P250

SEAT No. :

[Total No. of Pages : 3

[5828]-101 M.A./M.Sc.

MATHEMATICS

MTUT 111 : LINEAR ALGEBRA (2019 Pattern) (Credit System) (Semseter - I)

Time : 3 Hours]

[Max. Marks : 70

Instructions to the candidates:

- 1) Attempt any five questions.
- 2) Figures to the right side indicate full marks.
- *Q1*) a) Prove that, a linear transformation $T \in L(V, V)$ is invertible if and only if T is one to one and onto. [7]
 - b) Let $S \in L(V, V)$ be given by [4] $S(u_1) = u_1 + u_2$ $S(u_2) = -u_1 - u_2$ Where, $\{u_1, u_2\}$ is a basis for V. i) Find the rank and nullity of s.
 - ii) Check S is invertible or not
 - c) Test the linear transformation T : $R_3 \rightarrow R_2$ defined by the system of equation $y_1 = x_1 2x_2 + x_3$ $y_2 = x_1 + x_3$

Determine whether the system T is one to one. [3]

- **Q2)** a) If s is a subspace of V containing the vectors a_1, \dots, a_m , then every linear combination of a_1, \dots, a_m belongs to s. [6]
 - b) Let A, B, C be points in R_2 . Then prove that $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$. [4]
 - c) Determine whether the following set of points are vertices of parallelogram or not [4] $\langle 0,0\rangle, \langle 1,1\rangle, \langle 4,2\rangle, \langle 3,1\rangle$

Q3) a) State and prove the cauchy-schwarz Inequality. [4]

- b) For vectors $a = \langle \alpha_1, \alpha_2 \rangle$, $b = \langle \beta_1, \beta_2 \rangle$ Define their inner product [3] (a, b) = $\alpha_1 \beta_1 + \alpha_2 \beta_2$ Show that, the inner product satisfies the following
 - i) (a, b) = (b, a)
 - ii) (a, b + c) = (a, b) + (a, c)

P.T.O.

c) Show that, the functions fn (x) = sin nx, n = 1, 2, form an orthonormal set in the vector space $c([-\pi, \pi])$ of continuous real valued functions on the closed interval $[-\pi, \pi]$ with respect to the inner product

$$(f \cdot g) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cdot g(x) dx$$

for continuous functions f,
$$g \in c([-\pi, \pi])$$
 [7]

- Q4) a) Let V be the vector space over F and suppose there exist non-zero linear transformations $\{E_1, \dots, E_s\}$ in L(V, V) such that the following conditions are satisfied. [7]
 - i) $1 = E_1 + E_2 + \dots + E_s$ ii) $E_i E_j = E_j E_i = 0$, if $i \neq j$, $1 \le i, j \le s$ Then show that, $E_i^2 = E_i$, $1 \le i \le s$ and V is the direct sum

 $V = E_1 V \oplus E_2 V \oplus \dots \oplus E_s V$ and each subspace $E_i V$ is different from zero. [7]

- b) Let T be linear transformation on a vector space over the complex number such that
 - $T(v_1) = v_1 + 2v_2$

$$\Gamma(v_2) = 4v_1 + 3v_2$$

Where $\{v_1 = (1, 0), v_2 = (0, 1)\}$ is a basis for the vector space then find

- i) Characteristic polynomial of T.
- ii) Minimal polynomial of T.
- iii) Characteristic roots of T.
- iv) Characteristic vector of T.
- *Q5*) a) Let U and V be finite dimensional vector spaces over F. Let $S_1, S_2 \in L(U,U)$ and Let $T_1, T_2, \in L(V_1V)$ Then prove that, [5] $(S_1 \otimes T_1) (S_2 \otimes T_2) = S_1S_2 \otimes T_1 T_2$
 - b) Find the perpendicular distance from the point (1, 5) to the line passing through the points (1, 1) and (-2, 0) by using Gram schmidt process.[6]
 - c) Find the rational canonical form over the field of rational numbers of matrix A,

where
$$A = \begin{bmatrix} 2 & -1 \\ 1 & -1 \end{bmatrix}$$
 [3]

- **Q6)** a) Let V be a vector space over a field F and let Y be a subspace of V. Then prove that, the relation \Re on the set V defined by $v\Re v'$ if $v-v' \in Y$ is an equivalence relation. [6]
 - b) Let $T \in L(V_1 V)$, let $\{V_1, \dots, V_n\}$ be a basis of V and $\{f_1, \dots, f_n\}$ the dual basis of V*, Let A be the matrix of T with respect to the basis $\{V_1, \dots, V_n\}$. Then prove that, the matrix of T* with respect to the basis $\{f_1, \dots, f_n\}$ is the transpose matrix ^tA. [6]

c) If
$$f(x_1, x_2) = x_1^2 - 6x_1x_2 - 5x_2^2$$

Find symmetric matrix A whose quadratic equation is $f(x_1, x_2)$. [2]

- **Q7)** a) If V be a vector space over an algebraically closed field F, then prove that every irreducible invariant subspace w relative to $T \in L(V, V)$ has dimension1. [5]
 - b) Compute $(A_1 \times B_1)(A_2 \times B_2)$ [5]

where,
$$\mathbf{A}_1 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \mathbf{B}_1 = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$$

$$\mathbf{A}_2 = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \mathbf{B}_2 = \begin{pmatrix} -1 & 0 \\ 1 & 0 \end{pmatrix}$$

c) Define an Unitary transformation

Show that,
$$A = \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix}$$

is unitary matrix

- Q8) a) Let T be an invertible linear transformation on a vector space V over C with Hermition scalar product then prove that T can be expressed in the form T = US, where S is positive and U is unitary. [7]
 - b) Let T be a normal transformation on V. Then prove that, there exist common characteristic vectors for T and T'. For such a vector v, Tv = av and $T'v = \overline{a}v$ [4]
 - c) Test the matrix $A = \begin{pmatrix} 2 & 1 \\ 0 & -1 \end{pmatrix}$ is similar to diagonal matrix in M₂(R). If

so, find the matrix D and S such that $D = S^{-1}AS$. [3]

[5828]-101

3

[4]

P251

[5828]-102 M.A./M.Sc. MATHEMATICS MTUT 112 : Real Analysis (CBCS) (2019 Pattern) (Semseter - I)

Time : 3 Hours]

[Max. Marks : 70

[Total No. of Pages : 3

SEAT No. :

Instructions to the candidates:

- 1) Attempt any five questions.
- 2) Figures to the right indicate full marks.
- Q1) a) i) Let f and g are measurable functions on E. Prove that $f \cup g$ and $f \cap g$ are measurable. [4]
 - ii) Prove that countable set has outer measure zero. [3]
 - b) i) Let f be a Lipschitz function on [a, b] show that f is of bounded variation of [a, b] and $T_v(f) \le c (b-a)$. Where $|f(u) f(v)| \le c|u-v|$, for all u, v in [a, b]. [4]
 - ii) Let f be a function defined on [0, 1] as

$$f(x) = \begin{cases} x \sin\left(\frac{\pi}{x}\right) &, & \text{if } 0 < x \le 1 \\ 0 &, & \text{if } x = 0 \end{cases}$$

show that f is not of bounded variation

[3]

- Q2) a) Prove that any set E of real numbers with positive outer measure contains a subset that fails to be measurable. [7]
 - b) Let $\{E_k\}_{k=1}^{\infty}$ is any countable collection of sets which are disjoint or not,

then prove that
$$m^*\left(\bigcup_{k=1}^{\infty} E_k\right) \le \sum_{k=1}^{\infty} m^*(E_k)$$
 [7]

P.T.O.

- *Q3*) a) Let f be a simple function defined on E. Then prove that for each $\in > 0$, there is a continuous function g on \mathbb{R} and a closed set F contained in E for which $f \equiv g$ on F and $m(E \sim F) < \in$. [7]
 - b) Let the function f have a measurable domain E, then the following statements are equivalent. [7]
 - i) For each real number c the set $\{x \in E/f(x) > c\}$ is measurable.
 - ii) For each real number c, the set $\{x \in E/f(x) \ge c\}$ is measurable.
 - iii) For each real number c, the set $\{x \in E/f(x) \le c\}$ is measurable.
- *Q4*) a) Let the function f be monotone on the closed, bounded interval [a,b]. Then prove that f is absolutely continuous on [a,b] if and only if

$$\int_{a}^{b} f' = f(b) - f(a)$$
 [7]

b) Define,
$$f(x) = \begin{cases} x^2 \cos\left(\frac{1}{x^2}\right), & \text{if } x \neq 0, \\ 0, & \text{if } x = 0, \quad x \in [-1, 1] \end{cases}$$

Is f of bounded variation on [-1,1]? Justify. [7]

Q5) a) Let $\{E_k\}_{k=1}^{\infty}$ is a countable disjoint collection of measurable sets then prove that $\bigcup_{k=1}^{\infty} E_k$ is also measurable and $m\left(\bigcup_{k=1}^{\infty} E_k\right) = \sum_{k=1}^{\infty} m(E_k)$. [7]

- b) Let $\{f_n\}_{n=1}^{\infty}$ be an increasing sequence of continuous functions on [a, b] to function f on [a, b]. Show that $\{f_n\}_{n=1}^{\infty}$ converges uniformly on [a, b]. [7]
- Q6) a) Let f be an extended real valued function on E. [7]
 - i) If f is measurable on E and f = g almost every where on E. Prove that g is measurable.
 - ii) For a measurable subset D of E, prove that f is measurable on E if and only if the restrictions of f to D and E ~ D are measurable.
 - b) Define an absolutely continuous function. With a suitable example prove that the function *f* is absolutely continuous but not Lipschitz's on closed and bounded interval. [7]

- **Q7)** a) Let the function f be continuous on the closed, bounded interval [a, b]. The family of divided difference functions ${\rm Diff}_{h}^{f}_{0 < h \le 1}$ is uniformly integrable over [a, b] then prove that f is absolutely continuous on [a, b]. **[7]**
 - b) Let A and B are any two disjoint subsets of \mathbb{R} . Show that m* (A \cup B) = m*(A) + m*(B). [7]
- Q8) a) Prove that the Cantor set C is closed, uncountable set of measure zero.[7]

b) Let E be a measurable set of finite outer measure. For each $\in > 0$ there is a finite disjoint collection of open intervals $\{I_k\}_{k=1}^{\infty}$ if $\theta = \bigcup_{k=1}^{n} I_k$ then

prove that $m^* (E \sim \theta) + m^* (\theta \sim E) \ge \epsilon$. [7]

Total No. of Questions : 8]

P252

SEAT No. :

[Total No. of Pages : 3

[5828]-103

M.A./M.Sc. (Semester - I) MATHEMATICS MTUT 115 : Ordinary Differential Equations (2019 Pattern) (CBCS)

Time : 3 Hours]

[Max. Marks : 70

Instructions to the candidates :

- 1) Figures to the right indicate full marks.
- 2) Attempt any five questions.

Q1) Attempt the following :

a) i) Show that the function $\phi(x) = \frac{2}{3} + e^{-3x}$ is the solution of the equation y' + 3y = 2. [2]

ii) Show that every solution of the equation $x^2y' + 2xy = 1$ on $(0, \infty)$ tends to zero as $x \to \infty$. [5]

b) Explain the method of solving the equation y' + ay = b(x), where *a* is constant and b(x) is continuous function. [7]

Q2) a) i) Show that $\phi(x) = e^{-ax} \int_{x_0}^x e^{at} b(t) dt$ is a solution of the equation y' + ay = b(x). [3]

- ii) If $\phi(x)$ is the solution of the equation y' + iy = x such that $\phi(0) = 2$ then find $\phi(\pi)$. [4]
- b) Solve the equation Ly' + Ry = E where L, R and E are constants. Also show that every solution of it tends to E/R as $x \to \infty$. [7]

P.T.O.

- **Q3**) a) Show that by Formal substitution $Z = y^{1-k}$ transforms the equation $y' + \alpha(x)y = \beta(x)y^k$ into $Z' + (1-k)\alpha(x)Z = (1-k)\beta(x)$. Hence Find all the solutions of $y' 2xy = xy^2$. [7]
 - b) Show that every solution of the constant coefficient equation $y'' + a_1 y' + a_2 y = 0$ tends to 0 as $x \to \infty$ if and only if the real parts of the roots of the characteristics polynomial are negative. [7]
- **Q4)** a) Compute W(ϕ_1, ϕ_2, ϕ_3) (x) at a point x = 0 for the function $\phi_1 = e^x, \phi_2 = xe^x$ and $\phi_3 = x^2e^x$. [7]
 - b) If φ(x) is a function having continuous derivative on [0, ∞) such that φ'(x) + 2φ(x) ≤ 1, ∀x ε [0,∞) and φ(0) = 0. Then show that φ(x) < 1/2 for x ≥ 0. [7]
- **Q5**) a) Find solution of the equation $y'' y' 2y = e^{-x}$. [7]
 - b) i) Compute three linearly independent solutions of the equation y''' 4y' = 0. [3]
 - ii) Find the solution of the initial value problem

$$y'' + (1 + 4i)y' + y = 0$$
 with $y(0) = 0 = y'(0)$ [4]

- Q6) a) Explain the method for solving non-homogeneous equation with constant co-efficient of order n. [7]
 - b) Define Wronskian of ϕ_1 , ϕ_2 . Hence, show that two solutions ϕ_1 and ϕ_2 of $y'' + a_1 y' + a_2 y = 0$ are linearly independent on an interval I if and only if $W(\phi_1, \phi_2) \neq 0$, $\forall x \in I$. [7]
- Q7) a) Explain the method of reduction of order for solving n^{th} order homogeneous equation. [7]
 - b) Show that $\phi_1(x) = |x|^i$ and $\phi_2(x) = |x|^{-i}$ are linearly independent solutions of the equation $x^2y'' + xy' + y = 0$. [7]

- **Q8)** a) Explain the variable separable method for first order differential equation y' = F(x, y). [7]
 - b) Show that the function $\phi(x) = \frac{y_0}{1 y_0 (x x_0)}$ which passes through the point (x_0, y_0) is a solution of the equation $y' = y^2$. [7]

Total No. of Questions : 8]

P253

SEAT No. :

[Total No. of Pages : 3

[5828]-104

M.A./M.Sc. (Semester - I) MATHEMATICS MTUT 114 : Advance Calculus (2019 Pattern)

[Max. Marks : 70

Instructions to the candidates :

Time : 3 Hours]

- 1) Figures to the right indicate full marks.
- 2) Attempt any five questions.
- **Q1**) A) If the derivative f'(a + ty:y) exist, for each t in the interval $0 \le t \le 1$. Then show that for some real θ in the open interval $0 < \theta < 1$, [6] we have,

F(a + y) - F(a) = F'(z : y), where $z = a + \theta y$

- B) Evaluate the directional derivative of the scaler field F $(x, y, z) = x^2 + 2y^2 + 3z^2$ at point (1, 1, 0) in the direction of $\overline{i} - \overline{j} + 2\overline{k}$. [4]
- C) Determine the set of point (x, y) at which function f is continuous, where $\begin{bmatrix} x^2 \end{bmatrix}$

$$F(x,y) = \tan\left(\frac{x^2}{y}\right).$$
 [4]

Q2) A) A particle of Mass m moves along a curve under the action of a force field \overline{F} . If the speed of the particle at time t is $\overline{v}(t)$, it's kinetic energy is defined to be $\frac{1}{2}m\overline{v}^2(t)$. Prove that, the change in kinetic energy in any time interval is equal to the work-done by \overline{F} during this time interval.[6]

- B) Find the gradient vector of the function $F(x, y, z) = \log (x^2 + 2y^2 3z^2)$. [4]
- C) Make a sketch to describe the level set corresponding to given values of C for $f(x, y) = x^2 + y^2$, C = 0, 1, 4, 9 [4]

P.T.O.

- **Q3)** A) If A_1, A_2 are open subset of \mathbb{R} , then prove that $A_1 \times A_2$ is open subset of \mathbb{R}^2 . [6]
 - B) Calculate the line integral of the vector field \overline{F} along the path described.

$$F(x, y, z) = (y^2 - z^2)\overline{i} + 2yz \overline{j} - x^2k$$
, along the

path
$$\overline{\alpha}(t) = t\overline{i} + t^2 \overline{j} + t^3 \overline{k}, \ 0 \le t \le 1$$
 [4]

C) Give any two basic properties of line integral. [4]

Q4) A) Prove that, if \overline{T} denotes unit tangent vector, then $\int \overline{f} \cdot d\overline{\alpha} = \int \phi \, ds \, .$ [6]

B) Find the amount of work done by the force, $f(x, y) = (x^2 - y^2)\overline{i} + 2x y \overline{j}$ in moving a particle (in counterclockwise direction) once around these square bounded by the coordinate axes and the line x = a and y = a, a > 0. [8]

- **Q5)** A) Prove that, if ϕ be real-valued function that is continuous on an interval [a, b]. Then the graph of ϕ has content zero. [6]
 - B) Evaluate $\iiint_{s} xyz \, dx \, dy \, dz$, [8]

where S = {(x, y, z) /
$$x^2 + y^2 + z^2 \le 1, x \ge 0 \ y \ge 0, z \ge 0$$
}

Q6 A) Determine the region S and interchange the order of integration [6]

$$\int_{0}^{1} \left[\int_{x^2}^{x} F(x, y) \, dy \right] dx$$

B) Use Green's theorem to evaluate the line integral $\oint_C y^2 dx + x dy$, when C is the square with vertices (0, 0), (2, 0), (2, 2), (0, 2) [4]

C) Define simply connected plane set. [4]

Q7) A) If r and R be smoothly equivalent function related by equation R (s, t) = r[G(s, t)], where $G = u\overline{i} + v\overline{j}$ is a one to one continuously differentiable mapping of a region B in the st plane onto a region A in the uv-plane. Then show that [6]

$$\frac{\partial R}{\partial s} \times \frac{\partial R}{\partial t} = \left(\frac{\partial r}{\partial u} \times \frac{\partial r}{\partial v}\right) \frac{\partial(u, v)}{\partial(s, t)}$$

Where, the partial derivatives $\frac{\partial r}{\partial u}$ and $\frac{\partial r}{\partial v}$ are to be evaluated at point (U(s, t), V(s.t)).

- B) Define:
 - i) Curl \overline{F}
 - ii) Div \overline{F} , for vector field \overline{F}
- C) Write any two methods of representation of surface and explain it. [4]
- (Q8) A) Prove that, Fundamental vector product is normal to the surface. [6]
 - B) Determine whether or not a vector field $\overline{F}(x, y) = 3x^2 y\overline{i} + x^3 y\overline{j}$ is gradient on any open subset of \mathbb{R}^2 . [4]
 - C) Let $T : \mathbb{R}^n \to \mathbb{R}^n$ be a given linear transformation compute the derivative F'(x; y) for the scaler field defined on \mathbb{R}^n by the equation F(x) = x.T(x).[4]

くうん

[4]

P254

[5828]-105 M.A./M.Sc.

MATHEMATICS

MTUT113 : Group Theory

(2019 Pattern) (Semester - I) (Credit System)

Time : 3 Hours]

[Max. Marks : 70

Instructions to the candidates:

- 1) Attempt any five questions.
- 2) Figures to the right indicate full marks.
- *Q1*) a) Define a subgroup of a group G. Let H be a non-empty subset of G. Prove that H is a subgroup of G if and only if for $a, b \in H, ab^{-1} \in H$. [5]
 - b) Let G be a group and 'a' be an element of G of order n in G. Prove that

$$\langle a^k \rangle = \langle a^{g.c.d(n,k)} \rangle$$
 and $|a^k| = \frac{n}{g.c.d(n,k)}$ where k is a positive integer.

- [5]
- c) Prove that a group G is Abelian if and only if $(ab)^{-1} = a^{-1}b^{-1}$ for all a, b in G. [4]
- **Q2)** a) Let G be a finite group. Prove that the number of elements of order d is a multiple of $\varphi(d)$. [5]
 - b) Let S be a finite set and σ denote a permutation of S. Prove that $\sigma = \alpha_1 \alpha_2 \dots \alpha_n$. Where $\alpha_1, \alpha_2 \dots \alpha_n$ are disjoint cycles. [5]
 - c) Let $\alpha = (1 \ 2) \ (4 \ 5)$ and $\beta = (1 \ 6 \ 5 \ 3 \ 2)$ be permutations in S₆. Compute each of the following : [4]
 - i) α^{-1}
 - ii) βα
 - iii) αβ

SEAT No. :

[Total No. of Pages : 3

- Q3) a) Prove that every group is isomorphic to a group of permutations. [5]
 - b) Let G be a group and Aut (G) denote the automorphisms of G then prove that Aut(G) is a group. [5]
 - c) Let \mathbb{R}^+ be the group of positive real numbers under multiplication. Show that the mapping $\phi(x) = \sqrt{x}$ is an automorphism of \mathbb{R}^+ . [4]
- Q4) a) State and prove Lagrange's theorem. [5] b) Let H and K be two subgroups of a group G define $HK = \{hk|h \in H, k \in K\}$, prove that $|HK| = \frac{|H||K|}{|H \cap K|}$. [5]
 - c) Let $G = \{(1), (132), (465), (78), (132), (465), (123), (456), (123), (456), (78), (78)\}$. Find the following : [4]
 - i) $\operatorname{orb}_{G}(1)$, $\operatorname{stab}_{G}(1)$
 - ii) $\operatorname{orb}_{G}(2), \operatorname{orb}_{G}(2)$

Q5)	a)	Let G and H be finite cyclic group, prove that $G \oplus H$ is cyclic if and or if $ G $ and $ H $ are relatively prime.	nly [5]
	b)	Prove that a group of order 4 is isomorphic to \mathbb{Z}_4 or $\mathbb{Z}_2 \oplus \mathbb{Z}_2$.	[5]
	c)	Find all subgroups of order 3 in $\mathbb{Z}_9 \oplus \mathbb{Z}_3$.	[4]
Q6)	a)	Let G be a group and $Z(G)$ denote the center of G, prove that $G/Z(G)$. Inn(G) where Inn(G) – inner automorphism of G.) ≈ [5]
	b)	Prove that if H is a subgroup of G having index 2 in G then H is norm in G.	nal [5]
	c)	Prove that an Abelian group of order 33 is cyclic.	[4]
Q7)	a)	State and prove first isomorphism theorem.	[5]
	b)	Let φ be a group homomorphism from G to \overline{G} then prove that K φ - kernel of φ is a normal subgroup of G.	Ker [5]
	c)	Determine all group homomorphism from \mathbb{Z}_{12} to \mathbb{Z}_{30} .	[4]

- *Q8*) a) If G is a group of order pq, where p,q are primes p<q, and p does not divide q-1, then prove that G is cyclic and $G \approx \mathbb{Z}_{pq}$. [5]
 - b) Let G be a group of order 99. Then prove that $G \approx \mathbb{Z}_{99}$ or $G \approx \mathbb{Z}_3 \oplus \mathbb{Z}_{33}$ [5]
 - c) Show that $cl(a) = \{a\}$ if and only if $a \in Z(G)$, where Z(G) is center of group G and cl(a) denote conjugacy class of $a \in G$. [4]

жжж

P255

SEAT No. :

[Total No. of Pages : 3

[5828]-201

M.A./M.Sc.

MATHEMATICS

MTUT-121 : Complex Analysis

(2019 Pattern) (Semester - II) (Credit System)

Time : 3 Hours]

[Max. Marks : 70

1) Attempt any five questions.

Instructions to the candidates:

- 2) Figures to the right indicate full marks.
- *Q1*) a) If $f: A \to \mathbb{C}$, $g: B \to \mathbb{C}$, $f(A) \subset B$ and $Z_0 \in A$. Suppose that $f'(Z_0)$ and $g'(f(Z_0))$ exist then show that $(gof)'(Z_0)$ exists and $(gof)'(Z_0) = g'(f(Z_0)) \cdot f'(Z_0)$. [5]
 - b) Let Z_1, Z_2 be the complex numbers. Then prove the following results. [5]
 - i) $|z_1 + z_2| = |z_1|^2 + |z_2|^2 + 2\text{Re}(z_1\overline{z}_2)$
 - ii) $|z_1 + z_2|^2 + |z_1 z_2|^2 = 2(|z_1|^2 + |z_2|^2)$
 - iii) $|z_1 + z_2| \le |z_1| + |z_2|$
 - c) Identify the real and imaginary parts of the complex number $z = (1 + i)^4 + (1 i)^4$. [4]
- **Q2)** a) Let U be an open set in \mathbb{R}^3 and $f: U \to \mathbb{R}$ be a function having partial derivatives which are continuous at (x_0, y_0) . Then show that *f* is frechet differentiable at (x_0, y_0) . [5]
 - b) Let $f(x,y) = \frac{x-y}{x+y}$ for $(x, y) \neq (0, 0)$. Show that two iterated limits

exists but are not equal. Does $\lim_{(x,y)\to(0,0)} f(x,y)$ exists? [4]

- c) Use Cauchy Riemann equations to determine whether the function $f(z) = \operatorname{Re}(z)$ is complex differentiable for $z \in \mathbb{C}$ or not. [3]
- d) Compute the value of the integral $\int_{\omega} x dz$ where ω is the line segment from 0 to 1 + i. [2]

P.T.O.

Q3) a) Let f be a continuous function in a region Ω and complex differentiable in $\Omega \setminus A$, where A is discrete subset of Ω . Let T be a triangle completely

contained in
$$\Omega$$
. Then show that $\int_{\partial T} f(z) dz = 0$. [5]

b) Let *f* be a complex differentiable in a region Ω . Then prove that *f* has complex derivatives of all order in Ω . More over if D is a disc whose closure is contained in Ω and *z* belongs to interior of D then for all

integers $n \ge 0$ prove that $f^{(n)}(z) = \frac{n!}{2\pi i} \int_{\partial D} \frac{f(\xi)}{(\xi - z)^{n+1}} d\xi$ where ∂D

[5]

denotes the boundary of the disc.

- c) Evaluate $\int_{C} \frac{\sin z}{z+3i} dz$ where C : |z-2+3i| = 1 traversed in counter clockwise direction. [4]
- Q4) a) Let $f: \Omega \to \mathbb{C}$ be a non constant complex differentiable function on a domain Ω . Then prove that there does not exists any point $w \in \Omega$ such that $|f(z)| \le |f(w)| \forall z \in \Omega$. [5]
 - b) Let C be a circle |z| = 3 traced in the counterclockwise sense for any z

with
$$z \neq 3$$
 let $g(z) = \int_{C} \frac{2w^2 - w - 2}{w - z} dw$. Prove that $g(2) = 8\pi i$. Find $g(4)$. [4]

c) Is the function
$$f(z) = \frac{z^2 + 1}{z(z-1)}$$
 meromorphic? Why? [3]

- d) Find the value of the integration $\int_{C} \frac{e^{az}}{z} dz$. Where C is the unit circle traversed in counterclockwise direction. [2]
- Q5) a) Let f be a nonzero holomorphic function in a domain Ω and $a \in \Omega$ be a zero of f of order k. Then prove that there is a unique holomorphic function ϕ in a neighbourhood of a such that $\phi(a) \neq 0$ and $f(z) = (z-a)^k \cdot \phi(z) \forall z \in \Omega$. [5]
 - b) Prove that a nonconstant holomorphic function on an open set is an open mapping. [5]
 - c) Compute the residues at all singular points of the function $f(z) = \frac{5}{(z^2 1)^2}.$ [4]

- **Q6**) a) Let Ω be a holomorphic function on $A(r_1, r_2)$ Let $r_1 < \rho_1 < \rho_2 < r_2$. Then for $\rho_1 < |z| < \rho_2$, show that $f(z) = \frac{1}{2\pi i} \int_{|w|=\rho_2} \frac{f(w)}{w-z} dw - \frac{1}{2\pi i} \int_{|w|=\rho_1} \frac{f(w)}{w-z} dw$. [5]
 - b) Obtain the Laurent series expansion for the function $f(z) = \frac{1}{1-z}$ for the region A = {z / |z 2| > 1 }. [5]
 - c) Find the function f(z) to evaluate the improper integral $\int_{-\infty}^{\infty} \frac{\cos 3x}{(x^2+1)^2} dx$ by using the complex method. [4]

(Q7) a) Find the value of the integral
$$\int_0^\infty \frac{2x^3 - 1}{x^4 + 5x^2 + 4} dx$$
. [7]

b) Show that
$$\int_{0}^{2\pi} \frac{d\theta}{1+a\sin\theta} = \frac{2\pi}{\sqrt{1-a^2}}, -1 < a < 1$$
. [7]

- (Q8) a) Let $f : \mathbb{D} \to \overline{\mathbb{D}}$ be a holomorphic function such that f(0) = 0 then prove that $|f(z)| \le |z|$ and $|f'(0) \le 1$. Further prove that the following conditions are equivalent. [6]
 - i) there exists $Z_0 \neq 0$ with $|z_0| < 1$ and $|f(z_0)| = |z_0|$
 - ii) |f'(0)| = 1.
 - iii) f(z) = cz for some |c| = 1.
 - b) Let f, g be holomorphic in an open set containing the closure D of a disc D and satisfy the inequality |f(z) g(z)| < |g(z)| ∀z∈∂D then show that f and g have same number of zeros inside c. [5]
 - c) Find the Cauchy's principal value of $\int_{-\infty}^{\infty} \frac{e^{iax}}{1-x} dx$ for H : |z| < 1. [3]

\mathfrak{RRR}

SEAT No. :

P256

[Total No. of Pages : 3

[5828] - 202

M.A./M.Sc. (Mathematics) MTUT - 122 : GENERAL TOPOLOGY (2019 Pattern) (Semester - II) (Credit System)

Time : 3 Hours]

[Max. Marks : 70

Instructions to the candidates :

- 1) Attempt any Five questions.
- 2) Figures to the right, indicate full marks.
- **Q1**) a) Let A be a set. prove that there is no injective map $f: p(A) \to A$ and there is no surjective map $g: A \to p(A)$. [6]
 - b) Let B be a nonempty set. Then show that the following are equivalent :[4]
 - i) B is countable.
 - ii) There is surjective function $f: \mathbb{Z}_{\perp} \to \mathbf{B}.$
 - iii) There is an injective function

 $g: \mathbf{B} \to \mathbb{Z}_+$

- c) Show that there is bijective correspondence of $A \times B$ with $B \times A$. [4]
- **Q2**) a) Show that the topologies of \mathbb{R}_{l} and \mathbb{R}_{k} are strictly finer than the standard topology on \mathbb{R} , but are not comparable with one another. [6]
 - b) Consider the following topologies on \mathbb{R} :
 - τ_1 = the standard topology,
 - τ_2 = the topology of \mathbb{R}_k ,
 - τ_3 = the finite complement topology,
 - τ_4 = the upper limit topology having all sets (a, b] as basis,

 τ_5 = the topology having all sets $(-\infty, a) = \{x \mid x < a\}$ as basis.

Determine, for each of these topologies, which of the others it contains.[4]

c) Show that the order topology on the set $X = \{1,2\} \times \mathbb{Z}_+$ in the dictionary order is not the discrete topology. [4]

P.T.O.

- Q3) a) Let x be an ordered set in the order topology; let y be a subset of x that is convex in y. Then show that the order topology on y is the same as the topology y inherits as subspace of x.
 - b) If $\{\tau_{\alpha}\}$ is a family of topologies on x, show that $\bigcap_{\alpha} \tau_{\alpha}$ is a topology on x. Is $\bigcap_{\alpha} \tau_{\alpha}$ is topology on x? Justify. [4]
 - c) Let A be a subset of the topological space x; let A' be the set of all limit points of A. Then show that $\overline{A} = A \bigcup A'$. [4]
- Q4) a) Show that every simply ordered set is a Hausdorff space in the order topology. The product of two Hausdorff spaces is a Hausdorff space. A subspace of a Hausdorff space is a Hausdorff space.
 - b) Let ρ: X → Y be a quotient map. Let Z be a space and let g: X → Z be a map that is constant on each set ρ⁻¹({y}), for y ∈ Y. Then show that g induces a map f: YX → Z such that fog = g. The induced map f is continuous if and only if g is continuous; f is quotient map if and only if g is a quotient map. [7]
- **Q5**) a) Prove that a finite Cartesian product of connected spaces is connected.[6]
 - b) Let τ and τ^1 be two topologies on X. If $\tau \le \tau^1$, what does connectedness of X in one topology imply about connectedness in the other? Justify?[4]
 - c) If the sets C and D forms a separation of a topological spaces X and if Y is a connected subspace of X, then prove that Y is entirely within either C or D.

[4]

- Q6) a) Prove that every compact subspace of Hausdorff space is closed. [6]
 - b) Define:
 - i) First countable space,
 - ii) Second countable space,
 - iii) Lindelöf space,
 - iv) Separable space.
 - c) Let $f: X \to Y$ be a continuous map of the compact metric space (X, dx) to the metric space (Y, dy). Then prove that f is uniformly continuous.[4]

[5828] - 202

2

- (Q7) a) Prove that an arbitrary product of compact spaces is compact in the product topology. [7]
 - b) Let X be a normal space; let A be a closed subspace of X. Then prove that,
 [7]
 - i) Any continuous map of A into the closed interval [a, b] of \mathbb{R} may be extended to a continuous map of all of X into [a, b].
 - ii) Any continuous map of A into \mathbb{R} may be extended to a continuous map of all of X into \mathbb{R} .
- Q8) a) Prove that a subspace of a completely regular space is completely regular. A product of completely regular spaces is completely regular. [7]
 - b) Show that the sorgenfrey plane \mathbb{R}^2_1 is not normal. [7]

$\nabla \nabla \nabla \nabla$

SEAT No. :

P257

[Total No. of Pages : 2

[5828] - 203

M.A./M.Sc. (Mathematics) MTUT - 123 : RING THEORY (2019 Pattern) (Semester - II) (Credit System)

Time : 3 Hours]

[Max. Marks : 70

Instructions to the candidates :

- 1) Attempt any Five questions.
- 2) Figures to the right, indicate full marks.
- Q1) a) Let R be a ring with 1 and non-units in R form a subgroup of (R, +), then prove that char (R) is either 0 or else a power of a prime. [6]
 - b) If R is the ring of all strictly upper triangular $n \times n$ matrices over the ring of integer Z, then show that R is non-commutative ring and each element of R is nilpotent ($n \ge 3$). [5]
 - c) Give examples of two zero-divisors in matrix ring $M_2(Z)$ whose sum is not a zero divisors in $M_2(Z)$. [3]
- Q2) a) Let R = $\mathbb{Z}[i, j, k]$ be the ring of integral quaterntions. Then prove that the units in R is a group of order 8. [6]
 - b) Let R be a commutative ring with 1 and I be an ideal in R. Then prove that R/I is a field if and only if I is maximal ideal in R. [6]

c) Prove or dis prove
$$7 - 5\sqrt{2}$$
 is unit in $\mathbb{Z}[\sqrt{2}]$. [2]

- Q3) a) Let R be a ring with 1. Then prove that R is division ring if and only if (0) and R are the only left ideals in R. [6]
 - b) Prove that product of two ideals of the same kind is again an ideal of the same kind.
 [5]
 - c) Define local ring and give an example of non-local ring. [3]

- **Q4**) a) For $n \ge 2$, then prove that the ring $\frac{z}{nz}$ has no non-trivial nilpotent element if and only if *n* is square free. [5]
 - b) Let I be an ideal in a ring R. Then prove that I is a 2-sided ideal in R if and only if I is the kernel of some homomorphism $f: \mathbb{R} \to S$ for a suitable rings. [5]
 - c) State Chinese Remainder theorem for a commutative ring R with 1. [4]
- Q5) a) Prove that the ring $End_{K}(V)$ is a simple ring if and only if V is a finite dimensional vector space over the field K. [7]
 - b) If I is a 2-sided ideal of R, then prove that I[x] is a 2-sided ideal of R[x]and also show that ring $R[x]_{I[x]}$ is naturally isomorphic to (R/I) [x]. [7]
- *Q6*) a) Prove that every Euclidean domain is a principal ideal domain. What about converse? [6]
 - b) Prove that the ring Z[i] of Gaussian integers is Euclidean domain. [5]

c) With usual notations prove that
$$\sqrt{(9)} = \sqrt{(27)} = \sqrt{(3)}$$
. [3]

- (Q7) a) For a commutative integral domain R with unity prove that the following are equivalent. [6]
 - i) R is field.
 - ii) R[x] is Euclidean domain
 - iii) R[x] is PID

b) With usual notation show that
$$\frac{Q[x]}{\langle 1+x^2 \rangle} \cong Q[i].$$
 [5]

- c) Prove or disprove The polynomial $x^4 + 1$ is irreducible over R. [3]
- Q8) a) Show that vector space is free module. [7]
 - b) State and prove schur's lemma for simple modules. [7]

$\nabla \nabla \nabla \nabla$

[5828] - 203

2

SEAT No. :

P258

[Total No. of Pages : 4

[5828]-204

First Year. M. A./M. Sc.

MATHEMATICS

ADVANCED NUMERICAL ANALYSIS

(CBCS 2019 Pattern) (Semester - II) (MTUT 124)

Time : 3 Hours]

[Max. Marks : 70

Instructions to the candidates:

- 1) Figures to the right indicate full marks.
- 2) Attempt any five questions.

Q1) a) Determine the corresponding rate of convergence for the function.

$$f(x) = \frac{\cos x - 1 + \frac{1}{2}x^2}{x^4}$$
 [4]

- b) Let , f be a twice continuously differentiable function on the interval [a,b] with $p \in (a, b)$ and f (p) = 0 further, suppose that $f'(p) \neq 0$ then, show that there exists a $\delta > 0$ such that for $P_0 \in I = [p \delta, p + \delta]$ the sequence $\{P_n\}$ generated by Newton's method converges to P. [5]
- c) Use the secant method to determine P_5 , the fifth approximation to root of $f(x) = x^3 + 2x^2 3x 1$ in (1, 2) with $P_0 = 2$, $P_1 = 1$. [5]
- **Q2)** a) The sequence listed below was obtained from fixed point iteration applied to the function $g(x) = e^{-x}$, which has a unique fixed point. Applying Aitken's Δ^2 method to the given sequence. [6]

Find \hat{p}_3 , \hat{p}_4 and \hat{p}_5 .

1	1.000000			
2	0.3678794412			
3	0.6922006276			
4.	0.5004735006			
5	0.6062435351			

- b) Show that when Newton's method is applied to the equation $x^2 a = 0$, the resulting iteration function is $g(x) = \frac{1}{2}(x + \frac{a}{x})$ [4]
- c) Define: [4]
 - i) Orthogonal Matrix
 - ii) Round off Error
- Q3) a) Solve the following system of equations by using Gaussian elimination with scaled partial pivoting. [5]

$$2x_1 + 3x_2 + x_3 = -4$$

$$4x_1 + x_2 + 4x_3 = 9$$

$$3x_1 + 4x_2 + 6x_3 = 0$$

- b) Show that the matrix $\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 2 \\ -1 & 0 & 2 \end{bmatrix}$ has no LU decomposition. [4]
- c) Solve the following system by Jacobi method starting with vector $x^{(0)} = [0 \ 0 \ 0]^{T}$ perform two iteration. [5]

$$3x_1 + x_2 = -1$$

-x₁ + 2x₂ + x₃ = 3
x₂ + 3x₃ = 4

Q4) a) Solve the following system of linear equations by SOR method, start with $x^{(0)} = [0 \ 0 \ 0]^T$ and w = 0.9 (perform 3 iteration) [5]

$$5x_1 + x_2 + 2x_3 = 10$$

-3x₁ + 9x₂ + 4x₃ = -14
x₁ + 2x₂ - 7x₃ = -33

b) Solve the following system of non-linear algebric equations by using Broyden's method start with $x^{(0)} = [1 \ 1 \ 1]^T$ and (Perform 3 iteration) [5]

$$x_1^{3} - 2x_2 - 2 = 0$$

$$x_1^{3} - 5x_3^{2} + 7 = 0$$

$$x_2^{2} x_3^{2} - 1 = 0$$

c) Let A be an n×n matrix with eigenvalues $\lambda_1, \lambda_2, _$ ____, λ_n and associated eigenvectors $v_1, v_2, _$ ____, v_n . then prove that, If B = a_0 I + a_1 A + a_2 A² + ____+ + a_m A^m = p(A) where p is the polynomial $p(x) = a_0 + a_1x + a_2x^2 + ___+ + a_m x^m$, then the eigen values of B are $p(\lambda_1), p(\lambda_2), ____, p(\lambda_n)$. With associated

[4]

Q5) a) Use the QR factorization of a symmetric Tridiagonal Matrix. [7]

$$\mathbf{A} = \begin{bmatrix} 4 & 3 & 0 \\ 3 & 1 & -1 \\ 0 & -1 & 3 \end{bmatrix}$$

eigenvector $v_1, v_2,$ ____, v_n .

Find the product $R^{(0)} Q^{(0)}$.

- b) Define Householder matrix and show that it is symmetric and orthogonal. [4]
- c) For the following differential equation, identify the function f(t, x) and calculate $\frac{df}{dt}, \frac{d^2 f}{dt^2}$. $x^1 = t^2 - 1 - 2x^2$. [3]
- Q6) a) Derive the open Newton cotes formula with n = 3: [5]

I (f)
$$\approx$$
 I₃, open (f) = $\frac{b-a}{24}$ [11 f (a + Δx) + f (a + 2 Δx) + f (a + 3 Δx)
+ 11 f (a + 4 Δx)]

- b) Derive the following forward difference approximation for the second derivative: $f^{11}(x_0) \approx \frac{f(x_0) - 2f(x_0 + h) + f(x_0 + 2h)}{h^2}$ [4]
- c) Show that : If f is continuous on [a, b], g is integrable on [a, b,] and g (x) does not change sign on [a, b], then there exist a number $\xi \in [a, b]$ such that, $\int_{a}^{b} f(x) g(x) dx = f(\xi) \int_{a}^{b} g(x) dx.$ [5]

Q7) a) Use Euler's method to solve initial value problem.

$$\frac{dx}{dt} = t^2 + x, \ 0 \le t \le 0.03, \ x(0) = 1$$

b) i) Solve the initial value problem.

$$\frac{dx}{dt} = 1 + \frac{x}{t}, \ 1 \le t \le 1.5, \ x(1) = 1, \ h = 0.25$$

by using Taylor method of order N = 2.

ii) Solve the initial value problem.

$$\frac{dx}{dt} = 1 + \frac{x}{t}, \ 1 \le t \le 2, \ x(1) = 1, \ h = 0.5$$

by using Taylor method of order N = 4.

Q8) a) Evaluate $\int_{-2}^{2} \frac{x}{5+2x} dx$ by using Trapezoidal rule by dividing the interval [-2, 2] into five equal subintervals. [3]

- b) Define: [4]
 - i) Relative error
 - ii) Triangular Matrix
- c) Derive the difference equation for the four-step Adams -Bash forth method :

$$\frac{w_{i+1} - w_i}{h} = \frac{55}{24} f(t_i, w_i) - \frac{59}{24} f(t_{i-1}, w_{i-1}) + \frac{37}{24} f(t_{i-2}, w_{i-2}) - \frac{9}{24} f(t_{i-3}, w_{i-3})$$

Also derive the associated truncation error : $\tilde{L}_i = \frac{251 h^4}{720} y^{(5)}(\xi)$ [7]

* * *

[5828]-204

[7]

[7]

P259

[5828]-205 M.A./M.Sc.

Mathematics

PARTIAL DIFFERENTIAL EQUATIONS (MTUT125) (CBCS 2019 Pattern) (Semester - II)

Time : 3 Hours] Instructions to the candidates:

- 1) Figures to the right side indicate full marks.
- 2) Attempt any 05 questions.
- **Q1**) a) Show that the PDE's f(x, y, z, p, q) = 0 and g(x, y, z, p, q) = 0 are compatible. [5]
 - b) Attempt the following.
 - i) Find the complete integral of the partial differential Equation $z = px + qy + p^2 + q^2$ by charpit's method.
 - ii) Show that the equations xp = yq, z(xp + yq) = 2xy are compatible hence find its solution. [5]
- **Q2**) a) Explain charpits method for separable first order partial differential equation f(x, p) = g(y, q) [4]
 - b) Attempt the following.
 - i) Obtain the PDE by eliminating the arbitrary constants 'a' and 'b' from log(az-1) = x + ay + b [4]

ii) Solve
$$p^2 x + q^2 y = z$$
 by Jacobi's Method. [6]

Q3) a) Prove that if
$$\alpha_{\gamma}D + \beta_{\gamma}D' + \gamma_{\gamma}$$
 is a factor of $F(D,D')$ and $\phi_r(\xi)$ is an arbitrary function of the single variable ξ , then $u_{\gamma} = \exp\left(\frac{-\gamma_{\gamma}x}{\alpha_{\gamma}}\right)$
 $\phi_{\gamma}(\beta_{\gamma}x - \alpha_{\gamma}y)$ for $\alpha_{\gamma} \neq 0$. [6]

P.T.O.

[Total No. of Pages : 3

[Max. Marks : 70

[4]

SEAT No. :

- b) Attempt the following
 - i) Find the complementary function of the partial differential equation.

[4]

[6]

$$\frac{\partial^3 z}{\partial x^3} - \frac{2\partial^3 z}{\partial x^2 \partial y} - \frac{\partial^3 z}{\partial x \partial y^2} + \frac{\partial^3 z}{\partial y^3} = e^{x+y}$$

ii) Solve $(D+D'-1)(D+2D'-3)z = 0$ [4]

- **Q4**) a) Explain the method of second order partial differential $\operatorname{Rr+Ss+Tt+f}(x,y,z,p,q) = 0$ to a canonical form if $S^2 4RT > 0$. [5]
 - b) Attempt the following.
 - i) Reduce the equation

$$\frac{\partial^2 z}{\partial x^2} + 2 \frac{\partial^2 z}{\partial x \partial y} + \frac{\partial^2 z}{\partial y^2} = 0$$
 to a canonical form and hence solve it.[5]

ii) Classify the PDE

1)
$$u_{xx} + 2u_{xy} + u_{yy} = 0$$
 [2]

2) $3u_{xx} + 10u_{xy} + 3u_{yy} = 0$ [2]

(Q5) a) Derive the Laplace equation of second order partial differential equation. [4]

b) Attempt the following

i)

- Solve PDE : $\nabla^2 u = 0, 0 \le x \le a, 0 \le y \le b$ BCs : u(x,b) = u(a, y) = 0, u(0, y) = 0, u(x,0) = f(x)
- ii) Find the complete integral of $u_t 3u^2 u_x = 0$ with $u(x, 0) = \cos x$.[4]

Q6) a) Derive the diffusion equation of second order differential equation. [5]b) Attempt the following.

i) Find by method of separation of variables the solution u(x,t) of the boundary value problem. $u_t = 3u_{xx}, t > 0, 0 < x < 2, u(0,t) = 0$,

$$u(2,t) = 0, t > 0, u(x,0) = x, 0 < x < 2$$
[6]

ii) Find the characteristics of the partial differential equation [3] $(\sin^2 x)r + (2\cos x)s - t = 0$

- Q7) a) Find the solution of one dimensional wave equation by cannonical reduction method. [5]
 - b) Attempt the following
 - i) Solve the wave equation $u_{tt} = C^2 u_{xx}$ where $u = P_0 \cos pt$ (P₀ is constant) when x = l and u = 0 when x = 0. [5]
 - ii) Find the complete integral of $z^2(1+p^2+q^2)=1$. [4]
- *Q8*) a) Find the steady state temperature distribution in the thin rectangular plate bounded by lines x = 0, x = a, y = 0, y = b. The edges x = 0, x = a, y = a, are kept at temperature zero while the edge y = b is kept at 100°C. [7]
 - b) A uniform rod 20cm in length is instead over its sides. Its ends are kept $\sin(\pi x)$

at 0°C its initial temperature is $sin\left(\frac{\pi x}{20}\right)$ at a distance 'x' from an end, find

temperature
$$u(x,t)$$
 at time 't', Given that $\frac{\partial u}{\partial t} = a^2 \left(\frac{\partial^2 u}{\partial x^2} \right)$. [7]

0000

Total No. of Questions : 8]

P260

SEAT No. :

[Total No. of Pages : 3

[5828]-301

M.A./M.Sc.

MATHEMATICS

MTUT - 131 : Functional Analysis (2019 Pattern) (Semester - III) (Credit System)

Time : 3 Hours]

[Max. Marks : 70

Instructions to the candidates:

- 1) Attempt any five of the following questions.
- 2) Figures to the right side indicate full marks.
- 3) Symbols have their usual meanings.
- Q1) a) Give a definition of normed linear space. Define one norm on vector space \mathbb{R}^2 Justify. [4]
 - b) Let M be any closed linear subspace of normed linear space N. Define norm on N/M by ||x + M|| = in f {||x + m|| : m ∈ M}. Show that N/M is a normed linear space also, prove that if N is complete then N/M is a Banach space.
 - c) Consider a norm on R given by ||x|| = |x| for all x∈ R. Show that R is a Banach space by showing R is complete. [4]
- **Q2)** a) Let M be a linear subspace of normed linear space N, and Let *f* be a functional on M if $x_0 \notin M$ and $M_0 = M + [x_0]$ then prove that *f* can be extended to a linear functional f_0 such that $||f_0|| = ||f||$. [7]
 - b) Let B and B' be two Banach spaces and T is a continious linear transformation of B onto B'. Then prove that image of each open sphere centred at origine in B contains an open sphere centred at origine in B'.[7]

- Q3) a) Let $\mathfrak{B}(N,N')$ be the set of all continious linear transformation of N into N'. Prove that $\mathfrak{B}(N,N')$ is a normed linear space. Also, prove that if N' is a complete then $\mathfrak{B}(N,N')$ is a Banach space. [7]
 - b) State and prove the open mapping theorem. [5]
 - c) Let $T : N \to N$ be continious linear transformation. Define $T^* : N^* \to N^*$ by $T^*(f) = f \circ T$ Prove that $||T^*|| \le ||T||$. [2]
- *Q4*) a) Prove that a closed convex subset of Hilbert space H contains a unique vector of smallest norm. [5]
 - b) Prove that for any two vector's x and y. In a Hilbert space H, $|\langle x, y \rangle| \le ||x|| \cdot ||y||$. [4]
 - c) Let M be a proper closed linear subspace of a Hilbert space H. Prove that there exist's a non zero vector Z_0 in H such that $Z_0 \perp H$. [5]

Q5) a) Prove that if M is a closed linear subspace of a Hilbert space H then $H = M \oplus M^{\perp}$. [5]

- b) Let y be any fixed vector in H. define $f_y : H \to \mathbb{F}$ by $f_y(x) = (x, y)$. Show that f_y is linear and continious. [4]
- c) Let T be any operator on H for which (T(x), x) = 0 for all $x \in H$. Prove that T is identically zero function, that is $T(x)=0, \forall x \in H$. [5]
- *Q6*) a) Let H be a Hilbert space and let $f \in H^*$ be an arbitrary functional. Prove that there exist's a unique vector y in H such that f(x) = (x, y). [6]
 - b) Prove that T is self adjoint operator on H if and only if (T(x), x) is real for all x. [4]
 - c) If N_1 and N_2 are normal operator on H such that $N_1 \circ N_2^* = N_2^* \circ N_1$ and $N_2 \circ N_1^* = N_1^* \circ N_2$ then prove that $N_1 + N_2$ is a normal operator. [4]

- *Q7*) a) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be given by T(x, y, z) = (x, y + z, y). Find the matrix of T with respect to basis. B{(1, 1, 1), (1, 1, 0), (1, 0, 0)}. [4]
 - b) Let T be a normal operator. Prove that λ is an eigenvalue of T with eigenvector x if $f \overline{\lambda}$ is a eigenvalue of T* with eigenvector x. [4]
 - c) Let T be any arbitrary operator on H and N be a normal operator. Prove that if T commutes with N then T commutes with N*. [4]
 - d) Give a statement of open mapping theorem. [2]
- **Q8)** a) Let $B = \{e_i\}$ be an ordered basis for Hilbert space H and [T] is a matrix of operator T on H relative to basis B. Prove that the mapping $T \rightarrow [T]$ is a one-to-one homomorphism. [6]
 - b) Let T be an operator on H. Prove that T is singular if and only if 0 is a eigenvalue of T. [4]
 - c) Let M be closed linear subspace of H prove that M is invarient under T if and only if M^{\perp} is invarient under T*. [4]

Total No. of Questions : 8]

P261

[5828]-302

M.A./M.Sc.

MATHEMATICS

MTUT - 132 : Field Theory

(2019 CBCS Pattern) (Semester - III)

Time : 3 Hours]

[Max. Marks : 70

Instructions to the candidates:

- Attempt any five questions of the following. **1**)
- 2) Figures to the right side indicate full marks.

If P(x) is an irreducible polynomial of degree 'n' in F(x) and u is a root *Q1*) a) of P(x) in an extension E of F then prove that $\{1, u, u^2, \dots, u^{n-1}\}$ forms a basis of F(u) over F. [7]

- Show that every finite extension of a field F is algebraic. b) [5]
- Find the smallest extension of φ having a root $x^4 2 \in Q[x]$. [2] c)
- Show that the polynomial $x^{5}-9x + 3$ is not solvable by radicals. *Q2*) a) [7]
 - Show that doubling of a circle is not possible by using ruler and compass b) only. [5]
 - Define radical extension of a field with example. [2] c)

Q3) a) Let
$$E = Q(\sqrt[3]{2}, \omega)$$
 where $\omega^3 = 1, \omega \neq 1$, Let $G = \{1, \sigma\}$
Where 1: $\begin{cases} \sqrt[3]{2} \rightarrow \sqrt[3]{2} \\ \omega \rightarrow \omega \end{cases}$ and $\sigma : \begin{cases} \sqrt[3]{2} \rightarrow \omega^{\sqrt[3]{2}} \\ \omega \rightarrow \omega^2 \end{cases}$ are automorphism of E then

- Let F be field and E be a finite normal separable extension of F then b) prove that F is a fixed field of G (E/F). [5]
- Find the degree of $Q(\sqrt{2})$ over Q. c) [2]

P.T.O.

[7]

SEAT No. :

[Total No. of Pages : 2

- **Q4)** a) Show that the Galois Group of $x^3-2 \in Q[x]$ is the group of symmetrices of the triangle. [7]
 - b) State fundamental theorem of Galois theory. [5]
 - c) Is C a normal extension of R?. Justify. [2]
- *Q5*) a) Let F be a field containing nth root of unity and E be a finite cyclic extension of degree n over F then prove that E is the splitting field of an irreducible polynomial $x^n a \in F[x]$. [7]
 - b) Prove that every polynomial $f(x) \in Q[x]$. factors into linear factor in C [x]. [7]

Q6) a) Let E be an extension of a field F and $\alpha \in F$ be algebraic element over F then prove that α is separable over F if and only if $F(\alpha)$ is separable extension of F. [7]

b) Let $f(x) \in F[x]$ be a polynomial of degree ≥ 1 and α as a root. Then prove that α is a multiple root of f(x) if and only if $f^{1}(\alpha) = 0$. [7]

- **Q7)** a) Show that the degree of extension of the spliting field of $x^3-2 \in Q[x]$ is 6. [6]
 - b) Prove that a finite extension of a finite field is separable. [5]
 - c) Show that $x^p x 1$ is irreducible over $\mathbb{Z}p$. [3]
- **Q8)** a) Show that every polynomial in K[x] is of degree \perp if K is algebraically closed. [6]
 - b) If $f(x) = a_0 + a_1 x + \dots + a_{n-1} x^{n-1} + x^n \in \mathbb{Z}[x]$ is a monic polynomial having α as a root in Q then prove that $\alpha \in \mathbb{Z} \& \alpha \mid a_0$. [5]
 - c) If E is an extension of a field F and [E : F] is prime then prove that there is no field properly between E and F. [3]

SEAT No. :

P262

[5828]-303

M.A./M.Sc. - II

MATHEMATICS

MTUT - 133 : Programming with Python (2019 CBCS Pattern) (Semester - III)

Time : 2 Hours]

[Max. Marks : 35

[1]

[Total No. of Pages : 1

Instructions to the candidates:

- 1) Figures to the right side indicate full marks.
- 2) Question 1 is compulsory.
- 3) Attempt any 2 questions from Q.2, Q.3 and Q.4.

Q1) Attempt the following :

a)	Explain any 3 features of Python.	[3]
b)	Explain the chronology of the development of Python.	[3]

c) Does Python have data types?

Q2) Attempt the following :

a)	i)	Write a Python program which accept positive integer and display	
		wheather it is odd or not.	[5]
	••		[0]

- ii) Write a Python program to swap two numbers. [2]
- b) Write a note on conditional statements in Python with an example. [7]

Q3) Attempt the following :

a)

- i) Write a note on string operators in Python. [5]
 - ii) Explain the meaning of "Tuples are immutable". [2]
- b) Write a note on For loop in Python with an example. [7]

Q4) Attempt the following :

a)	i)	Write a note on functions in Python.	[5]
	ii)	Explain minimum one difference between For loop and Wh	nile loop
		in Python.	[2]
b)	Wri	te a note on operator overloading in Python.	[7]

P263

SEAT No. :

[Total No. of Pages : 3

[5828]-304

M.A./M.Sc. MATHEMATICS

MTUTO 134 : Discrete Mathematics (2019 Pattern) (Semester - III) (Credit System)

Time : 3 Hours]

[Max. Marks : 70

Instructions to the candidates :

- 1) Attempt any <u>five</u> questions.
- 2) Figures to the right indicate full marks.
- Q1) a) How many ways are there to pick two different cards from a standard 52-card deck such that [7]
 - i) the first card is an Ace and the second card is not a Queen?
 - ii) the first card is a spade and the second card is not a Queen?
 - b) Prove that the isomorphism relation defined on set of simple graphs is an equivalence relation. [5]
 - c) Prove or disprove the following statement. [2]

'If every vertex of a simple graph G has degree Z, then G is cycle.

- Q2) a) What is the probability that an arrangement of a, b, c, d, e, f has a and b side by side? [5]
 - b) If two vertices are nonadjacent in the petersen graph, then prove that they have exactly one common neighbour. [5]
 - c) If every vertex of a graph G has degree at least Z, then prove that G contains a cycle. [4]
- Q3) a) Prove that a graph G is Eulerian if and only if it has at most one nontrivial component and its vertices all have even degree. [7]

P.T.O.

b) Show that number of partitions of an integer r as a sum of m positive integers is equal to the number of partitions of r as a sum of positive integers in which largest is m. [5]

c) Find the coefficient of
$$\frac{x^r}{r!}$$
 in $\left(1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots\right)^n$. [2]

- **Q4)** a) Find a recurrence relation for a_n , where a_n is the number of *n*-digit ternary sequences without any occurrence of the sequence "0 1 2". [5]
 - b) Solve the following recurrence relation. [5]

$$a_n = 3a_{n-1} + 4a_{n-2}, a_0 = 1, a_1 = 1$$

- c) Prove that every graph has an even number of vertices of odd degree.[4]
- **Q5**) a) State and prove Inclusion Exclusion formula. [7]
 - b) Let G be an *n*-vertex graph with $n \ge 1$. Prove that following statements are equivalent. [7]
 - i) G is connected and has no cycles.
 - ii) G is connected and has n 1 edges.
- Q6) a) How many 8-letter words using the 26-letter alphabet (letters can be repeated) either begin or end with vowel? [6]
 - b) Prove that an X, Y bigraph G has a matching that saturates X if and only if $|N(S)| \ge |S|$ for all $S \subseteq X$. [6]

[2]

c) Find the adjacency matrix for the following graph.

- Q7) a) Let T be a tree with average vertex degree a. Determine n (T) in terms of a. [5]
 - b) Show by a combinatorial argument that

$$\binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{n} = 2^n$$

c) If the recurrence relation $a_n = C_1 a_{n-1} + C_2 a_{n-2}$ has a general solution $a_n = A_1 3^n + A_2 6^n$, where A_1 , A_2 are constants, then find C_1 and C_2 . [4]

[5]

[8]

$$(Q8)$$
 a) Find an exponential generating function with

i)
$$a_r = \frac{1}{r+1}$$

ii)
$$ar = r!$$

b) Use Kruskal's algorithm to find the minimum spanning tree for the following weighted graph. [6]

Total No. of Questions : 8]

P264

SEAT No. :

[Total No. of Pages : 2

[5828]-305

M.A./M.Sc. (Mathematics) MTUTO 135 : MECHANICS (2019 Pattern) (Semester - III)

Time : 3 Hours]

[Max. Marks : 70

Instructions to the candidates :

- 1) Attempt any <u>five</u> questions.
- 2) Figures to the right indicate full marks.
- *Q1*) a) Explain the principle of virtual work and derive D'Alembert equation of motion.[5]
 - b) Determine the equation of motion of simple pendulum by using D'Alembert principle. [5]
 - c) A particle is constrained to move on the plane curve *xy* = C, where C is constant under gravity obtain Lagrangian and hence equation of motion.[4]
- Q2) a) Show that the Lagrang equation of motion can also be written as [5]

$$\frac{\partial \mathbf{L}}{\partial t} - \frac{d}{dt} \left(\mathbf{L} - \sum \dot{q}_j \frac{\partial \mathbf{L}}{\partial q_j} \right) = 0$$

- b) A particle of mass *m* is projected with initial velocity u at an angle α with the horizontal. Use Lagranges equation to describe the motion of the projectile. [5]
- c) Explain the following terms : [4]
 - i) Linear Momentum
 - ii) Angular Momentum

Q3) a) Show that the two Lagrangians $L_1 = (q + \dot{q})^2, L_2 = (q^2 + \dot{q}^2)$ are equivalent.

[7]

- b) Prove that if the force acting on a particle is conservative then the total energy is conserved. [7]
- Q4) a) Find the curve, which extremizes the functional [7]

 $I(y(x)) = \int_0^{\pi/4} (y''^2 - y^2 + x^2) dx$

with conditions that y(0) = 0, y'(0) = 1, $y\left(\frac{\pi}{4}\right) = y'\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}$

- b) State Hamiltons principle for non conservative system and hence derive from it the Lagranges equation of motion for non conservative holonomic system.
 [7]
- Q5) a) Use Hamiltons principle to find the equation of motion of a simple pendulum. [7]
 - b) what is Hamiltonian function? Derive the Hamilton's Canonical equation of motion from Hamiltonian function. [7]
- *Q6*) a) Write a note on Brachistochrone problem. [7]
 b) Deduce Newton's Second Law from Hamilton's principle. [7]
- Q7) a) Prove that field force motion is always motion in plane. [5]
 b) Prove Keplars Second Law of planetary motion. [5]
 c) Explain Principles of least action. [4]
- Q8) a) Show that the Lagranges equations are necessary conditions for the action to have stationary value. [7]
 b) Show that the acceleration equation is a holizer [7]
 - b) Show that the geodesics on a right circular cylinder is a helix. [7]

いかん

[5828]-305

2

Total No. of Questions : 8]

SEAT No. :

P265

[Total No. of Pages : 3

[5828]-306

M.A./M.Sc. (Mathematics) MTUTO 136 : Advanced Complex Analysis (2019 Pattern) (Semester - III) (CBCS)

Time : 3 Hours][Max. Marks : 70Instructions to the candidates:1)Attenuet num fine numericant

- 1) Attempt any five questions.
- 2) Figures to the right indicate full marks.
- *Q1*) a) State and prove Morera's theorem. [5]

b) Prove that
$$\int_{0}^{\infty} \frac{1 - \cos x}{x^2} dx = \frac{\pi}{2}$$
. [5]

- c) Suppose that *f* is a holomorphic function in Ω^+ that extends continuously to I and such that *f* is real-valued on I. Prove that there exists a function F holomorphic in all of Ω such that F = f on Ω^+ . [4]
- **Q2)** a) Prove that every non-constant polynomial $P(Z) = a_n z^n + \dots + a_0$ with complex coefficients has a root in \mathcal{C} . [5]
 - b) i) If f and g are holomorphic in a region Ω and f(z) = g(z) for all z in some sequence of distinct point with limit point in Ω then prove that f(z) = g(z) throughout Ω . [3]
 - ii) Show that the complex zeros of $sin(\pi z)$ are exactly at the integers and each of order 1. [2]

c) Show that
$$\int_{0}^{\infty} \frac{\sin x}{x} dx = \frac{\pi}{2}.$$
 [4]

Q3) a) If $f: U \to V$ is holomorphic and injective then prove that $f'(z) \neq 0$ for all $z \in U$. [5]

b) Prove that
$$f(z) = z^n$$
 is a conformal map from the sector

$$\mathbf{S} = \left\{ z \in \mathcal{C} \mid 0 < \arg(z) < \frac{\pi}{n} \right\} \text{ to the upper half-plane.}$$
[5]

- c) Let V and U be open sets in ¢ and F : V → U a holomorphic function.
 If u : U → ¢ is a harmonic function, then prove that uoF is harmonic on V. [4]
- **Q4)** a) Let $F : \mathbb{D} \to \mathbb{D}$ be holomorphic with f(0) = 0. Then prove the following :
 - i) $|f(z)| \le |z|$ for all $z \in \mathbb{D}$.
 - ii) If for some $z_0 \neq 0$ we have $|f(z_0)| = |z_0|$, then f is a rotation.
 - iii) $|f'(0)| \le 1$, and if equality holds, then *f* is a rotation.

[7]

b) Let $F : H \to C$ be a holomorphic function that satisfies $|F(z)| \le 1$ and F(i) = 0. Prove that $|F(z)| \le \left|\frac{z-i}{z+i}\right|$ for all $z \in \mathbb{H}$. [5]

c) Define automorphism and give one example. [2]

Q5) a) State and prove Montel's theorem. [7]

- b) Prove that any two proper simply connected open subsets in \not{C} are conformally equivalent. [5]
- c) State the Riemann mapping theorem. [2]
- **Q6)** a) Let z_0 be a point on the unit circle and if $F : \mathbb{D} \to P$ is a conformal map, then prove that F(z) tends to a limit as z approaches z_0 within the unit disc. [7]
 - b) Show that the function $\int_{0}^{z} \frac{d\xi}{\sqrt{\xi(\xi-1)(\xi-\lambda)}}$, with $\lambda \in \mathbb{R}$ and $\lambda \neq 1$ maps the upper half-plane conformally to a rectangle, one of whose

vertices is the image of the point at infinity. [5]

c) Define the general Schwarz-Christoffel integral. [2]

- **Q7)** a) Prove that there exist complex numbers c_1 and c_2 so that the conformal map F of \mathbb{H} to p is given by $F(z) = c_1 S(z) + c_2$ where S is the Schwarz-Christoffel integral. [7]
 - b) If $F(z) = \int_{1}^{z} \frac{d\xi}{(1-\xi^n)^{2/n}}$, then show that F maps the unit disc

conformally onto the interior of a regular polygon with n sides and

perimeter
$$2^{\frac{n-2}{n}} \int_{0}^{\pi} (\sin\theta)^{-2/n} d\theta$$
. [7]

- **Q8)** a) Prove that the total number of poles of an elliptic function in p_0 is always ≥ 2 . [7]
 - b) Show that the two series $\sum_{(n,m)\neq(0,0)} \frac{1}{(|n|+|m|)^r}$ and $\sum_{n+mT\in A^*} \frac{1}{|n+mT|^r}$ where A* denote the lattice minus the origin, that is A*=A-{(0,0)}, Converges if r > 2. [7]

P266

[5828]-307

M.A./M.Sc.

MATHEMATICS

MTUTO-137 : Integral Equations (2019 Pattern) (Semester - III) (Credit System)

Time : 3 Hours]

[Max. Marks : 70

1) Attempt any five questions.

Instructions to the candidates:

- 2) Figures to the right indicate full marks.
- **Q1**) a) Convert the volterra integral equation $u(x) = 1 + x + \int_0^x (x-t)^2 u(t) dt$ to an equivalent initial value problem. [4]
 - b) Convert the initial value problem y''' 3y'' 6y' + 5y = 0 subject to the initial condition y(0) = y'(0) = y''(0) = 1 to an equivalent volterra integral equation. [5]
 - c) Derive an equivalent Fredholm integral equation to the boundary value problem y''(x) + y(x) = x, $0 < x < \pi$ subject to the boundary conditions y(0) = 1, $y(\pi) = \pi 1$. [5]
- **Q2**) a) Find the Taylor series generated by $f(x) = \cos x$ at x = 0. [4]
 - b) Solve the Fredholm integral equation

 $u(x) = e^{3x} - \frac{1}{9}(2e^3 + 1)x + \int_0^1 x + u(t)dt \text{ using the modified}$ decomposition scheme. [5]

c) Solve the fredholm integral equation $u(x) = x^2 + \int_0^1 x t u(t) dt$ using the Adomian decomposition method. [5]

SEAT No. :

[Total No. of Pages : 3

Q3) a) Solve the Fredholm integral equation

$$u(x) = \tan^{-1} x + \frac{1}{2}(\ln 2 - \frac{\pi}{2})x + \int_0^1 x u(t) dt \text{ using the modified}$$

decomposition method. [4]

- b) Use the variational iteration method to solve the Fredholm integral equation $u(x) = x^2 \frac{x}{3} + \int_0^1 x \, u(t) \, dt$. [5]
- c) Solve the following Fredholm integral equation by using the direct computation method $u(x) = e^{2x} \frac{1}{4}(e^2 + 1)x + \int_0^1 x t u(t) dt$. [5]
- *Q4*) a) Solve the volterra integral equation $u(x) = 4x + 2x^2 \int_0^x u(t) dt$ by using the Adomian decomposition method. [4]
 - b) Use the variational iteration method to solve volterra integral equation $u(x) = x + \int_0^x (x - t)u(t) dt.$ [5]
 - c) Solve the following volterra integral equation by using the series solution method $u(x) = 1 + 2\sin x \int_0^x u(t) dt$. [5]
- Q5) a) Solve the following volterra integral equation

$$u(x) = x^{2} + \frac{1}{12}x^{4} + \int_{0}^{x} (t - x)u(t) dt$$
 by converting it to an equivalent initial value problem. [7]

b) Solve the following volterra integral equation by the successive substitution method $u(x) = \frac{x^3}{3!} + \int_0^x (x-t)u(t) dt$. [7]

Q6) a) Find the solution of the volterra equation of the first kind

$$xe^{x} = \int_{0}^{\infty} e^{x-t}u(t) dt \,.$$
[7]

b) Solve the following Fredholm integro-differential equation
$$u'(x) = \cos x + \frac{x}{4} - \frac{1}{4} \int_0^{\frac{\pi}{2}} xt \ u(t) \ dt, \ u(0) = 0.$$
 [7]

Q7) a) Solve the following Fredholm integro-differential equation by using the variational iteration method

$$u'(x) = 3 - 12x + \int_0^1 t \ u(t) \ dt \, , \ u(0) = 1.$$
^[5]

b) Solve the following Fredholm integro-differential equation by converting it to a standard Fredholm integral equation $u'(x) = 1 - \frac{x}{3} + x \int_0^1 t u(t) dt, u(0) = 0.$ [5]

c) Solve the following volterra integro-differential equation by using the series solution method $u'(x) = 1 - 2x \sin x + \int_0^x u(t) dt$, u(0) = 0. [4] OR

(Q8) a) Solve the following volterra integro-differential equation by Adomian decomposition method

$$u'(x) = 2 + \int_0^x u(t) \, dt \,, \, u(0) = 2.$$
^[5]

b) Solve the following Abel's integral equation

$$\frac{\pi}{2}(x^2 - x) = \int_0^x \frac{1}{\sqrt{x - t}} u(t) \, dt \,.$$
[4]

c) Solve the volterra integro-differential equation of the first kind

$$\int_0^x (x-t+1)u'(t) \, dt = 2e^x - x - 2 \,, \, u(0) = 1.$$
 [5]

\mathfrak{RRR}

Total No. of Questions : 8]

SEAT No. :

P267

[Total No. of Pages : 4

[5828] - 308 M.A./M.Sc. (Semester - III) MATHEMATICS MTUTO 138 : Differential Manifolds (2019 Pattern) (CBCS)

Time : 3 Hours]

[Max. Marks : 70

Instructions to the candidates :

- 1) Attempt any Five questions.
- 2) Figures to the right, indicate full marks.
- Q1) a) Let W be a linear subspace of ℝⁿ of dimension k. Then prove that there is an orthonormal basis for ℝⁿ whose first k elements form a basis for W.

b) Let
$$x = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ a & b & c \end{bmatrix}$$
 [4]

- i) Find X^{tr} . X.
- ii) Find V(x)
- c) Let $g : A \to B$ be a diffeomorphism of open sets in \mathbb{R}^k . Let $\beta : B \to \mathbb{R}^n$ be a map of class C^r ; Let $\gamma = \beta(B)$ - let $\alpha = \beta \circ g$; then $\alpha : A \to \mathbb{R}^n$ and $\gamma = \alpha(A)$. If $f : \gamma \to \mathbb{R}$ is a continuous function, then prove that f is integrable over γ_{β} if and only if it is integrable over γ_{α} ; in this case [5]

$$\int_{\gamma_{\alpha}} f dv = \int_{\gamma_{\beta}} f dv$$

P.T.O.

- Q2) a) Let A be open in \mathbb{R}^k ; Let $f: A \to \mathbb{R}$ be of class C^r; Let γ be the graph of f in \mathbb{R}^{k+1} , parametrized by the function $\alpha: A \to \mathbb{R}^{k+1}$, given by $\alpha(x) = (x, f_{(x)})$. Express $v(\gamma_{\alpha})$ as an integral. [5]
 - b) Let M be a manifold in \mathbb{R}^n , and Let $\alpha : U \to v$ be a co-ordinate patch on M. If U_0 is a subset of U that is open in U, then prove that the restriction of α to U_0 is also a coordinate patch on M. [5]
 - c) Let $\beta: 1H^1 \to \mathbb{R}^2$ be the map $\beta(x) = (x, x^2)$; Let N be the image set of β . Show that N is a 1-manifold in \mathbb{R}^2 . [4]
- **Q3**) a) Let M be a k-manifold in \mathbb{R}^n , of class C^{*r*}. If ∂M is non empty, then prove that ∂M is a k-1 manifold without boundary in \mathbb{R}^n of class C^{*r*}.[5]
 - b) Prove that if the support of f can be covered by a single coordinate patch, the integral $\int_{M} f \, dv$ is well-defined, independent of the choice of co-ordinate patch. [5]
 - c) Let M be a compact k-manifold in \mathbb{R}^n . Let $h: \mathbb{R}^n \to \mathbb{R}^h$ be an isometry; Let N = h (M). Let $f: N \to \mathbb{R}$ be a continuous function. Show that N is a k-manifold in \mathbb{R}^n and $\int_N f \, dv = \int_M (foh) dv$. [4]
- **Q4**) a) Let *v* be *a* vector space with basis a_1, \ldots, a_n . Let $I = (i_1, \ldots, i_k)$ be a k-tuple of integers form the set $\{1, 2, \ldots, n\}$. Then prove that there is a unique k-tensor ϕ_I on V such that, for every k-tuple $J = (j_1, \ldots, j_k)$ from

the set {1, 2,, n},
$$\phi_{I}(aj_{1},...,aj_{k}) = \begin{cases} 0 & \text{if } I \neq J, \\ 1 & \text{if } I = J. \end{cases}$$
 [7]

Also show that tensors ϕ_i form a basis for $L^k(V)$.

- b) Let $T: V \to W$ be a linear transformation; Let $T^*: L^k(W) \to L^k(V)$ be the dual transformation. Then prove that [7]
 - i) T* is linear.
 - ii) $T^*(f \otimes g) = T^*f \otimes T^*g.$
 - iii) If S : W \rightarrow X is a linear transformation, then (SOT)* $f = T^*(S * f)$.

- Let f be a k tensor on V; Let 6, $T \in Sk$. Prove that the tensor f is **Q5**) a) alternating if and only if $f^6 = (\text{sgn } 6) f$ for all 6. If f is alternating and if $v_p = v_q$ with $p \neq q$, then prove that $f(v_1, v_2, \dots, v_k) = 0$. [5]
 - Let $T: V \rightarrow W$ be a linear transformation. If *f* is an alternating tensor on **b**) W, then prove that $T^* f$ is an alternating tensor on v. [5]
 - Is $f(x, y) = x_1 y_2 x_2 y_1 + x_1 y_1$ alternating tensors in \mathbb{R}^4 ? Why? c) [4]
- Let $x, y, z \in \mathbb{R}^5$. Let **06**) a) $G(x, y) = x_1 y_3 + x_3 y_1$ $F(x, y, z) = 2x_2 y_2 z_1 + x_1 y_5 z_4.$

Write AF and AG in terms of elementary alternating tensors. Express (AF)(x, y, z) as a function. [5]

- Let w be a k-form on the open set A of \mathbb{R}^n . Then prove that w is of class b) C^r if and only if its component functions b_1 are of class C^r on A. [5]
- Let $r : \mathbb{R} \to \mathbb{R}^n$ be of class C^{*r*}. Show that the velocity of γ corresponding c) to the parameter value *t* is the vector $\gamma_*(t, e_1)$. [4]
- Let $A = \mathbb{R}^2 0$; consider the 1-form in A defined the equation **07**) a) $w = (xdx + y dy)/(cx^2 + y^2)$. Show that w is closed, also show that w is exact on A.
 - Let A be open in \mathbb{R}^k ; Let $\alpha : A \to \mathbb{R}^n$ be of class C^{∞} . If w is an l form b) defined in an open set of \mathbb{R}^n containing $\alpha(A)$, then prove that $\alpha^*(dw) = d(\alpha^* w).$ [7]

[5]

Define parametrized - manifold of dimension k and volume. [2] c)

Q8) a) Let k > 1. Let M be a compact oriented k - manifold in ℝⁿ; give ∂M the induced orientation if ∂M is not empty. Let w be a k-1 form defined in an open set of ℝⁿ containing M. Then prove that [7]

$$\int_{M} dw = \int_{\partial M} w$$

b) Let M be a compact oriented k-manifold in \mathbb{R}^n ; Let w be a k-form defined in an open set of \mathbb{R}^n containing M. Let λ be the scalar function on M defined by the equation $\lambda(p) = w(p)$ ($(p ; a_1), \dots, (p ; q_k)$), where ($(p ; q_1), \dots, (p ; q_k)$) is any orthonormal frame in the linear space $T_p(M)$ belonging to its natural orientation. Then prove that λ is continuous, and $\int_M w = \int_M \lambda \, dv.$ [7]

 $\nabla \nabla \nabla \nabla$

P268

SEAT No. :

[Total No. of Pages : 3

[5828]-401

M.A./M.Sc.

MATHEMATICS

MTUT141 : Fourier Series and Boundary Value Problems (2019 Pattern) (Credit System) (Semester - IV)

Time : 3 Hours]

[Max. Marks : 70

1) Attempt any five questions.

Instructions to the candidates:

- 2) Figures to the right indicate full marks.
- **Q1**) a) Let f denote a function that is piecewise continuous on the interval $-\pi < x < \pi$ and periodic with period 2π on entire x axis. Then prove that

Fourier series converges to the mean value $\frac{f(x_1+)+f(x-)}{2}$ of the one sided limits of f at each point $x \ (-\infty < x < \infty)$. Where both of the one sided derivatives $f'_R(0) \& f'_L(0)$ exists. [7]

- b) Find the Fourier cosine series for the function $f(x) = x^4$ ($0 < x < \pi$). [5]
- c) Prove or disprove all Fourier series are differentiable.
- Q2) a) Let f denote a function such that
 - i) *f* is continuous on the interval $-\pi \le x \le \pi$
 - ii) $f(-\pi) = f(\pi)$
 - iii) It's derivative f' is piecewise continuous on the interval $-\pi < x < \pi$.

If $a_n \& b_n$ are the Fourier coefficients $a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \, dx$

 $b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \, dx$ for *f*, then prove that the series

$$\sum_{n=1}^{\infty} \sqrt{a_n^2 + b_n^2} \text{ converges.}$$
 [7]

b) Find the Fourier sine series for the function $f(x) = x(\pi^2 - x^2)$ ($0 < x < \pi$).[5]

c) If
$$f(x) = \frac{e^x - 1}{x}$$
 ($x \neq 0$), then find $f(0 +)$ and $f'_R(0)$. [2]

P.T.O.

[2]

Q3) a) Let *f* be a function that is piecewise continuous on the interval $-\pi < x < \pi$. Then prove that

$$\int_{-\pi}^{x} f(s) \, ds = \frac{a_0}{2} (x+\pi) + \sum_{n=1}^{\infty} \frac{1}{n} [a_n \sin nx - b_n [\cos nx + (-1)]^{n+1}] -\pi \le x \le \pi$$
[6]

- b) Find the Fourier series on the interval $-\pi < x < \pi$ that corresponds to the function $f(x) = x + \frac{1}{4}x^2 (-\pi < x < \pi)$ [5]
- c) Obtain the Fourier cosine series on 0 < x < c from the following series on $0 < x < \pi$

$$x^{2} \sim \frac{\pi^{3}}{3} + 4 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}} \cos nx \quad 0 < x < \pi$$
 [3]

- Q4) a) Solve the following boundary value problem $u_{xx}(x,y) + u_{yy}(x,y) = 0 \qquad (0 < x < \pi, 0 < y < 2)$ $u_{x}(0,y) = u_{x}(\pi,y) = 0, \qquad u(x,0) = 0$ u(x,2) = f(x)[6]
 - b) Solve the following boundary value problem $u_t(x, t) = ku_{xx}(x, t) (0 < x < \pi, t > 0)$ $u(0, t) = 0, u(\pi, t) = 0, u(x, 0) = f(x)$ [6]
 - c) If L is the linear operator $L = a^2 \frac{\partial^2}{\partial x^2} \frac{\partial^2}{\partial t^2}$ and $y_n = \sin\left(\frac{n\pi}{c}\right) x \cdot \cos\left(\frac{n\pi a}{c}\right) t$, then show that $Ly_n = 0$ (n = 1, 2,) [2]
- *Q5*) a) Solve the following boundary value problem $\rho^{2}u_{\rho\rho}(\rho,\phi) + \rho u_{\rho}(\rho,\phi) + u_{\phi\phi}(\rho,\phi) = 0 \ (1 < \rho < b, \ 0 < \phi < \pi)$ $u(\rho,0) = 0, \ u(\rho,\pi) = 0, \quad (1 < \rho < b)$ $u(1,\phi) = 0, \ u(b,\phi) = u_{0}, \quad (0 < \phi < \pi)$ [7]

b) Solve the following boundary value problem

$$u_{xx}(x,y) + u_{yy}(x,y) = 0 \ (0 < x < a, \ 0 < y < b)$$

 $u(0,y) = 0, \ u(a,y) = 0 \ (0 < y < b)$
 $u(x, \ 0) = f(x), \ u(x, \ b) = 0 \ (0 < x < a)$
[7]

- **Q6)** a) Find the stedy temperatures $u(\rho, \phi)$ in a thin disk $\rho \le 1$, with insulated surfaces when it's edge $\rho = 1$ is kept at temperatures $f(\phi)$. The variables $\rho \& \phi$ are polar co-ordinates & 4 satisfies Laplaces equation $\nabla^2 u = 0$ i.e. $\rho^2 u_{\rho\rho}(\rho, \phi) + \rho u_{\rho}(\rho, \phi) + u_{\phi\phi}(\rho, \phi) = 0$ ($0 < \rho < 1$ u($1, \phi$) = $f(\phi)$) u & it's first order partial derivatives $-\pi < \phi < \pi$) are continuous on the ray $\phi = \pi$. [7]
 - b) If X(x) & Y(x) are eigen function's corresponding to the same eigenvalue of a regular Sturm-Liouville problem, then prove that y(x) = cX(x) where *c* is non zero constant. [5]
 - c) Show that $\psi_1(x) = x$ and $\psi_2(x) = 1 3x^2$ are orthogonal on the interval -1 < x < 1. [2]
- **Q7)** a) Prove that the orthonormal set $\{\phi_n(x)\}$ is complete in the space in which each function *f* has these properties : [7]
 - i) *f* is continuous on the interval $-\pi \le x \le \pi$.
 - ii) $f(-\pi) = f(\pi)$
 - iii) It's derivative f' is piecewise continuous on the interval $-\pi < x < \pi$.

b) If
$$\phi_0(x) = \frac{1}{\sqrt{2\pi}}$$
, $\phi_{2n-1}(x) = \frac{1}{\sqrt{\pi}} \cos nx$,
 $\phi_{2n}(x) = \frac{1}{\sqrt{\pi}} \sin nx \ (n = 1, 2, \dots, n)$ then show that the set $\{\phi_n(x)\}$
 $(n = 0, 1, 2, \dots)$ is orthonormal on the interval $-\pi < x < \pi$. [5]

- c) Show that each of the functions $y_1 = \frac{1}{x}$ and $y_2 = \frac{1}{1+x}$ satisfies the nonlinear differential equation $y' + y^2 = 0$ Then show that the sum $y_1 + y_2$ fails to satisfy that equation. [2]
- *Q8)* a) If λ_m and λ_n are distinct eigenvalues of the Sturm Liouville problem. $[r(x)X^1(x)]^1 + [g(x) + \lambda P(x)] X(x) = 0$ a < x < b under the condition $a_1 X(a) + a_2 X^1(a) = 0$, $b_1 X(b) + b_2 X^1(b) = 0$ then prove that corresponding eigen functions $X_m(x)$ and $X_n(x)$ are orthogonal with respect to weight function p(x) on the interval a < x < b. [6]
 - b) Find eigenvalues & normalized eigen function of Sturm-Liouville problem. $X''(x) + \lambda X(x) = 0, X(0) = 0, hX(1) + X'(1) = 0 (h > 0).$ [3]
 - c) Solve the following boundary value problem. $u_{xx}(x, y) + u_{yy}(x, y) = 0 \quad (0 < x < \pi, y > 0)$ $u_{x}(0, y) = 0, u(\pi, y) = 0 \quad (y > 0)$ $-Ku_{y}(x, 0) = f(x) \quad (0 < x < \pi) \text{ where K is positive constant.}$ [5]
 - $\nabla \nabla \nabla \nabla$

SEAT No. :

P269

[Total No. of Pages : 3

[5828]-402 M.A/M.Sc.

MATHEMATICS

MTUT - 142 : Differential Geometry

(2019 Pattern) (Credit System) (Semester - IV)

Time : 3 Hours]

[Max. Marks : 70

Instructions to the candidates:

- 1) Attempt any five questions.
- 2) Figures to right indicate full marks.
- *Q1*) a) Let S be an *n*-surface in \mathbb{R}^{n+1} , let $\alpha: I \to S$ be a parametrized curve in S, let $t_0 \in I$ and let $\vec{v} \in S_{\alpha}(t_0)$. Prove that there exists a unique vector field \vec{V} tangent to S along α , which is parallel and has $\vec{V}(t_0) = \vec{v}$. [7]
 - b) Compute Weingarten Map of *n*-sphere $x_1^2 + --+ x_{n+1}^2 = r^2, r > 0$ oriented by inward unit normal vector field \vec{N} . [5]
 - c) Find and sketch the gradient field of the function $f(x_1, x_2) = x_1 + x_2$. [2]
- Q2) a) Let $S \subseteq \mathbb{R}^{n+1}$ be a connected *n*-surface in \mathbb{R}^{n+1} . Prove that there exist on S exactly two smooth unit normal vector fields \vec{N}_1 and \vec{N}_2 with $\vec{N}_2(p) = -\vec{N}_1(p)$ for all $p \in S$. [7]
 - b) Let S be the hyperboloid $-x_1^2 + x_2^2 + x_3^2 = 1$ oriented by the unit normal vector field $N(p) = \left(p_1 \frac{-x_1}{\|p\|}, \frac{x_2}{\|p\|}, \frac{x_3}{\|p\|} \right), p = (x_1, x_2, x_3) \in S$ then find normal curvature of S at p = (0, 0, 1). [5]
 - c) Define term *n*-surface in \mathbb{R}^{n+1} with an example. [2]

b) Show that gradient of f at $p \in f^{-1}(c)$ is orthogonal to all vectors tangent to $f^{-1}(c)$ at p. [5]

[7]

- c) Show by example that set of vectors tangent at a point p of a level set need not in general be a vector subspace of \mathbb{R}_p^{n+1} . [2]
- Q4) a) Let S be an oriented *n*-surface in \mathbb{R}^{n+1} and let \vec{v} be a unit vector in Sp, $p \in S$. Show that there exists an open set $V \subset \mathbb{R}^{n+1}$ containing *p* such that $S \cap N(\vec{v}) \cap V$ is a plane curve. Also show that curvature at *p* of this curve is equal to normal curvature $k(\vec{v})$. [7]
 - b) Show that for each $a, b, c, d \in \mathbb{R}$ the parametrized curve $\alpha(t) = (\cos(at+b), \sin(at+b), ct+d)$ is a geodesic in the cylinder $x_1^2 + x_2^2 = 1$ in \mathbb{R}^3 . [5]
 - c) Let \vec{X} be smooth vector field along the parametrized curve $\alpha: I \to R^{n+1}$ and f be smooth function along $\alpha(t)$. Prove that $(f \vec{X}) = f' \vec{X} + f \vec{X}$. [2]
- **Q5**) a) Find global parametrization of circle $(x_1 a)^2 + (x_2 b)^2 = r^2$. [5]
 - b) Let S be an *n*-surface in Rⁿ⁺¹, oriented by unit normal vector field N. Let p∈S and v∈S_p. Then show that for every parametrized curve α:I→S with α(t₀)=v for some t₀ ∈ I α(t₀).N(p)=L_p(v).v [5]
 - c) Let f:U→R be a smooth function, where U⊂Rⁿ⁺¹ is an open set and let α:I→U be a parametrized curve. Show that foα is constant if and only if α is everywhere orthogonal to gradient of f. [4]

- **Q6**) a) Let S be a 2-surface in R³ and let $\alpha: I \rightarrow S$ be a geodesic in S with $\dot{\alpha} \neq 0$. Show that vector field \overline{X} tangent to S along α is parallel along α if and only if both $\|\overline{X}\|$ and angle between \overline{X} and $\dot{\alpha}$ are constant along α . [5]
 - b) Let $\alpha(t) = (x(t), y(t))$ $(t \in I)$ be a local parametrization of oriented plane curve C. Show that $ko\alpha = \frac{x' y'' - y'x''}{(x'^2 + y'^2)^{\frac{3}{2}}}$. [5]
 - c) Show that $x_1^2 + \dots + x_{n+1}^2 = 1$ is *n*-surface whenever $(x_1, \dots, x_{n+1}) \neq (0, 0, \dots - 0)$. [4]
- Q7) a) Let S be a compact oriented connected n-surface in Rⁿ⁺¹ exhibited as a level set f⁻¹(c) of a smooth function f:Rⁿ⁺¹→R with ∇f(p)≠0 for all p∈S. Prove that Gauss Map Maps S onto unit sphere Sⁿ. [7]

b) Let
$$\eta = \frac{-x_2}{x_1^2 + x_2^2} dx_1 + \frac{x_1}{x_1^2 + x_2^2} dx_2$$
 be the 1-form on $\mathbb{R}^2 - \{0\}$ and C denote the
ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ oriented by its inward normal and $\alpha : [0, 2\pi] \rightarrow \mathbb{C}$ defined
by $\alpha(t) = (a \cos t, b \sin t)$ be parametric curve whose restriction to $[0, 2\pi]$
is one-one global parametrization of C, then find $\int_{\alpha}^{\eta} \cdot \mathbb{I} s \eta$ exact? [7]

- **Q8)** a) Prove that on each compact oriented *n*-surface S in \mathbb{R}^{n+1} , there exists a point *p* such that the second fundamental form at *p* is definite. [7]
 - b) Let $a,b,c \in \mathbb{R}$ be such that $ac-b^2 > 0$ then show that the maximum and minimum values of the function $g(x_1, x_2) = ax_1^2 + 2bx_1x_2 + cx_2^2$ on unit circle $x_1^2 + x_2^2 = 1$ are of the form λ_1, λ_2 where λ_1, λ_2 are eigenvalues of Matrix $\begin{pmatrix} a & b \\ b & c \end{pmatrix}$. [7]

Total No. of Questions : 4]

P270

SEAT No. :

[Total No. of Pages : 1

[5828]-403 M.A./M.Sc. MATHEMATICS

MTUT 143 : Introduction to Data Science

(2019 Pattern) (Semester - IV)

Time : 2 Hours]

[Max. Marks : 35

Instructions to the candidates:

- 1) Figures to the right indicate full marks.
- 2) Question 1 is compulsory.
- 3) Attempt any two questions from Q.2, 3 and 4.
- *Q1*) Define the term big data and mention all steps involved in the process of data science.[7]

Q2)	a)	Give any five forms of data.				
	b)	Describe data transformation process.	[5]			
	c)	State details to be covered in a project charter.	[4]			
Q 3)	a)	What is machine learning? Where it is used in data science pro Give any two Pythol tools used in machine learning.	ocess? [5]			
	b)	Write a short note on types of machine learning.	[5]			
	c)	State problems occurring in handling large data.	[4]			

- Q4) a) Explain in detail concept of Hadoop and its Components. [5]
 b) Write a short note on text mining and handling techniques to it. [5]
 c) Give packages in Python which are used for text mining. [4]
 - packages in r ython which are used for text infining.

Total No. of Questions : 8]

SEAT No. :

P271

[5828]-404 M.A./M.Sc. MATHEMATICS MTUTO 144 : Number Theory (2019 Pattern) (Semester - IV)

Time : 3 Hours]

Instructions to the candidates:

- 1) Attempt any Five qustions.
- 2) Figures to the right indicates full marks.
- *Q1*) a) Prove that every nonzero nonunit of an integral domain R is a product of irreducibles.[7]
 - b) If a, b and c are integers such that a/bc and a,b both are relatively prime then show that a/c. [4]
 - c) Show that $8/n^2-1$, for any odd integer n. [3]
- Q2) a) Let k[x] denotes ring of polynomials with coefficients in a field k and $f, g \in k[x]$. If $g \neq o$, then prove that there exist polynomials $h, r \in k[x]$ such that f = hg + r, where either r = o or $r \neq o$ and deg r < deg g. [6]
 - b) If x and y are odd, then prove that $x^2 + y^2$ can not be a perfect square.[4]
 - c) Show that 2 is divisible by $(1+i)^2$ in $\mathbb{Z}[i]$. [4]
- *Q3*) a) If $a,b,m \in \mathbb{Z}$ and $m \neq o$ then prove that
 - i) $\overline{a} = \overline{b}$ if and only if $a \equiv b \pmod{m}$, where $\overline{a}, \overline{b}$ are congruence class modulo *m*.
 - ii) $\overline{a} \neq \overline{b}$ if and only if $\overline{a} \cap \overline{b}$ is empty.
 - iii) There are precisely *m* distinct congruence classes modulo *m*. [8]

[Max. Marks : 70

[Total No. of Pages : 3

b) Find all primes q such that
$$\left(\frac{5}{q}\right) = -1$$
. [6]

$$Q4$$
) a) State and prove Eulers theorem. [5]

b) If p is an odd prime then prove that
$$\left(\frac{a}{p}\right) \equiv a^{\left\lfloor\frac{p-1}{2}\right\rfloor} \pmod{p}$$
. [5]

c) Find
$$\sigma(40), \phi(40)$$
. [4]

Q5) a) If p and q are district odd primes, then prove that
$$\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{\left(\frac{p-1}{2}\right)\left(\frac{q-1}{2}\right)}$$
[7]

b) Find all integers that satisfy the following congruences simultaneously:[5]

$$x \equiv 1 \pmod{3}$$
$$x \equiv 2 \pmod{4}$$
$$x \equiv 3 \pmod{5}$$

c) Show that
$$(a, a+2) = 1$$
 or 2 for every integer a. [2]

Q6) a) If x & y are any real numbers, then prove that.

i)
$$[x]+[y] \le [x+y] \le [x]+[y]+1$$
 and
ii) $\left[\frac{[x]}{m}\right] = \left[\frac{x}{m}\right]$ if m is a positive integer.

b) State and prove de polignac's formula. [6]

[8]

- **Q7**) a) Define a divisor function *d*. And if *n* is a positive integer then prove that $d(n) = \underset{p^{\alpha} \parallel n}{\pi} (\alpha + 1)$ [6]
 - b) If α is any algebraic number then prove that there is a rational integer *b* such that b α is an algebraic integer. [5]
 - c) Find the smallest integer x for which $\phi(x) = 6$. [3]
- *Q8*) a) If ξ is an algebraic number of degree n, then prove that every number in $Q(\xi)$ can be written uniquely in the form $a_0 + a_1\xi + ... + a_{n-1}\xi^{n-1}$ where the ai are rational numbers. [7]

b) If
$$F(n) = \sum_{d/n} f(d)$$
 for every positive integer *n*, then prove that $f(n) = \sum_{d/n} \mu(d) F\left(\frac{n}{d}\right)$. [5]

c) Find the minimal polynomic of the algebraic number $\frac{1+\sqrt[3]{7}}{2}$. [2]

SEAT No. :

[Total No. of Pages : 3

P272

[5828]-405

M.A./M.Sc.

MATHEMATICS

MTUTO 145 : Algebraic Topology

(2019 Pattern) (CBCS) (Semester - IV)

Time : 3 Hours]

[Max. Marks : 70]

Instructions to the candidates:

- 1) Attempt any Five questions.
- 2) Figures to the right indicate full marks.
- *Q1*) a) Prove that the homotopy relation is an equivalence relation. [5]
 - Show that if $h, h^1: x \to y$ are homotopic and $k, k^1: y \to z$ then koh and b) k'oh' are homotopic. [5]
 - Given spaces X and Y. Let [X,Y] denote the set of homotopy classes of c) Maps of X into Y. Let I = [0, 1], show that for any X, the [X, I] has single element. [4]
- A space X is said to be contractible if the identity map $I_X : x \to x$ is *Q2*) a) nulhomotopic then show that I and \mathbb{R} contractible. [5]
 - Let α be a path in x from x_0 to x, define a map $\hat{\alpha}: \pi_1(\mathbf{X}, x_1) \to \pi_1(\mathbf{X}, x_1)$ by b) $\hat{\alpha}([F]) = [\overline{\alpha}] * [F] * [\alpha]$ then show that $\hat{\alpha}$ is a group homomorphism.[5] c) Define the following term [4]
 - Simply connected Star convex i) ii)

Find the star convex set that is not convex. [5] **Q3**) a)

- Let α be a path in X from x_0 to x_1 Let β be a path in X from x_1 to x_2 Show b) that if $\gamma = \alpha * \beta$
 - then $\hat{\gamma} = \hat{\beta} o \hat{\alpha}$. [5]
- Define a covering map.Show that a covering map is a local c) homomorphism. [4]

Q4) a) Give an example of a non identity covering map from S¹ on to S¹. [5]

- b) Let $q: X \to Y$ and $r: Y \to Z$ be covering maps, Let p = roq. Show that $r^{-1}(z)$ is finite for each $z \in Z$, then P is covering map. [5]
- c) Prove that there is no retraction of B^2 onto S^1 . [4]
- **Q5**) a) Define the following terms. [4]
 - i) Free group
 - ii) Wedge of the circles

b) If
$$G = G_1 * G_2$$
 show that $\frac{G}{[G,G]} \cong \left(\frac{G_1}{[G_1,G_1]}\right) \oplus \left(\frac{G_2}{[G_2,G_2]}\right)$. [6]

- c) State Seifert Van Kampen theorem. [4]
- *Q6*) a) Let X be the wedge of circle S_{α} for $\alpha \in J$, then X is normal. [5]
 - b) Show that if X is an infinite wedge of circles, then X does not satify the first countability axiom. [5]
 - c) Prove that the fundamental group of the torus is a free abelian group of rank 2. [4]
- *Q7*) a) Find spaces whose fundamental group is isomorphic to the following groups.[8]
 - i) $Zn \times Zm$
 - ii) Zn * Zm
 - b) Let $\pi: E \to X$ be a closed quotient map. If E is normal then so is X. [6]

- **Q8)** a) Let P:E \rightarrow B and P':E' \rightarrow B' be covering maps, Let $p(e_0) = p'(e'o) = b_0$. There is an equivalence $h: E \rightarrow E'$ such that $h(e_o) = e'_o$ if and only if the groups $H_o = p_*(\pi_1(E, e_o))$ and $H'_o = p'_*(\pi_1(E', e'_o))$ are equal. If h exist, it is unique. [6]
 - b) Show that if n > 1, every continous map $f: S^n \to S^1$ is nulhomotopic.[4]
 - c) Find a continous map of the torus into S^1 that is not nulhomotopic. [4]

0000

P273

[Total No. of Pages : 3

[Max. Marks : 70]

[5828]-406 M.A./M.Sc. MATHEMATICS

MTUTO - 146 : Representation Theory of Finite Groups (2019 Pattern) (Credit System) (Semester - IV)

Time : 3 Hours] Instructions to the candidates:

1) Attempt any five questions.

Figures to the right indicate full marks. 2)

- *Q1*) a) State and prove triangle inequality. [4]
 - b) Verify whether following matrices are diagonalizable. [6]

i)
$$A = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

ii)
$$B\begin{bmatrix} 1 & 1\\ 0 & 1 \end{bmatrix}$$

c) Define following terms :

[4]

- i) Decomposable representation.
- ii) Unitary representation.
- **Q2)** a) Let φ : G \rightarrow G L (v) be a unitary representation of a group then show that φ is either irreducible or decomposable. [6]
 - b) Give an example of an indecomposible representation of Z which is not irreducible. [4]
 - c) Show that Z[L(G)] is a subspace of L(G). [4]

Q3) a) Prove that a representation ρ is irreducible if and only if $\langle X_e, Y_{\rho} \rangle = 1$. [5]

- b) Let L be rectangular representation of G, then prove that the decomposition L ~ $d_1 \phi^{(1)} \oplus d_2 \phi^{(2)} \oplus \underline{} \oplus d_5 \phi^{(s)}$ holds [5]
- c) Show that the formula

$$|G| = d_1^2 + d_2^2 + ___+ ds^2$$
 holds [4]

Q4) a) Show that the set
$$\mathbf{B} = \left\{ \sqrt{dk} \varphi_{(i)}^{(k)} | 1 \le (i, j) \le dk \right\}$$
 is an orthonormal basis for L (G) [5]

- b) Prove that a finite group G is abelian if and only if it has |G| equivalence classes of irreducible representations. [5]
- c) Define following terms : [4]
 - i) Character table
 - ii) Multiplicity
- Q5) a) Prove that the set L(G) is a ring with addition taken pointwise and convolution as multiplication. [4]
 - b) Prove that the map $T = L(G) \rightarrow L(\hat{G})$ given by $Tf = \hat{f}$ is an invertible linear transformation. [5]
 - c) Prove that the linear map $T = L(G) \rightarrow L(\hat{G})$ given by $Tf = \hat{f}$ provides a ring isomorphism between (L(G), +, *) and $(L(\hat{G}), +, *)$ [5]

Q6) a)	Define the term completely reducible.				
b)	Write an example of irreducible representation.	[2]			
c)	Define Inner product space.	[2]			
d)	State and prove Kayley Hamiton theorem.	[4]			
e)	Show that $\varphi: \mathbb{Z}_{n} \mathbb{Z} \to \mathbb{C}^*$ defined by $\varphi(m) = e^{\frac{2\pi i m}{n}}$ is a representation	tion. [4]			

- **Q7**) a) Prove that every representation of a finite group is completely reducible.[5]
 - b) Define $\varphi : \mathbb{R} \to \mathbb{T}$ by $\varphi(t) = e^{2\pi i t}$. Then prove that φ is unitary representation of the additive group of \mathbb{R} . [5]
 - c) Let $\phi: G \to GL(v)$ be a non zero representation of a finite group. Then prove that ϕ is either irreducible or decomposible. [4]
- **Q8)** a) Let the map $T = L(G) \rightarrow L(\hat{G})$ is given by $Tf = \hat{f}$. Then prove that T is an invertible linear transformation. [4]
 - b) Define the terms : [5]

Fourier transform and convolution. Further state where the fourier transform of cyclic group is used?

c) Prove that the class function form the center of L(G). [5]

Total No. of Questions : 8]

P274

[5828]-407

M.A./M.Sc.

MATHEMATICS

MTUTO147 : Coding Theory

(2019 Pattern) (Semester - IV) (Credit System)

Time : 3 Hours]

[Max. Marks : 70

[Total No. of Pages : 3

SEAT No. :

Instructions to the candidates:

- 1) Attempt any five questions.
- 2) Figures to the right indicates full marks.

Q1) a) Prove that a code C is u - error-detecting if and only if $d(c) \ge u + 1$. [5]

- b) For $S = \{101, 111, 010\} \subseteq F_2^3$, find F_2 linear span < S > and its orthogonal compliment S^{\perp} . [5]
- c) Show that binary Hamming codes are perfect codes. [4]

Q2) a) Let V be a vector space over F_q . If dim (V) = K then prove that

i) V has q^k elements.

ii) V has
$$\frac{1}{K!} \prod_{i=0}^{k-1} (q^k - q^i)$$
 different bases. [7]

- b) If $g(x) = (1+x)(1+x^2+x^3) \in F_2(x)/(x^7-1)$ is a generator polynomial of cyclic code C then find C and dim (C) [4]
- c) Let C be a binary linear code with parity check matrix

	[1	0	1	0	0
Η=	1	1	0	1	0
	0	1	0	0	1
Find d(C)).				

P.T.O.

Q3) a) For an integer q > 1 and itegers n, d such that $1 \le d \le n$, Prove that

$$\frac{q^{n}}{\sum_{i=0}^{d-1} {n \choose i} (q-1)^{i}} \leq A_{q}(n,d)$$
[5]

- b) Construct the incomplete maximum likelihood decoding table for binary code $C = \{000, 001, 010, 011\}$ [5]
- c) If C and D are two linear codes over F_q of same length then prove that $C \cap D$ is also a linear code over F_q . [4]

Q4) a) If C = {0000, 1011, 0101, 1110}
$$\subseteq$$
 F₂⁴ is a linear code then decode

- i) w = 1101
- ii) w = 0111

by using nearest neighbour decoding for linear code. [6]

b) Let g(x) be the generator polynomial of an ideal of $F_q(x) | (x^n-1)$. If degree of g(x) is n-k then prove that dimension of cyclic code corresponding to the ideal is K. [5]

c) Is C = {(0,1,1,2), (2,0,1,1), (1,2,0,1), (1,1,2,0)}
$$\subseteq F_3^4$$
 cyclic code? Justify. [3]

- **Q5**) a) Let S be a subset of F_q^n . Prove that dim (<S>) + dim (S^{\perp}) = n. [5]
 - b) Let $S = \{0100, 0101\} \subseteq F_2^4$. Verify that dim (<S>) + dim (S^{\perp}) = n. [5]
 - c) If q is a prime power then show that Bq (n, n) = Aq(n, n) = q. [4]
- **Q6**) a) Prove that for all integers $\gamma \ge 0$, a sphere of radius γ in Aⁿ contains exactly $V_a^n(\gamma)$ vectors, where A is a alphabet of size q > 1. [6]
 - b) Suppose that codewords from the binary code $\{000, 100, 111\}$ are being sent over a binary symmetric channel with crossover probability P = 0.03. Use maximum likelihood decoding rule to decode w = 011. [4]
 - c) Find dimension of the binary BCH code of length 15 with designed distance 3 generated by $g(x) = l \operatorname{cm} (M^{(2)}(x), M^{(3)}(x))$ [4]

- Q7) a) Find a generator matrix and a parity check matrix for the linear code $C = \langle S \rangle$ where $S = \{110000, 011000, 001100, 000110, 000011\} \subseteq F_3^6$. [6]
 - b) Let C be an $[n_1 k]$ linear code over Fq with generator matrix G then prove that $V \in C^{\perp}$ if and only if $V \cdot G^T = 0$. [5]
 - c) Let $C = \{00000000, 11110000, 11111111\} \subseteq F_2^8$. Exactly how many errors will C correct? [3]
- **Q8)** a) Let C be an (n, k, d) linear code over finite field F_q then prove that i) Two cosets are either equal or they have empty intersection.
 - ii) For all $u, v \in F_q^n$, $u v \in C$ if and only if u and v are in same coset. [7]
 - b) Consider (7, 4, 3) binary Hamming code with generator polynomial $g(x) = 1 + x^2 + x^3$ and received word w = 1011100. Decode w. [7]

SEAT No. :

[Total No. of Pages : 4

P275

[5828]-408

S.Y. M.A./M.Sc. MATHEMATICS

MTUTO-148: Probability and Statistics (2019 Pattern) (Semester - IV) (Credit System)

Time : 3 Hours]

[Max. Marks : 70

Instructions to the candidates:

- 1) Attempt any Five questions.
- 2) Figures to the right indicate full marks.
- 3) Use of scientific calculator is allowed.
- *Q1*) a) Attempt following :
 - i) State Baye's theorem.
 - ii) Define conditional probability of an event.
 - b) One bag contains 4 white balls and 3 black balls and second bag contains 3 white balls and 5 black balls. One ball is drawn from the first bag and placed unseen in the second bag. What is the probability that a ball now drawn from second bag is black? [5]
 - c) Suppose that the error in the reaction temperature in °C for a controlled laboratory experiment is continuous random variable X having the probability density function

$$f(x) = \begin{cases} \frac{x^2}{3} & -1 < x < 2\\ 0 & \text{elsewhere} \end{cases}$$

i) Verify that f(x) is a density function

ii) Find $P(0 < x \le 1)$

[5]

P.T.O.

[4]

- **Q2**) a) Prove that the covariance of two random variables X and Y with means μ_x and μ_y respectively is given by $\sigma_{xy} = E(XY) \mu_x \mu_y$. [4]
 - b) The fraction X of male runners and the fraction Y of female runners who complete in Marathon races are described by the joint density function.

$$f(x,y) = \begin{cases} 8xy & 0 \le y \le x \le 1\\ 0 & \text{elsewhere} \end{cases}$$
[5]

c) Suppose that the number of cars X that pass through the car wash between 4.00 p.m. to 5.00 p.m. on Friday has the following probability distribution.

Let g(x) = 2x-1 represent the amount of money paid to the attendant by the manager. Find the attendants expected earning for this particular time period. [5]

- (Q3) a) Prove that the mean and variance of a variable following the geometric distribution are $\mu = \frac{1}{p}$ and $\sigma^2 = \frac{1-p}{p^2}$. [4]
 - b) A home owner plants 6 bulbs selected at random from a box containing 5 tulip bulbs and 4 daffodil bulbs. What is the probability that he planted two daffodil bulbs and 4 tulip bulbs. [5]
 - c) On average, 3 traffic accidents per month occur at a certain intersection.What is the probability that in any given month at this intersection. [5]
 - i) Exactly five accidents will occur
 - ii) At least two accidents will occur
- *Q4*) a) Prove that the mean and variance of $n(x; \mu, \sigma)$ are μ and σ^2 respectively. Further show that the Standard deviation is σ . [4]
 - b) Suppose that a system contains a certain type of component whose time in years, to failure is given by T. The random variable T is modelled nicely by the exponential distribution with mean time to failure $\beta = 5$. If 5 of these components are installed in different systems, what is the probability that at least 2 are still functioning at the end of 8 years. [5]

c) Given that X has a normal distribution with $\mu = 300$ and $\sigma = 50$. Find the probability that X assumes the value greater than 362. [5]

Q5) a) Prove that an unbiased estimate of
$$\sigma^2$$
 is $S^2 = \frac{Syy - b_1 5xy}{n-2}$. [4]

b) Compute and interpret the correlation coefficient for the following data. [5]

Mathematics grade	English grade		
70	74		
92	84		
80	63		
74	87		
65	78		
83	90		

- c) The life in years, of a certain type of electrical switch has an exponential distribution with an average life $\beta = 2$. If 100 of these switches are installed in different systems. What is the probability that at most 30 fail during the first years. [5]
- **Q6)** a) A manufacturing firm employes three analytical plans for the design and development of a particular product. For cost reasons, all three are used at varying times. In fact plant 1, 2, and 3 are used for 30%, 20% and 50% of the products respectively. The defect rate is different for 3 procedures as follows. $P(D|P_1) = 0.01$, $P(D|P_2) = 0.03$, $P(D|P_3) = 0.02$ where $P(D|P_i)$ is the probability of the defective product given plan *i*. If a random product was observed and found to be defective, which plan was observed most likely used and thus responsible. **[6]**
 - b) If X_1, X_2, \dots, X_n are mutually independent random variables that have respectively Chisquared distributions with V_1, V_2, \dots, V_n degrees of freedom then prove that the random variable $Y = X_1 + X_2 + \dots + X_n$ has a Chi squared distribution with $V = V_1 + V_2 + \dots + V_n$ degrees of freedom. [4]
 - c) In how many ways can 7 graduates be assigned to one triple and two double hotel rooms during a conference. [4]

- (Q7) a) Let X and Y be two random variable with moment generating functions $M_x(t)$ and $M_y(t)$ respectively. If $M_x(t) = M_y(t)$ for all values of t then prove that X & Y have the same probability distribution. [4]
 - b) Show that the moment generating function of a random variable X having normal probability distribution with mean μ and variance σ² is given by M_x(t) = e^(μt+¹/₂σ²t²). [5]
 - c) A group of 10 individuals is used for a biological case study. The group contains 3 people with blood type 0, 4 with blood type A, 3 with blood type B. What is the probability that a random sample of 5 will contain 1 person with blood type 0, 2 people with blood type A and two people with blood type B.
- **Q8)** a) Prove that mean and variance of gamma distribution are $\mu = \alpha\beta$ and $\sigma^2 = \alpha\beta^2$. [4]
 - b) What are the implications of a transformed model. [5]
 - c) In an National Basketball Association NBA championship series, the team that wins 4 games out of seven is the winner. Suppose that teams A and B face each other in the championship games and that team A has probability 0.55 of winning a game over team B.
 - i) What is the probability that team A will win the series in 6 games?
 - ii) What is the probability that team A will win the series?

[5]

