SEAT No.:		
[Total	No. of Pages	<u>-4</u>

P2649

[4666]-55

M.C.A. (Commerce)

506-OPERATION RESEARCH

(Semester-V) (2008 Pattern)

Time: 3 Hours [Max. Marks: 80

Instructions to the candidates:

- 1) All questions are compulsory.
- 2) Figures to the right indicate full marks.
- 3) Give illustrations wherever necessary.
- 4) Use of calculator is allowed.
- **Q1)** Attempt Any Three of the following:

[15]

- a) What is general linear programming problem? Write in mathematical form when the LPP is in standard form.
- b) Food X contains 5 units of vitamin A per gram and 12 units of Vitamin B per gram. Food Y contains 10 units of Vitamin A per gram and 6 units of Vitamin B per gram. Cost of food X and food Y are 12 paise and 20 paise per gram respectively. The daily minimum requirement of Vitamin A is 100 units and that of B is 120 units. Formulate a LPP.
- c) Solve the following L.P.P. by Simplex method

$$Max Z = 5x + 3y$$

Subject to
$$x + y \le 2$$

$$5x + 2y \le 10$$

$$3x + 2y \le 12$$

$$x \ge 0, y \ge 0$$

d) Find the dual of L.P.P.

Min
$$Z=10x_1 + 6x_2 + 2x_3$$

Subject to
$$-x_1 + x_2 + x_3 > 1$$

$$3 x_1 + x_2 - x_3 \ge 2$$

$$x_1, x_2, x_3 \ge 0$$

Q2) Attempt any three of the following:

[15]

- Define Operation Research and give any two examples.
- Find IBFS by least cost method of the following TP b)

Destination

Solve the following assignment problem for minimization. c)

Determine the dual of following primal d)

Max
$$Z=7y_1 + 9y_2$$

Subject to

$$y_1 + 2y_2 \le 1$$

- $y_1 + 3y_2 \le 2$

Where y_{1,y_2} are unrestricted

Q3) Attempt any three of the following:

[15]

- Write basic difference between PERT and CPM. a)
- Solve the following game by algebraic method. b)

Player A I II
$$I \begin{bmatrix} 20 & -6 \\ II \begin{bmatrix} -4 & 3 \end{bmatrix}$$

Find IBFS for the T.P. by North -West Corner method. c) Destination

Demand 2 5 5 8 20

- d) Define
 - Event ii) Activity iii) Critical Path iv) Float i)
- **Q4)** Attempt any three of the following:

[15]

Solve the following game graphically

Player B

Player A
$$\begin{bmatrix} 6 & 7 & 15 \\ 20 & 12 & 10 \end{bmatrix}$$

Solve the following A.P. to minimize the lost such that machine \mathbf{M}_2 cannot b) be assigned job C and machine M₃ cannot be assigned job A. Jobs

- Define c)
 - Slack Variable i)
- iii) Feasible Solution
- ii) Surplus Variableiv) Degenerate basic feasible solution
- Convert the following LPP to canonical form d)

Max
$$Z=5x+3y$$

Subject to
$$x-3y=2$$
$$-x+y \ge 1$$
$$x, y \ge 0$$

Q5) Attempt any two of the following:

[20]

a) A building construction project has the following time schedule.

Activity	Time in month
1–2	2
2–3	1
2–4	4
4–5	5
5–6	8
5–7	2
6–8	3
7-8	1

- i) Draw an arrow diagram for this project.
- ii) Find critical path and its duration.
- b) Obtain initial basic feasible solution of the following T.P by Vogel's approximation method. Is this solution optimal? If not find optimal solution by MODI method.

Destination

Origin
$$\begin{bmatrix} 5 & 6 & 2 & 3 \\ 1 & 2 & 6 & 9 \\ 5 & 6 & 7 & 2 \end{bmatrix} \begin{cases} 8 \\ 9 \\ 11 \end{cases}$$

$$8 \quad 5 \quad 6 \quad 9 \quad 28$$

c) Solve the following LPP by Simplex Method.

$$x + 2y + z \le 43$$
$$3x + 2z \le 46$$
$$x + 4y \le 12$$
$$x, y, z \ge 0$$