $\lambda \neq 1$ maps the upper half-plane conformally to a rectangle, one of whose vertices is the image of the point at infinity.
c) Define the general Schwarz-Christoffel integral.

Q7) a) Prove that there exist complex numbers c_{1} and c_{2} so that the conformal map F of \mathbb{H} to p is given by $\mathrm{F}(z)=c_{1} \mathrm{~S}(z)+c_{2}$ where S is the SchwarzChristoffel integral.
b) If $F(z)=\int_{1}^{z} \frac{d \xi}{\left(1-\xi^{n}\right)^{2 / n}}$, then show that F maps the unit disc conformally onto the interior of a regular polygon with n sides and perimeter $2^{\frac{n-2}{n}} \int_{0}^{\pi}(\sin \theta)^{-2 / n} d \theta$.

Q8) a) Prove that the total number of poles of an elliptic function in p_{0} is always ≥ 2.
b) Show that the two series $\sum_{(n, m) \neq(0,0)} \frac{1}{(|n|+|m|)^{r}}$ and $\sum_{n+m T \in A^{*}} \frac{1}{|n+m T|^{r}}$ where A^{*} denote the lattice minus the origin, that is $\mathrm{A}^{*}=\mathrm{A}-\{(0,0)\}$, Converges if $r>2$.

\&\&\&

MATHEMATICS

MTUTO-137 : Integral Equations
(2019 Pattern) (Semester - III) (Credit System)
Time : 3 Hours]
[Max. Marks : 70
Instructions to the candidates:

1) Attempt any five questions.
2) Figures to the right indicate full marks.

Q1) a) Convert the volterra integral equation $u(x)=1+x+\int_{0}^{x}(x-t)^{2} u(t) d t$ to an equivalent initial value problem.
b) Convert the initial value problem $y^{\prime \prime \prime}-3 y^{\prime \prime}-6 y^{\prime}+5 y=0$ subject to the initial condition $y(0)=y^{\prime}(0)=y^{\prime \prime}(0)=1$ to an equivalent volterra integral equation.
c) Derive an equivalent Fredholm integral equation to the boundary value problem $y^{\prime \prime}(x)+y(x)=x, 0<x<\pi$ subject to the boundary conditions $y(0)=1, y(\pi)=\pi-1$.

Q2) a) Find the Taylor series generated by $f(x)=\cos x$ at $x=0$.
b) Solve the Fredholm integral equation
$u(x)=e^{3 x}-\frac{1}{9}\left(2 e^{3}+1\right) x+\int_{0}^{1} x+u(t) d t \quad$ using the modified decomposition scheme.
c) Solve the fredholm integral equation $u(x)=x^{2}+\int_{0}^{1} x t u(t) d t$ using the Adomian decomposition method.

Q3) a) Solve the Fredholm integral equation
$u(x)=\tan ^{-1} x+\frac{1}{2}\left(\ln 2-\frac{\pi}{2}\right) x+\int_{0}^{1} x u(t) d t \quad$ using the modified decomposition method.
b) Use the variational iteration method to solve the Fredholm integral equation $u(x)=x^{2}-\frac{x}{3}+\int_{0}^{1} x u(t) d t$.
c) Solve the following Fredholm integral equation by using the direct computation method $u(x)=e^{2 x}-\frac{1}{4}\left(e^{2}+1\right) x+\int_{0}^{1} x t u(t) d t$.

Q4) a) Solve the volterra integral equation $u(x)=4 x+2 x^{2}-\int_{0}^{x} u(t) d t$ by using the Adomian decomposition method.
b) Use the variational iteration method to solve volterra integral equation $u(x)=x+\int_{0}^{x}(x-t) u(t) d t$.
c) Solve the following volterra integral equation by using the series solution method $u(x)=1+2 \sin x-\int_{0}^{x} u(t) d t$.

Q5) a) Solve the following volterra integral equation
$u(x)=x^{2}+\frac{1}{12} x^{4}+\int_{0}^{x}(t-x) u(t) d t$ by converting it to an equivalent initial value problem.
b) Solve the following volterra integral equation by the successive substitution method $u(x)=\frac{x^{3}}{3!}+\int_{0}^{x}(x-t) u(t) d t$.

Q6) a) Find the solution of the volterra equation of the first kind $x e^{x}=\int_{0}^{x} e^{x-t} u(t) d t$.
b) Solve the following Fredholm integro-differential equation $u^{\prime}(x)=\cos x+\frac{x}{4}-\frac{1}{4} \int_{0}^{\pi / 2} x t u(t) d t, u(0)=0$.

Q7) a) Solve the following Fredholm integro-differential equation by using the variational iteration method
$u^{\prime}(x)=3-12 x+\int_{0}^{1} t u(t) d t, u(0)=1$.
b) Solve the following Fredholm integro-differential equation by converting it to a standard Fredholm integral equation $u^{\prime}(x)=1-\frac{x}{3}+x \int_{0}^{1} t u(t) d t, u(0)=0$.
c) Solve the following volterra integro-differential equation by using the series solution method $u^{\prime}(x)=1-2 x \sin x+\int_{0}^{x} u(t) d t, u(0)=0$.

OR

Q8) a) Solve the following volterra integro-differential equation by Adomian decomposition method

$$
\begin{equation*}
u^{\prime}(x)=2+\int_{0}^{x} u(t) d t, u(0)=2 \tag{5}
\end{equation*}
$$

b) Solve the following Abel's integral equation

$$
\begin{equation*}
\frac{\pi}{2}\left(x^{2}-x\right)=\int_{0}^{x} \frac{1}{\sqrt{x-t}} u(t) d t \tag{4}
\end{equation*}
$$

c) Solve the volterra integro-differential equation of the first kind

$$
\begin{equation*}
\int_{0}^{x}(x-t+1) u^{\prime}(t) d t=2 e^{x}-x-2, u(0)=1 \tag{5}
\end{equation*}
$$

みม\&

[5828] - 308
M.A./M.Sc. (Semester - III) MATHEMATICS

MTUTO 138 : Differential Manifolds
(2019 Pattern) (CBCS)
Time : 3 Hours]
[Max. Marks : 70
Instructions to the candidates:

1) Attempt any Five questions.
2) Figures to the right, indicate full marks.

Q1) a) Let W be a linear subspace of \mathbb{R}^{n} of dimension k. Then prove that there is an orthonormal basis for \mathbb{R}^{n} whose first k elements form a basis for W.
b) Let $x=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ a & b & c\end{array}\right]$
i) Find $X^{t r}$. X.
ii) Find $\mathrm{V}(x)$
c) Let $\mathrm{g}: \mathrm{A} \rightarrow \mathrm{B}$ be a diffeomorphism of open sets in \mathbb{R}^{k}. Let $\beta: \mathrm{B} \rightarrow \mathbb{R}^{n}$ be a map of class C^{r}; Let $\gamma=\beta(\mathrm{B})$ - let $\alpha=\beta$ og; then $\alpha: \mathrm{A} \rightarrow \mathbb{R}^{n}$ and $\gamma=\alpha(\mathrm{A})$. If $f: \gamma \rightarrow \mathbb{R}$ is a continuous function, then prove that f is integrable over γ_{β} if and only if it is integrable over γ_{α}; in this case
$\int_{\gamma_{\alpha}} f d v=\int_{\gamma_{\beta}} f d v$

Q2) a) Let A be open in \mathbb{R}^{k}; Let $f: \mathrm{A} \rightarrow \mathbb{R}$ be of class C^{r}; Let γ be the graph of f in \mathbb{R}^{k+1}, parametrized by the function $\alpha: \mathrm{A} \rightarrow \mathbb{R}^{k+1}$, given by $\alpha(x)=\left(x, f_{(x)}\right)$. Express $v\left(\gamma_{\alpha}\right)$ as an integral.
b) Let M be a manifold in \mathbb{R}^{n}, and Let $\alpha: \mathrm{U} \rightarrow v$ be a co-ordinate patch on M. If U_{0} is a subset of U that is open in U, then prove that the restriction of α to U_{0} is also a coordinate patch on M.
c) Let $\beta: 1 \mathrm{H}^{1} \rightarrow \mathbb{R}^{2}$ be the map $\beta(x)=\left(x, x^{2}\right)$; Let N be the image set of β. Show that N is a 1 -manifold in \mathbb{R}^{2}.

Q3) a) Let M be a k-manifold in \mathbb{R}^{n}, of class C^{r}. If $\partial \mathrm{M}$ is non empty, then prove that $\partial \mathrm{M}$ is a $k-1$ manifold without boundary in \mathbb{R}^{n} of class C^{r}.[5]
b) Prove that if the support of f can be covered by a single coordinate patch, the integral $\int_{M} f d v$ is well-defined, independent of the choice of co-ordinate patch.
c) Let M be a compact k-manifold in \mathbb{R}^{n}. Let $h: \mathbb{R}^{n} \rightarrow \mathbb{R}^{h}$ be an isometry; Let $\mathrm{N}=h(\mathrm{M})$. Let $\mathrm{f}: \mathrm{N} \rightarrow \mathbb{R}$ be a continuous function. Show that N is a k-manifold in \mathbb{R}^{n} and $\int_{\mathrm{N}} f d v=\int_{\mathrm{M}}(f o h) d v$.

Q4) a) Let v be a vector space with basis $a_{1}, \ldots \ldots \ldots, a_{n}$. Let $\mathrm{I}=\left(i_{1}, \ldots \ldots . i_{k}\right)$ be a k-tuple of integers form the set $\{1,2, \ldots \ldots, n\}$. Then prove that there is a unique k-tensor ϕ_{I} on V such that, for every k-tuple $\mathrm{J}=\left(j_{1}, \ldots \ldots, j_{k}\right)$ from the set $\{1,2, \ldots \ldots ., n\}, \phi_{\mathrm{I}}\left(a j_{1}, \ldots \ldots \ldots . a j_{k}\right)=\left\{\begin{array}{lll}0 & \text { if } & \mathrm{I} \neq \mathrm{J}, \\ 1 & \text { if } & \mathrm{I}=\mathrm{J} .\end{array}\right.$

Also show that tensors ϕ_{I} form a basis for $\mathrm{L}^{\mathrm{k}}(\mathrm{V})$.
b) \quad Let $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ be a linear transformation; Let $\mathrm{T}^{*}: \mathrm{L}^{\mathrm{k}}(\mathrm{W}) \rightarrow \mathrm{L}^{\mathrm{k}}(\mathrm{V})$ be the dual transformation. Then prove that
i) T^{*} is linear.
ii) $\quad \mathrm{T}^{*}(f \otimes g)=\mathrm{T}^{*} f \otimes \mathrm{~T}^{*} g$.
iii) If $\mathrm{S}: \mathrm{W} \rightarrow \mathrm{X}$ is a linear transformation, then $(\mathrm{SOT})^{*} f=\mathrm{T}^{*}(\mathrm{~S} * f)$.

Q5) a) Let f be a k - tensor on V ; Let $6, \mathrm{~T} \in \mathrm{Sk}$. Prove that the tensor f is alternating if and only if $f^{6}=(\operatorname{sgn} 6) f$ for all 6 . If f is alternating and if $v_{p}=v_{q}$ with $p \neq q$, then prove that $f\left(v_{1}, v_{2}, \ldots \ldots . v_{k}\right)=0$.
b) Let $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ be a linear transformation. If f is an alternating tensor on W , then prove that $\mathrm{T}^{*} f$ is an alternating tensor on v.
c) Is $f(x, y)=x_{1} y_{2}-x_{2} y_{1}+x_{1} y_{1}$ alternating tensors in \mathbb{R}^{4} ? Why?

Q6) a) Let $x, y, z \in \mathbb{R}^{5}$. Let
$\mathrm{G}(x, y)=x_{1} y_{3}+x_{3} y_{1}$
$\mathrm{F}(x, y, z)=2 x_{2} y_{2} z_{1}+x_{1} y_{5} z_{4}$.
Write AF and AG in terms of elementary alternating tensors. Express (AF) (x, y, z) as a function.
b) Let w be a k-form on the open set A of \mathbb{R}^{n}. Then prove that w is of class C^{r} if and only if its component functions b_{1} are of class C^{r} on A .
c) Let $r: \mathbb{R} \rightarrow \mathbb{R}^{n}$ be of class C^{r}. Show that the velocity of γ corresponding to the parameter value t is the vector $\gamma_{*}\left(t, e_{1}\right)$.

Q7) a) Let $\mathrm{A}=\mathbb{R}^{2}-0$; consider the 1-form in A defined the equation $w=(x d x+y d y) /\left(c x^{2}+y^{2}\right)$. Show that w is closed, also show that w is exact on A.
b) Let A be open in \mathbb{R}^{k}; Let $\alpha: \mathrm{A} \rightarrow \mathbb{R}^{n}$ be of class C^{∞}. If w is an l-form defined in an open set of \mathbb{R}^{n} containing $\alpha(\mathrm{A})$, then prove that $\alpha^{*}(d w)=d\left(\alpha^{*} w\right)$.
c) Define parametrized - manifold of dimension k and volume.

Q8) a) Let $k>1$. Let M be a compact oriented k-manifold in \mathbb{R}^{n}; give $\partial \mathrm{M}$ the induced orientation if $\partial \mathrm{M}$ is not empty. Let w be a $k-1$ form defined in an open set of \mathbb{R}^{n} containing M. Then prove that

$$
\int_{\mathrm{M}} d w=\int_{\partial \mathrm{M}} w
$$

b) Let M be a compact oriented k-manifold in \mathbb{R}^{n}; Let w be a k-form defined in an open set of \mathbb{R}^{n} containing M. Let λ be the scalar function on M defined by the equation $\lambda(p)=w(p)\left(\left(p ; a_{1}\right), \ldots \ldots .,\left(p ; q_{k}\right)\right)$, where $\left(\left(p ; q_{1}\right), \ldots \ldots . .,\left(p ; q_{k}\right)\right)$ is any orthonormal frame in the linear space $\mathrm{T}_{p}(\mathrm{M})$ belonging to its natural orientation. Then prove that λ is continuous, and $\int_{M} w=\int_{M} \lambda d v$.

$\nabla \nabla \nabla \nabla$

[5828]-401

M.A./M.Sc.

MATHEMATICS

MTUT141 : Fourier Series and Boundary Value Problems (2019 Pattern) (Credit System) (Semester - IV)

Time : 3 Hours]
[Max. Marks : 70
Instructions to the candidates:

1) Attempt any five questions.
2) Figures to the right indicate full marks.

Q1) a) Let f denote a function that is piecewise continuous on the interval $-\pi<x<\pi$ and periodic with period 2π on entire x axis. Then prove that Fourier series converges to the mean value $\frac{f\left(x_{1}+\right)+f(x-)}{2}$ of the one sided limits of f at each point $x(-\infty<x<\infty)$. Where both of the one sided derivatives $f_{R}^{\prime}(0) \& f_{L}^{\prime}(0)$ exists.
b) Find the Fourier cosine series for the function $f(x)=x^{4}(0<x<\pi)$. [5]
c) Prove or disprove all Fourier series are differentiable.

Q2) a) Let f denote a function such that
i) f is continuous on the interval $-\pi \leq x \leq \pi$
ii) $\quad f(-\pi)=f(\pi)$
iii) It's derivative f^{\prime} is piecewise continuous on the interval $-\pi<x<\pi$.

If $a_{n} \& b_{n}$ are the Fourier coefficients $a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x$

$$
\begin{align*}
& b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin n x d x \text { for } f, \text { then prove that the series } \\
& \sum_{n=1}^{\infty} \sqrt{a_{n}^{2}+b_{n}^{2}} \text { converges. } \tag{7}
\end{align*}
$$

b) Find the Fourier sine series for the function $f(x)=x\left(\pi^{2}-x^{2}\right)(0<x<\pi)$.
c) If $f(x)=\frac{e^{x}-1}{x}(x \neq 0)$, then find $f(0+)$ and $f_{R}^{\prime}(0)$.

Q3) a) Let f be a function that is piecewise continuous on the interval $-\pi<x<\pi$. Then prove that

$$
\begin{align*}
& \int_{-\pi}^{x} f(s) d s=\frac{a_{0}}{2}(x+\pi)+\sum_{n=1}^{\infty} \frac{1}{n}\left[a_{n} \sin n x-b_{n}[\cos n x+(-1)]^{n+1}\right] \\
& -\pi \leq x \leq \pi \tag{6}
\end{align*}
$$

b) Find the Fourier series on the interval $-\pi<x<\pi$ that corresponds to the function $f(x)=x+\frac{1}{4} x^{2}(-\pi<x<\pi)$
c) Obtain the Fourier cosine series on $0<x<c$ from the following series on $0<x<\pi$
$x^{2} \sim \frac{\pi^{3}}{3}+4 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}} \cos n x \quad 0<x<\pi$

Q4) a) Solve the following boundary value problem

$$
\begin{array}{ll}
\mathrm{u}_{x x}(x, y)+\mathrm{u}_{y y}(x, y)=0 & (0<x<\pi, 0<y<2) \\
\mathrm{u}_{x}(0, y)=\mathrm{u}_{x}(\pi, y)=0, & \mathrm{u}(x, 0)=0 \\
\mathrm{u}(x, 2)=f(x) & \tag{6}
\end{array}
$$

b) Solve the following boundary value problem

$$
\mathrm{u}_{t}(x, t)=k \mathrm{u}_{x x}(x, t)(0<x<\pi, t>0)
$$

$$
\begin{equation*}
\mathrm{u}(0, t)=0, \mathrm{u}(\pi, t)=0, \mathrm{u}(x, 0)=f(x) \tag{6}
\end{equation*}
$$

c) If L is the linear operator $\mathrm{L}=a^{2} \frac{\partial^{2}}{\partial x^{2}}-\frac{\partial^{2}}{\partial t^{2}}$ and $y_{n}=\sin \left(\frac{n \pi}{c}\right) x \cdot \cos \left(\frac{n \pi a}{c}\right) t$, then show that $\mathrm{Ly}_{n}=0(n=1,2, \ldots .$.

Q5) a) Solve the following boundary value problem

$$
\begin{align*}
& \rho^{2} u_{\rho \rho}(\rho, \phi)+\rho u_{\rho}(\rho, \phi)+u_{\phi \phi}(\rho, \phi)=0(1<\rho<b, 0<\phi<\pi) \\
& u(\rho, 0)=0, u(\rho, \pi)=0, \quad(1<\rho<b) \\
& u(1, \phi)=0, u(b, \phi)=u_{0}, \quad(0<\phi<\pi) \tag{7}
\end{align*}
$$

b) Solve the following boundary value problem

$$
\begin{align*}
& \mathrm{u}_{x x}(x, y)+\mathrm{u}_{y y}(x, y)=0(0<x<a, 0<y<b) \\
& \mathrm{u}(0, y)=0, \mathrm{u}(a, y)=0(0<y<b) \\
& \mathrm{u}(x, 0)=f(x), \mathrm{u}(x, b)=0(0<x<a) \tag{7}
\end{align*}
$$

Q6) a) Find the stedy temperatures $\mathrm{u}(\rho, \phi)$ in a thin disk $\rho \leq 1$, with insulated surfaces when it's edge $\rho=1$ is kept at temperatures $f(\phi)$. The variables $\rho \& \phi$ are polar co-ordinates \& 4 satisfies Laplaces equation $\nabla^{2} u=0$ i.e. $\rho^{2} u_{\rho \rho}(\rho, \phi)+\rho u_{\rho}(\rho, \phi)+u_{\phi \phi}(\rho, \phi)=0(0<\rho<1 u(1, \phi)=f(\phi))$ u \& it's first order partial derivatives $-\pi<\phi<\pi$) are continuous on the ray $\phi=\pi$.
b) If $\mathrm{X}(x) \& \mathrm{Y}(x)$ are eigen function's corresponding to the same eigenvalue of a regular Sturm-Liouville problem, then prove that $y(x)=c \mathrm{X}(x)$ where c is non zero constant.
c) Show that $\psi_{1}(x)=x$ and $\psi_{2}(x)=1-3 x^{2}$ are orthogonal on the interval $-1<x<1$.

Q7) a) Prove that the orthonormal set $\left\{\phi_{\mathrm{n}}(x)\right\}$ is complete in the space in which each function f has these properties :
[7]
i) $\quad f$ is continuous on the interval $-\pi \leq x \leq \pi$.
ii) $\quad f(-\pi)=f(\pi)$
iii) It's derivative f^{\prime} is piecewise continuous on the interval $-\pi<x<\pi$.
b) If $\phi_{0}(x)=\frac{1}{\sqrt{2 \pi}}, \phi_{2 n-1}(x)=\frac{1}{\sqrt{\pi}} \cos n x$,
$\phi_{2 n}(x)=\frac{1}{\sqrt{\pi}} \sin n x(n=1,2, \ldots \ldots \ldots .$.$) then show that the set \left\{\phi_{\mathrm{n}}(x)\right\}$
($n=0,1,2 \ldots$.) is orthonormal on the interval $-\pi<x<\pi$.
c) Show that each of the functions $y_{1}=\frac{1}{x}$ and $y_{2}=\frac{1}{1+x}$ satisfies the nonlinear differential equation $y^{\prime}+y^{2}=0$ Then show that the sum $y_{1}+y_{2}$ fails to satisfy that equation.

Q8) a) If λ_{m} and λ_{n} are distinct eigenvalues of the Sturm - Liouville problem. $\left[r(x) \mathrm{X}^{1}(x)\right]^{1}+[g(x)+\lambda \mathrm{P}(x)] \mathrm{X}(x)=0 \quad a<x<b$ under the condition $a_{1} \mathrm{X}(a)+a_{2} \mathrm{X}^{1}(a)=0, b_{1} \mathrm{X}(b)+b_{2} \mathrm{X}^{1}(b)=0$ then prove that corresponding eigen functions $\mathrm{X}_{m}(x)$ and $\mathrm{X}_{n}(x)$ are orthogonal with respect to weight function $p(x)$ on the interval $a<x<b$.
b) Find eigenvalues $\&$ normalized eigen function of Sturm-Liouville problem.
$\mathrm{X}^{\prime \prime}(x)+\lambda \mathrm{X}(x)=0, \mathrm{X}(0)=0, h \mathrm{X}(1)+\mathrm{X}^{\prime}(1)=0(h>0)$.
c) Solve the following boundary value problem.

$$
\begin{aligned}
& \mathrm{u}_{x x}(x, y)+\mathrm{u}_{y y}(x, y)=0 \quad(0<x<\pi, y>0) \\
& \mathrm{u}_{x}(0, y)=0, \mathrm{u}(\pi, y)=0 \quad(y>0) \\
& -\mathrm{Ku}_{y}(x, 0)=f(x) \quad(0<x<\pi) \text { where } \mathrm{K} \text { is positive constant. }
\end{aligned}
$$

$\nabla \nabla \nabla \nabla$

SEAT No. : \square

[5828]-402
 M.A/M.Sc.
 MATHEMATICS
 MTUT - 142 : Differential Geometry
 (2019 Pattern) (Credit System) (Semester - IV)

Time : 3 Hours]
[Max. Marks : 70
Instructions to the candidates:

1) Attempt any five questions.
2) Figures to right indicate full marks.

Q1) a) Let S be an n-surface in R^{n+1}, let $\alpha: \mathrm{I} \rightarrow \mathrm{S}$ be a parametrized curve in S , let $\mathrm{t}_{0} \in \mathrm{I}$ and let $\vec{v} \in \mathrm{~S}_{\alpha}\left(t_{0}\right)$. Prove that there exists a unique vector field $\overrightarrow{\mathrm{V}}$ tangent to S along α, which is parallel and has $\overrightarrow{\mathrm{V}}\left(t_{0}\right)=\vec{v}$.
b) Compute Weingarten Map of n-sphere $x_{1}^{2}+---+x_{n+1}^{2}=r^{2}, r>0$ oriented by inward unit normal vector field $\overrightarrow{\mathrm{N}}$.
c) Find and sketch the gradient field of the function $f\left(x_{1}, x_{2}\right)=x_{1}+x_{2}$.

Q2) a) Let $\mathrm{S} \subseteq \mathrm{R}^{n+1}$ be a connected n-surface in R^{n+1}. Prove that there exist on S exactly two smooth unit normal vector fields $\overrightarrow{\mathrm{N}}_{1}$ and $\overrightarrow{\mathrm{N}}_{2}$ with $\overrightarrow{\mathrm{N}}_{2}(p)=-\overrightarrow{\mathrm{N}}_{1}(p)$ for all $p \in \mathrm{~S}$.
b) Let S be the hyperboloid $-x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1$ oriented by the unit normal vector field $\mathrm{N}(p)=\left(p_{1} \frac{-x_{1}}{\|p\|}, \frac{x_{2}}{\|p\|}, \frac{x_{3}}{\|p\|}\right), p=\left(x_{1}, x_{2}, x_{3}\right) \in \mathrm{S}$ then find normal curvature of S at $p=(0,0,1)$.
c) Define term n-surface in R^{n+1} with an example.

Q3) a) State and Prove Lagranges Multiplier theorem.
b) Show that gradient of f at $p \in f^{-1}(c)$ is orthogonal to all vectors tangent to $f^{-1}(c)$ at p.
c) Show by example that set of vectors tangent at a point p of a level set need not in general be a vector subspace of R_{p}^{n+1}.

Q4) a) Let S be an oriented n-surface in R^{n+1} and let \vec{v} be a unit vector in Sp , $p \in \mathrm{~S}$. Show that there exists an open set $\mathrm{V} \subset \mathrm{R}^{n+1}$ containing p such that $\mathrm{S} \cap \mathrm{N}(\vec{v}) \cap \mathrm{V}$ is a plane curve. Also show that curvature at p of this curve is equal to normal curvature $k(\vec{v})$.
b) Show that for each $a, b, c, d \in \mathrm{R}$ the parametrized curve $\alpha(t)=(\cos (a t+b), \sin (a t+b), c t+d)$ is a geodesic in the cylinder $x_{1}^{2}+x_{2}^{2}=1$ in R^{3}.
c) Let $\overrightarrow{\mathrm{X}}$ be smooth vector field along the parametrized curve $\alpha: \mathrm{I} \rightarrow \mathrm{R}^{n+1}$ and f be smooth function along $\alpha(t)$. Prove that $(\dot{f} \overrightarrow{\mathrm{X}})=f^{\prime} \overrightarrow{\mathrm{X}}+f \overrightarrow{\mathrm{X}}$.

Q5) a) Find global parametrization of circle $\left(x_{1}-a\right)^{2}+\left(x_{2}-b\right)^{2}=r^{2}$.
b) Let S be an n-surface in R^{n+1}, oriented by unit normal vector field $\overrightarrow{\mathrm{N}}$. Let $p \in \mathrm{~S}$ and $\vec{v} \in \mathrm{~S}_{p}$. Then show that for every parametrized curve $\alpha: \mathrm{I} \rightarrow \mathrm{S}$ with $\alpha\left(t_{0}\right)=\vec{v}$ for some $\mathrm{t}_{0} \in \mathrm{I} \quad \ddot{\alpha}\left(t_{0}\right) \cdot \overrightarrow{\mathrm{N}}(p)=\mathrm{L}_{p}(\vec{v}) \cdot \vec{v}$
c) Let $f: U \rightarrow R$ be a smooth function, where $U \subset R^{n+1}$ is an open set and let $\alpha: I \rightarrow \mathrm{U}$ be a parametrized curve. Show that fo α is constant if and only if α is everywhere orthogonal to gradient of f.

Q6) a) Let S be a 2-surface in R^{3} and let $\alpha: \mathrm{I} \rightarrow \mathrm{S}$ be a geodesic in S with $\dot{\alpha} \neq 0$. Show that vector field $\overrightarrow{\mathrm{X}}$ tangent to S along α is parallel along α if and only if both $\|\overrightarrow{\mathrm{X}}\|$ and angle between $\overrightarrow{\mathrm{X}}$ and $\dot{\alpha}$ are constant along α. [5]
b) Let $\alpha(t)=(x(t), y(t))(t \in \mathrm{I})$ be a local parametrization of oriented plane curve C. Show that ko $\alpha=\frac{x^{\prime} y^{\prime \prime}-y^{\prime} x^{\prime \prime}}{\left(x^{\prime 2}+y^{\prime 2}\right)^{3 / 2}}$.
c) Show that $x_{1}^{2}+---+x_{n+1}^{2}=1$ is n-surface whenever $\left(x_{1},---, x_{n+1}\right) \neq(0,0,---0)$.

Q7) a) Let S be a compact oriented connected n-surface in R^{n+1} exhibited as a level set $f^{-1}(c)$ of a smooth function $f: \mathrm{R}^{n+1} \rightarrow \mathrm{R}$ with $\nabla f(p) \neq 0$ for all $p \in \mathrm{~S}$. Prove that Gauss Map Maps S onto unit sphere S^{n}.
b) Let $\eta=\frac{-x_{2}}{x_{1}^{2}+x_{2}^{2}} d x_{1}+\frac{x_{1}}{x_{1}^{2}+x_{2}^{2}} d x_{2}$ be the 1 -form on $\mathrm{R}^{2}-\{0\}$ and C denote the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ oriented by its inward normal and $\alpha:[0,2 \pi] \rightarrow \mathrm{C}$ defined by $\alpha(t)=(a \cos t, b \sin t)$ be parametric curve whose restriction to $[0,2 \pi]$ is one-one global parametrization of C , then find $\int_{\alpha} \eta$. Is η exact?

Q8) a) Prove that on each compact oriented n-surface S in R^{n+1}, there exists a point p such that the second fundamental form at p is definite.
b) Let $a, b, c \in \mathrm{R}$ be such that $a c-b^{2}>0$ then show that the maximum and minimum values of the function $g\left(x_{1}, x_{2}\right)=a x_{1}^{2}+2 b x_{1} x_{2}+c x_{2}^{2}$ on unit circle $x_{1}^{2}+x_{2}^{2}=1$ are of the form λ_{1}, λ_{2} where λ_{1}, λ_{2} are eigenvalues of Matrix $\left(\begin{array}{ll}a & b \\ b & c\end{array}\right)$.

$99^{980} 9$

\square

[5828]-403

M.A./M.Sc. MATHEMATICS

MTUT 143 : Introduction to Data Science (2019 Pattern) (Semester - IV)

Time : 2 Hours]
[Max. Marks : 35
Instructions to the candidates:

1) Figures to the right indicate full marks.
2) Question 1 is compulsory.
3) Attempt any two questions from Q.2, 3 and 4.

Q1) Define the term big data and mention all steps involved in the process of data science.
b) Describe data transformation process.
c) State details to be covered in a project charter.

Q3) a) What is machine learning? Where it is used in data science process? Give any two Pythol tools used in machine learning.
b) Write a short note on types of machine learning.
c) State problems occurring in handling large data.

Q4) a) Explain in detail concept of Hadoop and its Components. [5]
b) Write a short note on text mining and handling techniques to it.
c) Give packages in Python which are used for text mining.

[5828]-404
M.A./M.Sc.

MATHEMATICS

MTUTO 144 : Number Theory (2019 Pattern) (Semester - IV)
Time : 3 Hours]
[Max. Marks : 70
Instructions to the candidates:

1) Attempt any Five qustions.
2) Figures to the right indicates full marks.

Q1) a) Prove that every nonzero nonunit of an integral domain R is a product of irreducibles.
b) If a, b and c are integers such that a / bc and a, b both are relatively prime then show that a / c.
c) Show that $8 / n^{2}-1$, for any odd integer n.

Q2) a) Let $k[x]$ denotes ring of polynomials with coefficients in a field k and $f, g \in k[x]$. If $g \neq o$, then prove that there exist polynomials $h, r \in k[x]$ such that $f=h g+r$, where either $r=o$ or $r \neq o$ and $\operatorname{deg} \mathrm{r}<\operatorname{deg} \mathrm{g}$.
b) If x and y are odd, then prove that $x^{2}+y^{2}$ can not be a perfect square.[4]
c) Show that 2 is divisible by $(1+i)^{2}$ in $\mathbb{Z}[i]$.

Q3) a) If $a, b, m \in \mathbb{Z}$ and $m \neq o$ then prove that
i) $\bar{a}=\bar{b}$ if and only if $a \equiv b(\bmod m)$, where \bar{a}, \bar{b} are congruence class modulo m.
ii) $\quad \bar{a} \neq \bar{b}$ if and only if $\bar{a} \bigcap \bar{b}$ is empty.
iii) There are precisely m distinct congruence classes modulo m.
b) Find all primes q such that $\left(\frac{5}{q}\right)=-1$.

Q4) a) State and prove Eulers theorem.
b) If p is an odd prime then prove that $\left(\frac{a}{p}\right) \equiv a^{\left(\frac{p-1}{2}\right)}(\bmod p)$.
c) Find $\sigma(40), \phi(40)$.

Q5) a) If p and q are district odd primes, then prove that $\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=(-1)^{\left(\frac{p-1}{2}\right)\left(\frac{q-1}{2}\right)}$
b) Find all integers that satisfy the following congruences simultaneously:[5]

$$
\begin{aligned}
& x \equiv 1(\bmod 3) \\
& x \equiv 2(\bmod 4) \\
& x \equiv 3(\bmod 5)
\end{aligned}
$$

c) Show that $(a, a+2)=1$ or 2 for every integer a.

Q6) a) If $x \& y$ are any real numbers, then prove that.

> i) $\quad[x]+[y] \leq[x+y] \leq[x]+[y]+1$ and
> ii) $\quad\left[\frac{[x]}{m}\right]=\left[\frac{x}{m}\right]$ if m is a positive integer.
b) State and prove de polignac's formula.

Q7) a) Define a divisor function d. And if n is a positive integer then prove that $d(n)=\pi_{p^{\alpha} \mid n}(\alpha+1)$
b) If α is any algebraic number then prove that there is a rational integer b such that b α is an algebraic integer.
c) Find the smallest integer x for which $\phi(x)=6$.

Q8) a) If ξ is an algebraic number of degree n, then prove that every number in $Q(\xi)$ can be written uniquely in the form $a_{0}+a_{1} \xi+\ldots+a_{n-1} \xi^{n-1}$ where the ai are rational numbers.
b) If $F(n)=\sum_{d / n} f(d)$ for every positive integer n, then prove that

$$
\begin{equation*}
f(n)=\sum_{d / n} \mu(d) \mathrm{F}\left(\frac{n}{d}\right) \tag{5}
\end{equation*}
$$

c) Find the minimal polynomic of the algebraic number $\frac{1+\sqrt[3]{7}}{2}$.

0000

SEAT No. : \square
[5828]-405
M.A./M.Sc.

MATHEMATICS

MTUTO 145 : Algebraic Topology
(2019 Pattern) (CBCS) (Semester - IV)
Time : 3 Hours]
[Max. Marks : 70
Instructions to the candidates:

1) Attempt any Five questions.
2) Figures to the right indicate full marks.

Q1) a) Prove that the homotopy relation is an equivalence relation.
b) Show that if $h, h^{1}: x \rightarrow y$ are homotopic and $k, k^{1}: y \rightarrow z$ then koh and k'oh' are homotopic.
c) Given spaces X and Y. Let $[X, Y]$ denote the set of homotopy classes of Maps of X into Y. Let $\mathrm{I}=[0,1]$, show that for any X , the $[\mathrm{X}, \mathrm{I}]$ has single element.

Q2) a) A space X is said to be contractible if the identity map $\mathrm{Ix}: x \rightarrow x$ is nulhomotopic then show that I and \mathbb{R} contractible.
b) Let α be a path in x from x_{0} to x , define a map $\hat{\alpha}: \pi_{1}(\mathrm{X}, x.) \rightarrow \pi_{1}\left(\mathrm{X}, x_{1}\right)$ by $\hat{\alpha}([F])=[\bar{\alpha}] *[F] *[\alpha]$ then show that $\hat{\alpha}$ is a group homomorphism.[5]
c) Define the following term
i) Simply connected
ii) Star convex

Q3) a) Find the star convex set that is not convex.
b) Let α be a path in X from x_{0} to x_{1} Let β be a path in X from x_{1} to x_{2} Show that if $\gamma=\alpha * \beta$ then $\hat{\gamma}=\hat{\beta} o \hat{\alpha}$.
c) Define a covering map. Show that a covering map is a local homomorphism.

Q4) a) Give an example of a non identity covering map from S^{1} on to S^{1}.
b) Let $q: X \rightarrow Y$ and $r: Y \rightarrow Z$ be covering maps, Let $\mathrm{p}=$ roq. Show that $r^{-1}(z)$ is finite for each $z \in Z$, then P is covering map.
c) Prove that there is no retraction of B^{2} onto S^{1}.

Q5) a) Define the following terms.
i) Free group
ii) Wedge of the circles
b) If $G=G_{1} * G_{2}$ show that $\frac{G}{[G, G]} \cong\left(\frac{G_{1}}{\left[G_{1}, G_{1}\right]}\right) \oplus\left(\frac{G_{2}}{\left[G_{2}, G_{2}\right]}\right)$.
c) State Seifert - Van Kampen theorem.

Q6) a) Let X be the wedge of circle S_{α} for $\alpha \in \mathrm{J}$, then X is normal.
b) Show that if X is an infinite wedge of circles, then X does not satify the first countability axiom.
c) Prove that the fundamental group of the torus is a free abelian group of rank 2.

Q7) a) Find spaces whose fundamental group is isomorphic to the following groups.
i) $\mathrm{Zn} \times \mathrm{Zm}$
ii) $\mathrm{Zn} * \mathrm{Zm}$
b) Let $\pi: \mathrm{E} \rightarrow \mathrm{X}$ be a closed quotient map. If E is normal then so is X .
[6]

Q8) a) Let $\mathrm{P}: \mathrm{E} \rightarrow \mathrm{B}$ and $\mathrm{P}^{\prime}: \mathrm{E}^{\prime} \rightarrow \mathrm{B}^{\prime}$ be covering maps, Let $p\left(e_{0}\right)=p^{\prime}\left(e^{\prime} o\right)=b_{0}$. There is an equivalence $h: E \rightarrow E^{\prime}$ such that $h\left(e_{o}\right)=e_{o}^{\prime}$ if and only if the groups $\mathrm{H}_{\mathrm{o}}=p_{*}\left(\pi_{1}\left(E, e_{o}\right)\right)$ and $\mathrm{H}_{\mathrm{o}}^{\prime}=p_{*}^{\prime}\left(\pi_{1}\left(E^{\prime}, e_{o}^{\prime}\right)\right)$ are equal. If h exist, it is unique.
b) Show that if $\mathrm{n}>1$, every continous map $f: S^{n} \rightarrow S^{1}$ is nulhomotopic.[4]
c) Find a continous map of the torus into S^{1} that is not nulhomotopic.

000○

SEAT No. : \square

MTUTO - 146 : Representation Theory of Finite Groups (2019 Pattern) (Credit System) (Semester - IV)

Time: 3 Hours]
[Max. Marks : 70
Instructions to the candidates:

1) Attempt any five questions.
2) Figures to the right indicate full marks.

Q1) a) State and prove triangle inequality.
b) Verify whether following matrices are diagonalizable.
i) $A=\left[\begin{array}{lll}3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
ii) $\quad \mathrm{B}\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$
c) Define following terms :
i) Decomposable representation.
ii) Unitary representation.

Q2) a) Let $\varphi: G \rightarrow G L(v)$ be a unitary representation of a group then show that φ is either irreducible or decomposable.
b) Give an example of an indecomposible representation of Z which is not irreducible.
c) Show that $Z[L(G)]$ is a subspace of $L(G)$.

Q3) a) Prove that a representation ρ is irreducible if and only if $\left\langle X_{e}, Y_{\rho}\right\rangle=1$.
b) Let L be rectangular representation of G, then prove that the decomposition $L \sim d_{1} \varphi^{(1)} \oplus \mathrm{d}_{2} \varphi^{(2)} \oplus$ \qquad \oplus ds $\varphi^{(s)}$ holds
c) Show that the formula
$|\mathrm{G}|=\mathrm{d}_{1}^{2}+\mathrm{d}_{2}^{2}+$ \qquad $+\mathrm{ds}^{2}$ holds

Q4) a) Show that the set $B=\left\{\sqrt{d k} \varphi_{(i)}^{(k)} \mid 1 \leq(i . j) \leq d k\right\}$ is an orthonormal basis for L (G)
b) Prove that a finite group G is abelian if and only if it has $|\mathrm{G}|$ equivalence classes of irreducible representations.
c) Define following terms :
i) Character table
ii) Multiplicity

Q5) a) Prove that the set $\mathrm{L}(\mathrm{G})$ is a ring with addition taken pointwise and convolution as multiplication.
b) Prove that the map $\mathrm{T}=\mathrm{L}(\mathrm{G}) \rightarrow \mathrm{L}(\hat{\mathrm{G}})$ given by $\mathrm{T} f=\hat{f}$ is an invertible linear transformation.
c) Prove that the linear map $\mathrm{T}=\mathrm{L}(\mathrm{G}) \rightarrow \mathrm{L}(\hat{\mathrm{G}})$ given by $\mathrm{T} f=\hat{f}$ provides a ring isomorphism between (L(G), + ,*) and (L($\left.\hat{\mathrm{G}}),+{ }^{*}\right)$

Q6) a) Define the term completely reducible.
b) Write an example of irreducible representation.
c) Define Inner product space.
d) State and prove Kayley Hamiton theorem.
e) Show that $\varphi: \mathrm{Z}_{\text {/n }} \mathrm{Z} \rightarrow \mathrm{C}^{*}$ defined by $\varphi(\mathrm{m})=e^{\frac{2 \pi i m}{n}}$ is a representation.[4]

Q7) a) Prove that every representation of a finite group is completely reducible.[5]
b) Define $\varphi: \mathrm{R} \rightarrow \mathrm{T}$ by $\varphi(\mathrm{t})=\mathrm{e}^{2 \pi \mathrm{t}}$. Then prove that φ is unitary representation of the additive group of \mathbb{R}.
c) Let $\varphi: G \rightarrow G L(v)$ be a non zero representation of a finite group. Then prove that φ is either irreducible or decomposible.

Q8) a) Let the map $\mathrm{T}=\mathrm{L}(\mathrm{G}) \rightarrow \mathrm{L}(\hat{\mathrm{G}})$ is given by $\mathrm{T} f=\hat{f}$. Then prove that T is an invertible linear transformation.
b) Define the terms:

Fourier transform and convolution. Further state where the fourier transform of cyclic group is used?
c) Prove that the class function form the center of $L(G)$.

SEAT No. : \square

MATHEMATICS

MTUTO147 : Coding Theory (2019 Pattern) (Semester - IV) (Credit System)

Time : 3 Hours]
[Max. Marks : 70

Instructions to the candidates:

1) Attempt any five questions.
2) Figures to the right indicates full marks.

Q1) a) Prove that a code C is u - error-detecting if and only if $\mathrm{d}(\mathrm{c}) \geq \mathrm{u}+1$. [5]
b) For $S=\{101,111,010\} \subseteq \mathrm{F}_{2}^{3}$, find F_{2} - linear span $<\mathrm{S}>$ and its orthogonal compliment S^{\perp}.
[5]
c) Show that binary Hamming codes are perfect codes.

Q2) a) Let V be a vector space over F_{q}. If $\operatorname{dim}(\mathrm{V})=\mathrm{K}$ then prove that i) V has q^{k} elements.
ii) V has $\frac{1}{K!} \prod_{i=0}^{k-1}\left(q^{k}-q^{i}\right)$ different bases.
b) If $g(x)=(1+x)\left(1+x^{2}+x^{3}\right) \in \mathrm{F}_{2}(x) /\left(\mathrm{x}^{7}-1\right)$ is a generator polynomial of cyclic code C then find C and $\operatorname{dim}(\mathrm{C})$
c) Let C be a binary linear code with parity check matrix

$$
\mathrm{H}=\left[\begin{array}{lllll}
1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1
\end{array}\right]
$$

Find $d(C)$.

Q3) a) For an integer $\mathrm{q}>1$ and itegers n, d such that $1 \leq \mathrm{d} \leq \mathrm{n}$, Prove that

$$
\begin{equation*}
\frac{q^{n}}{\sum_{i=0}^{d-1}\binom{n}{i}(q-1)^{i}} \leq A_{q}(n, d) \tag{5}
\end{equation*}
$$

b) Construct the incomplete maximum likelihood decoding table for binary code $\mathrm{C}=\{000,001,010,011\}$
c) If C and D are two linear codes over F_{q} of same length then prove that $\mathrm{C} \cap \mathrm{D}$ is also a linear code over F_{q}.

Q4) a) If $\mathrm{C}=\{0000,1011,0101,1110\} \subseteq \mathrm{F}_{2}^{4}$ is a linear code then decode
i) $w=1101$
ii) $w=0111$ by using nearest neighbour decoding for linear code.
b) Let $g(x)$ be the generator polynomial of an ideal of $\mathrm{F}_{\mathrm{q}}(x) \mid\left(x^{n}-1\right)$. If degree of $g(x)$ is $n-k$ then prove that dimension of cyclic code corresponding to the ideal is K .
c) Is $\mathrm{C}=\{(0,1,1,2),(2,0,1,1),(1,2,0,1),(1,1,2,0)\} \subseteq \mathrm{F}_{3}^{4}$ cyclic code? Justify.

Q5) a) Let S be a subset of F_{q}^{n}. Prove that $\operatorname{dim}(<S>)+\operatorname{dim}\left(S^{\perp}\right)=n$.
b) Let $\mathrm{S}=\{0100,0101\} \subseteq \mathrm{F}_{2}^{4}$. Verify that $\left.\operatorname{dim}(<\mathrm{S}\rangle\right)+\operatorname{dim}\left(\mathrm{S}^{\perp}\right)=n$.
c) If q is a prime power then show that $\mathrm{B} q(n, n)=\mathrm{A} q(n, n)=q$.

Q6) a) Prove that for all integers $\gamma \geq 0$,. a sphere of radius γ in A^{n} contains exactly $\mathrm{V}_{q}^{n}(\gamma)$ vectors. where A is a alphabet of size $\mathrm{q}>1$.
b) Suppose that codewords from the binary code $\{000,100,111\}$ are being sent over a binary symmetric channel with crossover probability $\mathrm{P}=0.03$. Use maximum likelihood decoding rule to decode $\mathrm{w}=011$. [4]
c) Find dimension of the binary BCH code of length 15 with designed distance 3 generated by $g(x)=\operatorname{lcm}\left(\mathrm{M}^{(2)}(x), \mathrm{M}^{(3)}(x)\right)$

Q7) a) Find a generator matrix and a parity - check matrix for the linear code $\mathrm{C}=<\mathrm{S}>$ where $\mathrm{S}=\{110000,011000,001100,000110,000011\} \subseteq \mathrm{F}_{3}^{6}$.
b) Let C be an $\left[\mathrm{n}_{1} \mathrm{k}\right.$] - linear code over Fq with generator matrix G then prove that $\mathrm{V} \in \mathrm{C}^{\perp}$ if and only if $\mathrm{V} . \mathrm{G}^{\mathrm{T}}=0$.
c) Let $\mathrm{C}=\{00000000,11110000,11111111\} \subseteq \mathrm{F}_{2}^{8}$.

Exactly how many errors will C correct?

Q8) a) Let C be an (n, k, d) - linear code over finite field F_{q} then prove that i) Two cosets are either equal or they have empty intersection.
ii) For all $u, v \in F_{q}^{n}, u-v \in C$ if and only if u and v are in same coset.
b) Consider (7, 4, 3) - binary Hamming code with generator polynomial $g(x)=1+x^{2}+x^{3}$ and received word $w=1011100$. Decode w.
[7]

SEAT No. :

MTUTO-148: Probability and Statistics (2019 Pattern) (Semester - IV) (Credit System)

Time : 3 Hours]

[Max. Marks : 70
Instructions to the candidates:

1) Attempt any Five questions.
2) Figures to the right indicate full marks.
3) Use of scientific calculator is allowed.

Q1) a) Attempt following:
i) State Baye's theorem.
ii) Define conditional probability of an event.
b) One bag contains 4 white balls and 3 black balls and second bag contains 3 white balls and 5 black balls. One ball is drawn from the first bag and placed unseen in the second bag. What is the probability that a ball now drawn from second bag is black?
c) Suppose that the error in the reaction temperature in ${ }^{\circ} \mathrm{C}$ for a controlled laboratory experiment is continuous random variable X having the probability density function

$$
f(x)= \begin{cases}\frac{x^{2}}{3} & -1<x<2 \\ 0 & \text { elsewhere }\end{cases}
$$

i) Verify that $f(x)$ is a density function
ii) Find $\mathrm{P}(0<x \leq 1)$

Q2) a) Prove that the covariance of two random variables X and Y with means μ_{x} and μ_{y} respectively is given by $\sigma_{x y}=\mathrm{E}(\mathrm{XY})-\mu_{x} \mu_{y}$.
b) The fraction X of male runners and the fraction Y of female runners who complete in Marathon races are described by the joint density function.

$$
f(x, y)=\left\{\begin{array}{cc}
8 x y & 0 \leq y \leq x \leq 1 \tag{5}\\
0 & \text { elsewhere }
\end{array}\right.
$$

c) Suppose that the number of cars X that pass through the car wash between 4.00 p.m. to 5.00 p.m. on Friday has the following probability distribution.

x	4	5	6	7	8	9
$\mathrm{P}(x)$	$1 / 12$	$1 / 12$	$1 / 4$	$1 / 4$	$1 / 6$	$1 / 6$

Let $g(x)=2 x-1$ represent the amount of money paid to the attendant by the manager. Find the attendants expected earning for this particular time period.

Q3) a) Prove that the mean and variance of a variable following the geometric distribution are $\mu=\frac{1}{p}$ and $\sigma^{2}=\frac{1-p}{p^{2}}$.
b) A home owner plants 6 bulbs selected at random from a box containing 5 tulip bulbs and 4 daffodil bulbs. What is the probability that he planted two daffodil bulbs and 4 tulip bulbs.
c) On average, 3 traffic accidents per month occur at a certain intersection. What is the probability that in any given month at this intersection.
i) Exactly five accidents will occur
ii) At least two accidents will occur

Q4) a) Prove that the mean and variance of $n(x ; \mu, \sigma)$ are μ and σ^{2} respectively. Further show that the Standard deviation is σ.
b) Suppose that a system contains a certain type of component whose time in years, to failure is given by T . The random variable T is modelled nicely by the exponential distribution with mean time to failure $\beta=5$. If 5 of these components are installed in different systems, what is the probability that at least 2 are still functioning at the end of 8 years. [5]
c) Given that X has a normal distribution with $\mu=300$ and $\sigma=50$. Find the probability that X assumes the value greater than 362 .

Q5) a) Prove that an unbiased estimate of σ^{2} is $\mathrm{S}^{2}=\frac{\mathrm{S} y y-b_{1} 5 x y}{n-2}$.
b) Compute and interpret the correlation coefficient for the following data.

Mathematics grade	English grade
70	74
92	84
80	63
74	87
65	78
83	90

c) The life in years, of a certain type of electrical switch has an exponential distribution with an average life $\beta=2$. If 100 of these switches are installed in different systems. What is the probability that at most 30 fail during the first years.

Q6) a) A manufacturing firm employes three analytical plans for the design and development of a particular product. For cost reasons, all three are used at varying times. In fact plant 1,2 , and 3 are used for $30 \%, 20 \%$ and 50% of the products respectively. The defect rate is different for 3 procedures as follows. $\mathrm{P}\left(\mathrm{D} \mid \mathrm{P}_{1}\right)=0.01, \mathrm{P}\left(\mathrm{D} \mid \mathrm{P}_{2}\right)=0.03, \mathrm{P}\left(\mathrm{D} \mid \mathrm{P}_{3}\right)=0.02$ where $\mathrm{P}\left(\mathrm{D} \mid \mathrm{P}_{i}\right)$ is the probability of the defective product given plan i. If a random product was observed and found to be defective, which plan was observed most likely used and thus responsible.
b) If $X_{1}, X_{2}, \ldots . X_{n}$ are mutually independent random variables that have respectively Chisquared distributions with $\mathrm{V}_{1}, \mathrm{~V}_{2}, \ldots, \mathrm{~V}_{n}$ degrees of freedom then prove that the random variable $\mathrm{Y}=\mathrm{X}_{1}+\mathrm{X}_{2}+\ldots .+\mathrm{X}_{n}$ has a Chi squared distribution with $\mathrm{V}=\mathrm{V}_{1}+\mathrm{V}_{2}+\ldots .+\mathrm{V}_{n}$ degrees of freedom.
c) In how many ways can 7 graduates be assigned to one triple and two double hotel rooms during a conference.

Q7) a) Let X and Y be two random variable with moment generating functions $\mathrm{M}_{x}(t)$ and $\mathrm{M}_{y}(t)$ respectively. If $\mathrm{M}_{x}(t)=\mathrm{M}_{y}(t)$ for all values of t then prove that X \& Y have the same probability distribution.
b) Show that the moment generating function of a random variable X having normal probability distribution with mean μ and variance σ^{2} is given by $\mathrm{M}_{x}(t)=e^{\left(\mu t+\frac{1}{2} \sigma^{2} t^{2}\right)}$.
c) A group of 10 individuals is used for a biological case study. The group contains 3 people with blood type 0 , 4 with blood type A, 3 with blood type B. What is the probability that a random sample of 5 will contain 1 person with blood type 0,2 people with blood type A and two people with blood type B.

Q8) a) Prove that mean and variance of gamma distribution are $\mu=\alpha \beta$ and $\sigma^{2}=\alpha \beta^{2}$.
b) What are the implications of a transformed model.
c) In an National Basketball Association NBA championship series, the team that wins 4 games out of seven is the winner. Suppose that teams A and B face each other in the championship games and that team A has probability 0.55 of winning a game over team B.
i) What is the probability that team A will win the series in 6 games?
ii) What is the probability that team A will win the series?

