	_	_	_
\mathbf{n}	11	1	41
\mathbf{P}_{I}		4	ч
	₹,	_	_

SEAT No. :	
------------	--

[4821]-11 M.A./M.Sc.

MATHEMATICS

MT-501: Real Analysis - I (2008 Pattern) (Semester - I) [Max. Marks:80 Time: 3 Hours] Instructions to the candidates: Attempt any five questions. 2) Figures to the right indicate full marks. Define an inner product space and show that \mathbb{R}^2 is an inner product **Q1)** a) space with respect to the inner product defined by, $\langle x, y \rangle = \sum_{i=1}^{2} x_i y_i$. [6] State and prove Cauchy Schwarz inequality. b) [6] With usual notations find d(1,1), (2,3) in $\|\cdot\|_1$ and $\|\cdot\|_2$. c) [4] Show that $||x|| = \frac{1}{3} ||x||_1 + \frac{2}{3} ||x||_2$ defines a norm on \mathbb{R}^n . **Q2)** a) [6] b) Prove that l^1 is infinite dimensional space. [6] Let f(x) = 1, g(x) = x defined on [0, 1] then with respect to sup norm in c) e[0, 1] find d(f, g). [4] **Q3**) a) Show that compact sets of a metric space are closed. [6] Define a separable metric space and show that reals with discrete metric b) is not separable. [6] State c) [4]

Heine Borel theorem

Arzela Ascoli theorem

i)

ii)

- Let A and B be subsets of a metric space (X, a) prove or disprove [6] **Q4)** a) i) $\operatorname{int}(A \cup B) = \operatorname{int}(A) \cup \operatorname{int}(B)$ ii) $\operatorname{int}(A \cap B) = \operatorname{int}(A) \cap \operatorname{int}(B)$ Let $A = (0,1) = \{(x,0)/0 < x < 1\} \subset \mathbb{R}^2$ then whether A is open, closed, b) i) neither or both? Justify. [6] Find closure of set of rational numbers in \mathbb{R} with usual metric. ii) Prove that, in any metric space a Cauchy sequence is a bounded sequence. c) [4] Define a measurable function and show that addition and multiplication **Q5)** a) of two measurable functions are also measurable. Let $A, B \subset \mathbb{R}^2$ defined by $A = [0,4] \times (1,10]$ $B = (0,1] \times [0,2]$. Draw picture of b) S(A, B) and find D(A, B). [6] Give an example to show that strict inequality hold in fatou's lemma. [4] c) State and prove Lebesque dominated convergence theorem. **Q6**) a) [6]
 - b) Let $1 and <math>f \in L^p, g \in L^q$ then show that $fg \in L^1$ and $\|fg\|_1 \le \|f\|_p' \|g\|_q$. [6]
 - c) Prove that step functions are dense in $L^p(u)$ for $1 \le p < \infty$. [4]
- Q7) a) State and prove Bessel's inequality. [8]
 - b) Calculate Fourier series expansion for $f(x) = x^2$. [8]
- **Q8)** a) Obtain Legendre polynomials by applying Gram-Scmidt process to functions $1, x, x^2,...$ [8]
 - b) Show that the sequence $\left\{\frac{e^{inx}}{\sqrt{2\pi}}/n \in z\right\}$ is a compute orthonormal sequence in $L^2[-\pi,\pi]$ [8]

EEE

	_		_
\mathbf{n}	Λ		Λ
\mathbf{P}		•	
	v	J	v

[4821]-12 M.A./M.Sc.

MATHEMATICS

MT-502: Advanced Calculus

(2008 Pattern) (Semester - I) (Old Course)

Time: 3 Hours [Max. Marks: 80

Instructions to the candidates:

- 1) Attempt any five questions.
- 2) Figures to the right indicate full marks.
- Q1) a) Let f be a scalar field of vector variable

[8]

- i) What is the derivative of f with respect to a vector?
- ii) What is the directional derivative of f at a vector along some direction of a vector?
- iii) What is total derivative of f at a given vector?

Explain the significance and difference of the above terms.

- b) A scalar field f is defined on \mathbb{R}^n by the equation $f(\overline{x}) = \overline{a}, \overline{x}$ where \overline{a} is a constant vector. Compute $f'(\overline{x}, \overline{y})$ for arbitrary \overline{x} and \overline{y} . [4]
- c) Let f is a scalar field on \mathbb{R}^n and g is a real valued function of real variable such that $g(t) = f(\overline{a} + t\overline{y})$. If one of the derivative g'(t) or $f'(\overline{a} + t\overline{y}, \overline{y})$ exists then prove that the other also exists and are equal. [4]
- Q2) a) State and prove chain rule for the derivatives of a vector fields. [8]
 - b) Define the gradient vector of a scalar field f at \bar{a} . Find the gradient vector for the scalar field $f(x, y) = x^2 + y^2 \sin(xy)$ at $\left(1, \frac{\pi}{2}\right)$. [4]
 - c) Let z be the function of u and v where $u = x^2 y^2 2xy$ and v = y find $(x+y)\frac{\partial z}{\partial x} + (x-y)\frac{\partial z}{\partial y}$. [4]

- Q3) a) Define line integral. Show by an example that the line integral may depends on the path joining the two points.[6]
 - b) Compute the massM of one coil of a spring having the shape of the helix whose vector equation is $\overline{\alpha}(t) = a\cos t \,\overline{i} + a\sin t \,\overline{j} + bt \,\overline{k}$ if the density at (x, y, z) is $x^2 + y^2 + z^2$.
 - Calculate the line integral of the vector field $f(x,y) = (x^2 2xy)\overline{i} + (y^2 2xy)\overline{j} \text{ from } (-1, 1) \text{ to } (1, 1) \text{ along the parabola } y = x^2.$ [5]
- **Q4)** a) State and prove the first fundamental theorem of calculus for line integrals. [6]
 - b) Let \overline{f} be a vector field continuous on an open connected set S in \mathbb{R}^n . If the line integral of \overline{f} is zero around every piecewise smooth close path in S then prove that the line integral of \overline{f} is independent of the path in S.
 - c) Determine the work done by constant force \bar{f} in moving a particle from a point \bar{a} to a point \bar{b} along any piecewise smooth path joining \bar{a} and \bar{b} .
- **Q5)** a) Let f be bounded on a rectangle Q in \mathbb{R}^2 . Show that upper integral $\overline{\mathbf{I}}(f)$ and lower integral $\underline{\mathbf{I}}(f)$ exist. Also prove that f is integrable over Q if and only if $\overline{\mathbf{I}}(f) = \mathbf{I}(f)$.
 - b) State only the general formula for change of variables in double integrals. Explain the notation used. [5]
 - c) Transform the integral to polar co-ordinates and compute its value [5]

$$\int_{0}^{1} \left[\int_{x^{2}}^{x} (x^{2} + y^{2})^{-1/2} dy \right] dx.$$

- Q6) a) State and prove Green's theorem for plane regions bounded by smooth Jordan curves.[6]
 - b) Use Green's theorem to evaluate the line integral $\oint_C y^2 dx + x dy$ where C is the square with vertices (0, 0), (2, 0), (2, 2), (0, 2). [5]
 - Evaluate the triple integral $\iint_S xy^2 z^3 dx dy dz$ where S is the solid bounded by the surface z = xy and the planes y = x, x = 1 and z = 0. [5]
- **Q7)** a) Define a simple parametric surface. If $T = [0, 2\pi] \times [0, \frac{\pi}{2}]$ maps under $\overline{r}(u, v) = a \cos u \cos v \, \overline{i} + a \sin u \cos v \, \overline{j} + a \sin v \, \overline{k}$ to a surface S, find singular points of this surface. Also explain whether S is simple. [6]
 - b) Define the surface integral and explain the terms involved in it. [6]
 - c) Let S be a parametric surface whose vector representation is $\overline{r}(u,v) = (u+v)\overline{i} + (u-v)\overline{j} + (1-2u)\overline{k}$. Find the fundamental vector product and the unit normal to the surface. [4]
- **Q8)** a) State and prove Gauss divergence theorem. [8]
 - b) Let S be the surface of unit cube $0 \le x \le 1$ $0 \le y \le 1$ $0 \le z \le 1$ and let \overline{n} be the unit outer normal to S. If $\overline{F}(x, y, z) = x^2 \overline{i} + y^2 \overline{j} + z^2 \overline{k}$, use the divergence theorem to evaluate the surface integral $\iint_S \overline{F}, \overline{n} \, ds$. [6]
 - c) Determine the Jacobian matrix of the vector field

$$\overline{F}(x, y, z) = (x^2 + yz)\overline{i} + (y^2 + xz)\overline{j} + (z^2 + xy)\overline{k}$$
 [2]

EEE

Total No. of Questions :8]

P2051

SEAT No.:	
-----------	--

[Total No. of Pages :3

[4821]-13

M.A./M.Sc.

MATHEMATICS

MT-503: Linear Algebra

(2008 Pattern) (Semester - I)

Time: 3 Hours] [Max. Marks:80

- 1) Attempt any five questions.
- 2) Figures to the right indicate full marks.
- Q1) a) Show that a linearly independent set in a finite dimensional vector space V can be extended to a basis of V. Extend the set $\{(1, 1, 0), (1, 1, 1)\}$ to a basis of \mathbb{R}^3 . [6]
 - b) Find dimensions of the following subspaces of the vector space $\mathbb{R}^{n \times n}$ of all $n \times n$ matrices over \mathbb{R} :

$$W_1 = \{A \in \mathbb{R}^{n \times n} \mid A = A^t\}; \quad W_2 = \{A \in \mathbb{R}^{n \times n} \mid A = -A^t\}; W_3 = \{A \in \mathbb{R}^{n \times n} \mid \text{trace } A = 0\}.$$

- c) Prove that the set of points on any circle in \mathbb{R}^2 is not a subspace of \mathbb{R}^2 . [5]
- Q2) a) Let V and W be vector spaces over K of dimensions n and m, respectively. Prove that the vector space (L(V, W) of all linear transformations from V to W has dimension mn.[6]
 - b) Define a nilpotent operator. Show that if T is a nilpotent operator on V, then T I is an invertible operator on V. [5]
 - c) Give a one-one linear map $T_1: \mathbb{R}^2 \to \mathbb{R}^3$. Can this map be onto? Justify.[5]

- **Q3)** a) Let $T:V \to W$ be a linear map. prove that $V / \ker T$ is isomorphic to Im T. Identify the space $V / \ker T$, where $V = \mathbb{R}^2$ and $T:\mathbb{R}^2 \to \mathbb{R}^2$ is defined by T(x, y) = (x, 0).
 - b) Let T be a linear operator on a vector space V such that $T^2 = 2015T$. Prove that V is the direct sum of ker T and *im* T. [5]
 - c) Prove that $B = \{1, 1 + x, 1 + x + x^2\}$ is a basis for the vector space $\mathbb{R}_2[x]$ of polynomials over \mathbb{R} upto degree 2. Find the matrix representation of the differential operator on $\mathbb{R}_2[x]$ with respect to B. [5]
- **Q4)** a) Let T be a linear operator on a finite dimensional vector space V and let $y \in V$. Define the minimal polynomial $m_T(x)$ of T and the annihilator $m_T^y(x)$ of y with respect to T. Prove that there exists a $u \in V$ such that $m_T(x) = m_T^u(x)$.
 - b) Find the eigenvalues with multiplicities of the $n \times n$ matrix J whose all entries are 1. [5]
 - c) Let A be a 5×5 matrix on the field \mathbb{Q} of rational numbers such that $A^7 = I_5$. [5]
- Q5) a) Let λ be an eigenvalue of an operator T on a vector space V. Define the geometric multiplicity of λ. prove that the geometric multiplicity of λ does not exceed its algebraic multiplicity.
 [6]
 - b) What do you mean by a diagonalizable matrix. Give two non-diagonal 3 × 3 matrices A and B such that A is diagonalizable but B is not diagonalizable. [5]
 - c) Give a 3×3 matrix A with real entries such that A is not triangulable over \mathbb{R} but is triangulable on \mathbb{C} . [5]
- **Q6)** a) Let T be a triangulable linear operator on a finite dimensional inner product space V. Prove that there exists an ordered orthonormal basis B of V such that the matrix of T with respect to B is upper triangular. [6]

- b) Explain the rational canonical form of a matrix. Prove that two matrices are similar if and only if they have same rational canonical forms. [5]
- c) Determine the Jordan canonical form of the matrix $\begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$. Hence deduce the geometric multiplicity of 1.
- Q7) a) State and prove Riesz representation theorem for finite dimensional vector spaces.[6]
 - b) Verify that the vectors (1, 2, 4, 1) and (-1, -2, 1, 1) are orthogonal with respect to standard inner product, and extend these to form an orthogonal basis.
 - c) Show that for x, y in an inner product space V over \mathbb{C} : $\|x+y\| = \|x\| + \|y\| \text{ if and only if } x = 0 \text{ or } y = \lambda x. \text{ for some } \lambda \in \mathbb{C}.$ [5]
- **Q8)** a) Define an adjoint of a linear map $T: V \to W$. Prove the existence and uniqueness of the adjoint of T. [6]
 - b) Let A be an unitary matrix with integer entries. Prove that only non-zero entries in A are 1 and -1. Also show that there is exactly one nonzero entry in each row and in each column of A. [5]
 - c) Show that the eigenvalues of a real symmetric matrix are real. Also show that if A is a positive definite matrix, then A is invertible and A⁻¹ is also positive definite. [5]

888

P2052

SEAT No. :	
------------	--

[Total No. of Pages :2

[4821]-14 M.A./M.Sc.

MATHEMATICS

MT-504: Number Theory

(2008 Pattern) (Semester - I)

Time: 3 Hours | [Max. Marks: 80

- 1) Attempt any five questions.
- 2) Figures to the right indicate full marks.
- Q1) a) Let p be a prime. Show that $x^2 \equiv -1 \pmod{p}$ has a solution if and only if p = 2 or $p \equiv 1 \pmod{4}$.
 - b) Find all integers that give remainder 1, 2, 3 when divided by 3, 4, 5 respectively. [5]
 - c) Prove that if p and q are district primes of the form 4k + 3, and if $x^2 \equiv p \pmod{q}$ has no solution, then $x^2 \equiv q \pmod{p}$ has two solutions. [5]
- Q2) a) State and prove Wilson's theorem. [6]
 - b) If g.c.d (m, n) = 1, then prove that $\phi(m, n) = \phi(m) \cdot \phi(n)$. [5]
 - c) Find all solutions of 101 x + 99 y = 437. [5]
- **Q3)** a) For any odd prime p, let (a, p) = 1, consider the integers $a, 2a, 3a, \dots, \left(\frac{p-1}{2}\right)a$ and their least positive residues modulo p. If n denotes the number of these residues that exceed $\frac{p}{2}$, then prove that $\left(\frac{a}{p}\right) = (-1)^n$. **[6]**
 - b) If an irreducible polynomial p(x) divides f(x). g(x), then prove that p(x) divides at least one of the polynomials f(x) and g(x). [5]
 - c) Prove that $\sqrt{3}-1$ and $\sqrt{3}+1$ are associates in $Q(\sqrt{3})$. [5]

- **Q4)** a) Let f(n) be a multiplicative function and let $F(n) = \sum_{d|n} f(d)$. Prove that F(n) is multiplicative.
 - b) Explain Pollard ρ method for factorisation. [5]
 - c) Find the highest power of 7 that divides 1000! [5]
- **Q5)** a) If α and β are algebraic numbers, then prove that $\alpha + \beta$ and $\alpha\beta$ are algebraic numbers. [8]
 - b) prove that 3 is a quadratic residue of 13, but it is not quadratic residue of 7. [5]
 - c) Find a positive integer n such that $\mu(n) + \mu(n+1) + \mu(n+2) = 3$. [3]
- **Q6)** a) State and prove the law of quadratic reciprocity. [8]
 - b) Find whether $x^3 + 2x 3 \equiv 0 \pmod{g}$ has solutions? If yes, then find solutions. [5]
 - c) Prove that $n^{12} 1$ is divisible by 7 if (n, 7) = 1. [3]
- **Q7)** a) Prove that, for every positive integer n, $\sum_{d|n} \phi(d) = n$. [6]
 - b) If α is any algebraic number, then prove that there is a rational integer b such that $b\alpha$ is an algebraic integer. [5]
 - c) Prove that, 3 is prime in Q(i), but not a prime in $Q(\sqrt{6})$. [5]
- **Q8)** a) Let a, b and m > 0 be given integers and let g = (a, m). Then prove that $ax \equiv b \pmod{m}$ has a solution if and only if $g \mid b$.
 - b) Find all real numbers x such taht
 - i) [x] + [x] = [2x]

ii)
$$\left[x + \frac{1}{2}\right] + \left[x - \frac{1}{2}\right] = [2x]$$
 [5]

c) Evaluate $\left(\frac{22}{105}\right)$ where $\left(\frac{22}{105}\right)$ is Jacobi's symbol. [5]

Total No.	of Questions	:8]
-----------	--------------	-----

P2053

SEAT No.:		
[Total	No. of Pages	:3

[4821]-15

M.A./M.Sc.

MATHEMATICS

MT-505: Ordinary Differential Equations

(2008 Pattern) (Semester - I)

Time: 3 Hours] [Max. Marks:80

- 1) Attempt any five questions.
- 2) Figures to the right indicate full marks.
- **Q1)** a) If $y_1(x)$ and $y_2(x)$ are two solutions of equation y'' + P(x)y' + Q(x)y = 0 on [a, b], then prove that $y_1(x)$ and $y_2(x)$ are linearly dependent on this interval if and only if their Wronskian $W(y_1, y_2)$ is identically zero. [8]
 - b) Find the general solution of $y'' + 4y = 3\sin x$ by using method of undetermined coefficients. [8]
- **Q2)** a) If $y_1(x)$ is one solution of the differential equation y'' + P(x)y' + Q(x)y = 0, then find the other solution. [6]
 - b) Find a particular solution of $y''-2y'-3y=64xe^{-x}$ by using method of variation of parameters. [5]
 - Verify that $y_1 = x$ is one solution of $x^2y'' + 2xy' 2y = 0$, find y_2 and general solution. [5]
- Q3) a) State and prove sturm comparison theorem. [8]
 - b) Find the general solution of $(1-x^2)y''-2xy'+p(p+1)y=0$, about x=0 by power series. [8]

- **Q4)** a) Let u(x) be any non-trivial solution of u'' + q(x)u = 0 where q(x) > 0 for all x > 0. If $\int_{1}^{\infty} q(x)dx = \infty$, then prove that u(x) has infinitely many zeros on the positive x axis.
 - b) Verify that origin is regular singular point and calculate two independent Frobenius series solution for the equation 4xy'' + 2y' + y = 0. [8]
- **Q5)** a) Find the general solution of the system [8]

$$\frac{dx}{dt} = x - 2y$$

$$\frac{dy}{dt} = 4x + 5y$$

b) Locate and classify the singular points on the x -axis of

$$x^{2}(x^{2}-1)^{2} y'' - x(1-x)y' + 2y = 0.$$
 [4]

- Show that $y = C_1 e^x + C_2 e^{-x}$ is the general solution of the differential equation y'' y = 0.
- **Q6)** a) Find the general solution near x = 0 of the hypergeometric equation x(1-x)y'' + [c (a+b+1)x]y' aby = 0, where a, b and c are constants. [8]
 - b) Determine the nature of the point $x = \infty$ for the equation $x^2y'' + xy' + (x^2 4)y = 0$. [4]
 - c) Find the nature and stability property of critical point (0, 0) for [4]

$$\frac{dx}{dt} = 5x + 2y$$

$$\frac{dy}{dt} = -17x - 5y$$

Q7) a) If m_1 and m_2 are roots of the auxiliary of the system [8]

$$\frac{dx}{dt} = a_1 x + b_1 y$$
$$\frac{dy}{dt} = a_2 x + b_2 y$$

which are real, distinct and of same sign, then prove that the critical point (0, 0) is a node.

- b) Show that the function $f(x, y) = xy^2$ satisfies Lipschitz condition on any rectangle $a \le x \le b$ and $c \le y \le d$; but it does not satisfy a Lipschitz condition on any strip $a \le x \le b$ and $-\infty < y < \infty$. [8]
- **Q8)** a) Find the general solution of $(1-e^x)y'' + \frac{1}{2}y' + e^xy = 0$ near the singular point x = 0.
 - b) Discuss the method of undetermined coefficients to find the solution of second order differential equation with constant coefficients. [8]

888

P2054	4
-------	---

SEAT No.:	
-----------	--

[4821]-21 M.A/M.Sc.

MATHEMATICS

MT-601: General Topology

(2008 Pattern) (Semester - II)

Time: 3 Hours [Max. Marks: 80

- 1) Attempt any five questions.
- 2) Figures to the right indicate full marks.
- Q1) a) Let X be a topological space. Suppose that \mathcal{C} is a collection of open sets of X such that for each open set U of X and each x in U, there is an element C in \mathcal{C} such that $x \in C \subseteq U$. Then prove that \mathcal{C} is a basis for the topology of X. [6]
 - b) If $\{\mathcal{T}_{\alpha}\}$ is a family of topologies on X. Show that $\bigcap \mathcal{T}_{\alpha}$ is a topology on X. Is $\bigcup \mathcal{T}_{\alpha}$ a topology on X? Justify. [6]
 - c) If X is any set, then prove that the collection of all one-point subsets of X is a basis for the discrete topology on X.[4]
- **Q2)** a) Define usual topology and lower limit topology on \mathbb{R} . Establish a relation among them.
 - b) Define a subspace topology. If A is a subspace of (X,T) and B is a subspace of (Y,T'), then show that the product topology on A x B is same as the topology A x B inherits as a subspace of X x Y. [6]
 - c) Let Y = [-1, 1], which of the following sets are open in Y? Open in \mathbb{R} ? Justify. [4]

i)
$$A = \left\{ x \mid \frac{1}{2} \le |x| < 1 \right\}$$

ii)
$$B = \left\{ x \mid \frac{1}{2} < |x| < 1 \right\}$$

Q3)	a)	Let Y be subspace of X and A be a subset of Y. Let A denote the closure of A in X then show that the closure of A in Y is $\overline{A} \cap Y$. [5]
	b)	Show that every finite set is closed in a Hausdorff space. [5]
	c)	Show that every order topology is Hausdorff. [6]
Q4)	a)	Let X be a space satisfying T_1 axiom and A be a subset of X. Prove that the point x is a limit point of A if and only if every neighborhood of x contains infinitely many points of A. [6]
	b)	State and prove pasting lemma. [6]
	c)	Define box topology and product topology. What is the relation between them? [4]
Q5)	a)	Define quotient topology and given an example of a quotient map which is not a closed map? [5]
	b)	Show that the union of a collection of connected subspaces that have a common point is connected. [5]
	c)	For locally path connected space X, show that every connected open set is path connected. [6]
Q6)	a)	Show that every compact subspace of a Hausdorff space is closed. [6]
	b)	Show that in the finite complement topology on \mathbb{R} every subspace is compact. [5]
	c)	Justify whether true or false: A topological space X is compact if and only if X is limit point compact. [5]
Q7)	a)	Give an example of a Hausdorff space which is not regular. [5]
	b)	Prove that every compact Hausdorff space is normal. [6]
	c)	Let X be locally compact Hausdorff space and $A \subseteq X$. If A is closed in X or open in X, show that A is locally compact. [5]
Q8)	a)	State and prove Tychonoff theorem. [12]
	b)	State Urysohn lemma. [2]
	c)	Define a regular space and give its example. [2]

Total No.	of Qu	estions	:8]
-----------	-------	---------	-----

P20:	55
------	-----------

SEAT No. :	
------------	--

[4821]-22

M.A/M.Sc.

MATHEMATICS

MT-602: Differential Geometry

(2008 Pattern) (Old Pattern) (Semester - II) [Max. Marks:80 Time: 3 Hours] Instructions to the candidates: Attempt any five questions. 2) Figures to right indicate full marks. Show that n-sphere is n-surface in \mathbb{R}^{n+1} . [4] *Q1*) a) State and prove Lagranges multiplier theorem. [8] b) Sketch the level set and graph of the function $f(x, y) = -x^2 + y^2$. c) [4] Show that set of vectors tangent to $f^{-1}(c)$ at point p, where p is regular **Q2)** a) point for the smooth function $f: U \to \mathbb{R}$ is equal to $[\nabla f(p)]^+$. [8] Find the gradient field for the vector field $f(x_1, x_2) = x_1^2 + x_2^2$. b) [4] Is mobius band a 2-surface? Why? c) [4] Show that Gauss map maps a compact connected oriented n-surface in *Q3*) a) \mathbb{R}^{n+1} onto unit sphere S^n . [12] Sketch the vector field on \mathbb{R}^2 for $\overline{X}(P) = (P, X(P))$ where X(P) = (0, 1). b) [4] Find velocity, acceleration and the speed of the parametrized curve given **Q4**) a) by $\alpha(t) = (\cos 3t, \sin 3t)$. [6] Show that there exists a maximal integral curve passing through given b) point for the smooth tangent vector field on n-surface. [10]

- **Q5)** a) Define Levi civita parallelism along with its properties. [5]
 - b) Show that a parametrized curve α in the unit n-sphere $x_1^2 + x_2^2 + ... + x_{n+1}^2 = 1$ is geodesic iff it is of the form $\alpha(t) = (\cos at) e_1 + (\sin at) e_2$ for some orthogonal pair of unit vectors $\{e_1, e_2\}$ in \mathbb{R}^{n+1} and some $a \in \mathbb{R}$. [6]
 - c) Compute $\nabla_{V} f$ where $f: \mathbb{R}^{n+1} \to \mathbb{R}, n = 2, v \in \mathbb{R}^{3}_{p}, p \in \mathbb{R}^{3}$ given by $f(x_{1}, x_{2}, x_{3}) = x_{1}x_{2}x_{3}^{2}$ and $\overline{V} = (1, 1, 1, a, b, c)$. [5]
- **Q6)** a) Show that the Weingarten map Lp is self adjoint. [8]
 - b) Compute the curvature of a circle in \mathbb{R}^2 of radius 4 passing through (5, 6) oriented by outward normal $\nabla f / \|\nabla f\|$. [6]
 - c) State second derivative test for the local maxima of the smooth function. [2]
- **Q7)** a) Show that there exists a global parametrization of oriented plane curve C iff C is connected. [12]
 - b) Calculate the Gaussian curvature of the ellipsoid $S: \frac{x_1^2}{a^2} + \frac{x_2^2}{b^2} + \frac{x_3^2}{c^2} = 1$ oriented by its outward normal. [4]
- **Q8)** a) Show that on each compact oriented n-surface S in \mathbb{R}^{n+1} , there exists a point p such that the second fundamental form p is definite. [8]
 - b) Compute the Weingarten map for the hyperplane $a_1x_1 + a_2x_2 + ... + a_{n+1}$ $x_{n+1} = b \ [(a_1, a_2, ..., a_{n+1}) \neq (0, 0, ..., 0)]$ [6]
 - c) State inverse function theorem for n-surfaces. [2]

EEE

	_	_	_
\mathbf{n}	11	_	
P_{I}			n
	₹,	\sim	√

c)

SEAT No.:	
-----------	--

[Total No. of Pages :2

[4821]-23

M.A./M.Sc.

MATHEMATICS

MT-603: Groups and Rings (2008 Pattern) (Semester - II) [Max. Marks:80 Time: 3 Hours] Instructions to the candidates: Attempt any five questions. 2) Figures to the right indicate full marks. *Q1*) a) Prove that the set of all 2×2 matrices with entries from \mathbb{R} and determinant 1 is a group under matrix multiplication. [5] b) Define a factor group. Give an example of a group which is non abelian but whose factro group is abelian. Justify the answer. [5] Prove that a group G is abelian if and only if $(ab)^{-1} = a^{-1}b^{-1}$. c) [6] Prove that \mathbb{Z} and $\mathbb{Z} \oplus \mathbb{Z}$ are not isomorphic. **Q2)** a) [5] b) Give an example of an infinite group whose every subgroup is of finite order. Justify the answer. [5] List all 6 cyclic subgroups of in U(15). [6] c) *Q3*) a) Prove that every permutation of a finite set can be written as a cycle or a product of disjoint cycles. [5] Show that the group \mathbb{R}^+ under multiplication is isomorphic to \mathbb{R} under b) addition. [5]

Find $Aut(\mathbb{Z}_6)$, the group of automorphisms of \mathbb{Z}_6 .

[6]

Q4)	a)	Find the inverse and the order of each of the following permutations \mathbf{S}_{11}	in 5]
		i) (1 3 4 6) (2 5 7)	
		ii) (1 2 10 4) (3 10) (7 8 11)	
	b)	Let G be a group and $Z(G)$ be a center of G. If $G/Z(G)$ is cyclic, the prove that G is abelian.	en 5]
	c)	Let G be a finite abelian group of order n and p be prime dividing Then prove that G has an element of order p .	n. 6]
Q5)	a)	State and prove the Orbit-Stabilizer Theorem.	5]
	b)	Give an example of a non abelian group whose all proper subgroups a cyclic.	re 5]
	c)	Let $A(n)$ be the set of all even permutations on an n element set. Prothat $A(n)$ is a subgroup of S_n and order of $A(n) = n!/2$.	ve 6]
Q6)	a)	State and prove the Cayley's Theorem	5]
	b)	Determine all the homomorphisms from \mathbb{Z}_{15} to \mathbb{Z}_{25} .	5]
	c)	Find all the non isomorphic abelian group of order1800.	6]
Q7)	a)	Determine all the groups of order 99.	5]
	b)	Prove that a group of order 375 has a subgroup of order 15.	5]
	c)	If $ G $ is a group of order pq where p and q are primes, $p < q$, and p do not divide $q - 1$, then prove that G is cyclic.	es 6]
Q8)	a)	Prove that the group of order 100 is not simple.	5]
	b)	Define center of a group. Find the center of S_3 .	5]
	c)	State and prove the Lagrange's theorem for finite groups. Give example where the converse of Lagrange's theorem is not true.	an 6]

Total No. of Questions :8]

P2057

SEAT No.:	
[Total	No. of Pages :3

[4821]-24

M.A./M.Sc.

MATHEMATICS

MT-604: Complex Analysis

(2008 Pattern) (Old Course) (Semester - II)

Time: 3 Hours [Max. Marks: 80

Instructions to the candidates:

- 1) Attempt any five questions.
- 2) Figures to the right indicate full marks.
- Q1) a) Let $\sum_{n=0}^{\infty} a_n z^n$ have radius of convergence R > 0. Prove that the radius of convergence of this series $\sum_{n=1}^{\infty} n a_n z^{n-1}$ is also R. [6]
 - b) Let G be either the whole plane \mathbb{C} or some open disk. If $u: G \to \mathbb{R}$ is a harmonic function then prove that u has a harmonic conjugate. [5]
 - c) Let G be a region and define $G^* = \{z \mid \overline{z} \in G\}$. If $f : G \to \mathbb{C}$ is analytic, prove that $f^* : G^* \to \mathbb{C}$ defined by $f^* : (z) = f(\overline{z})$, is also analytic. [5]
- **Q2)** a) Define Mobius transformation and prove that every Mobius transformation maps circles of \mathbb{C}_{∞} onto circles of \mathbb{C}_{∞} .
 - b) Let G and Ω be open subset of \mathbb{C} . Let $f:G \to \mathbb{C}$ and $g:\Omega \to \mathbb{C}$ are continuous function such that $f(G)C\Omega$ and $g(f(z)) = z \ \forall z \in G$. If g is differentiable and $g'(z) \neq 0$ then prove that f is differentiable and

$$f'(z) = \frac{1}{g'(f(z))}$$
. [7]

c) Let $f(z) = |z|^2 = x^2 + y^2$ for $z = x + iy \in \mathbb{C}$. Show that f is continuous. [3]

- **Q3)** a) If $f: G \to \mathbb{C}$ is analytic then prove that f preserves angles at each point Z_0 of G where $f'(Z_0) \neq 0$.
 - b) Let f be analytic in the disk B(a;R) and suppose that γ is a closed rectifiable curve in B(a;R). Prove that $\int_{r}^{t=0}$. [6]
 - c) Let $\gamma(t) = e^{it}$ for $0 \le t \le 2\pi$. Find $\int_{r}^{z^{n}} dz$ for every integer n. [4]
- **Q4)** a) Let f be analytic in open ball B(a;R) prove that $f(z) = \sum_{n=0}^{\infty} a_n (z-a)^n$ for |z-a| < R, $a_n = \frac{f^{(n)}(a)}{n!}$ and this series has radius of convergence $\ge R$.[6]
 - b) If p(z) is a nonconstant polynomial then prove that there is a complex no; a with p(a) = 0. [5]
 - c) Let f(z) be a polynomial of degree n and let R > 0 be sufficiently large so that f never vanishes in $\{z: |z| > R\}$. If $\gamma(t) = \operatorname{Re}^{it} \ 0 \le t \le 2\pi$, show that $\int_{-T}^{T} \frac{f'(z)}{f(z)} dz = 2\pi \text{ in.}$ [5]
- **Q5)** a) Prove that if G is a region and let $f: G \to \mathbb{C}$ be a continuous function such that $\int_T f = 0$ for every triangular path T in G then f is analytic in G.[6]
 - b) If $\gamma:[0,1] \to \mathbb{C}$ is a closed rectifiable curve and $a \notin \{\gamma\}$ then prove that $\frac{1}{2\pi i} \int_{\gamma} \frac{dz}{z-a}$ is an integer. [5]
 - c) Let f be analytic on D = B(0; 1) and suppose $|f(z)| \le |f(z)| \le |f(z)|$
- **Q6)** a) If f has an essential singularity at z = a, then prove that, for every r > 0 the closure of the set f[ann(a; 0, r)] is equal to \mathbb{C} .
 - b) If G is simply connected and $f: G \to \mathbb{C}$ is analytic then prove that f has a primitive in G. [6]
 - c) Evaluate $\int_{r}^{\infty} \frac{2z+1}{z^2+z+1} dz$ where γ is the circle |z|=2. [4]

Q7) a) State and prove Residue theorem.

b) Prove that
$$\int_0^{\pi} \frac{d\theta}{a + \cos \theta} = \frac{\pi}{\sqrt{a^2 - 1}} \text{ where } a > 1.$$
 [6]

[8]

- c) State Rouche's theorem. [2]
- **Q8)** a) Let G be a region in \mathbb{C} and f an analytic function on G. Suppose there is a constant M such that $\limsup_{z \to a} |f(z)| \le M$ for all a in $\partial_{\infty} G$. Prove that $|f(z)| \le M$ for all z in G.
 - b) If |a| < | then prove that the mobius transformation $\varphi_a(z) = \frac{z-a}{1-\overline{a}z}$ is a one-one map of $D = \{z : |z| < |\}$ onto itself; the inverse of φ_a is φ_{-a} . Also prove φ_a maps ∂D on to $\partial D \varphi_a(a) = 0$, $\varphi_a(0) = 1 |a|^2$ and $\varphi_a'(a) = (|-|a|^2)^{-1}$. [5]
 - c) Evaluate the integral $\int_{r}^{r} \frac{e^{z} e^{-z}}{z^{n}} dz$ where *n* is a positive integer and $\gamma(t) = e^{it} \ 0 \le t \le 2\pi$. [5]

EEE

SEAT No.:

[4821]-25

M.A/M.Sc.

MATHEMATICS

MT-605: Partial Differential Equations

(2008 Pattern) (Semester - II)

Time: 3 Hours] [Max. Marks:80

- 1) Attempt any five questions.
- 2) Figures to the right indicate full marks.
- **Q1)** a) Find the general solution of yzp + xzq = xy. [3]
 - b) Eliminate the arbitrary function F from $F(x+y, x-\sqrt{z})=0$. [3]
 - State the condition for the equations f(x, y, z, p, q) = 0 and g(x, y, z, p, q) = 0. [3]
 - d) Prove that the pfaffian differential equation $\bar{X}.d\bar{r} = P(x,y,z)dx + Q(x,y,z)dy + R(x,y,z)dz = 0$ is integrable if and only if $\bar{X}.curl \ \bar{X} = 0$.
- **Q2)** a) Verify that the equation zydx + xzdy + xydz = 0 is integrable and find its primitives. [6]
 - b) Find the complete integral of $p = (z + qy)^2$ by using Charpit's method. [6]
 - c) Solve the nonlinear partial differential equation zpq p q = 0 [4]
- Q3) a) Explain the method of solving the following first order partial differential equations:[8]
 - i) f(z, p, q) = 0
 - ii) g(x, p) = h(y, q)
 - b) Find the integral surface of the equation $x^3 p + y (3x^2 + y)q = z (2x^2 + y)$ which passes through the curve C: $x_0 = 1$, $y_0 = S$, $z_0 = S (1+S)$. [8]

- **Q4)** a) Explain Jacobi's method for solving the partial differential equation f(x, y, z, p, q) = 0 and find a complete integral of the equation $(p^2x + q^2y) z = 0$. [10]
 - b) For a nonlinear first order PDE, f(x, y, z, p, q) = 0 derive analytic expression for the Monge Cone at (x_0, y_0, z_0) . Further consider the equation $p^2 + q^2 = 1$. Find the equation of the Monge Cone with vertex at (0, 0, 0)
- **Q5)** a) If an element $(x_0, y_0, z_0, p_0, q_0)$ is common to both an integral surface z = z(x, y) and a characteristic strip, then show that the corresponding characteristic curve lies completely on the surface. [8]
 - b) Reduce the equation $y^2 u_{xx} 2xy u_{xy} + x^2 u_{yy} = \frac{y'^2}{x} u_x + \frac{x^2}{y} u_y$, into a canonical form and solve it. [8]
- **Q6)** a) State Dirichlet problem for rectangle and find it's solution. [8]
 - b) State and prove Kelvin's inversion theorem. [8]
- **Q7)** a) Suppose that u(x, y) is harmonic in a bounded domain D and continuous in $\overline{D} = D \cup B$ then prove that u attain its maximum on the boundary B of D.
 - b) Prove that the solution of following problem exist then it is unique [8]

$$u_{tt} - c^2 u_{xx} = F(u, t), 0 < x < l, t > 0$$

$$u(x, 0) = f(x), 0 \le x \le l$$

$$u_t(x, 0) = g(x)$$

$$u(0, t) = u(l, t) = 0, t \ge 0$$

- **Q8)** a) Solve the Quasi Linear equation $zz_u + z_y = 1$ containing the initial data curve $x_0 = s$, $y_0 = s$ $z_0 = \frac{1}{2}s$ for $0 \le s \le 1$. [4]
 - b) Using Duhamel's principle find the solution of non homogeneous $u_{tt} c^2 u_{xx} = f(x,t), -\infty < x < \infty, t > 0$ equation $u(x,0) = u_t(x,0) = 0, -\infty < x < \infty$ [6]
 - Using the variable separable mehod solve $u_t = ku_{xx}$; 0 < x < a, t > 0 which satisfies condition u(0, t) = u(a, t) = 0; t > 0 and u(x, 0) = x(a x); $0 \le x \le a$.

Total N	No. of	Questio	ns	:	4]
---------	--------	---------	----	---	----

SEAT No. :	
------------	--

[4821]-26 M.A./M.Sc.

MATHEMATICS

MT:606- Object Oriented Programming with C⁺⁺ (2008 Pattern) (Semester-II)

Time: 2 Hours] [Max. Marks:50

Instructions to the candidates:

- 1) Figures to the right side indicate full marks.
- 2) Question one is compulsory.
- 3) Attempt any two questions from Q.2, Q.3 and Q.4.
- *Q1*) Attempt any Ten of the following:

[20]

- a) Write syntax for accessing array element.
- b) Write output of following program.

```
# include <iostream.h>
    int main( )
    {
      cout << "mathematics is beautiful";
      return o;
    }</pre>
```

- c) What are C^{++} keywords? Give four examples.
- d) What is use of scope resolution operator?
- e) What is data encapsulation?
- f) Define hybrid inheritance.
- g) Write the syntax of friend functions.
- h) Explain the term "message passing".
- i) State one difference between break and continue.
- j) Write a program to multiply and divide two real numbers a=2.5 and b=1.5 using inline function.

	k)	Wha	at is operator overloading?	
	1)	Wha	at are disadvantages of macros?	
Q2)	a)		te an object oriented program in C^{++} to multiply two matrices. Let M_2 be two matrices. Find out $M_3=M_1*M_2$.	et M [10]
	b)	Con	npare dynamic memory management in C and C++.	[5]
Q3)	a)	Write a program to perform the addition time in the hour and mi format.		
	b)	Wri	te a note on general form of class declaration.	[5]
Q4)	a)	Defi	ne	[9]
		i)	Call by value.	
		ii)	Call by reference.	
		iii)	Return by reference with examples.	

[6]

b) Write benifit of object oriented programming.

Total No. of Question	ons : 8]
-----------------------	----------

P2060

[4821]-31 M.A./M.Sc.

MATHEMATICS

MT:701- Functional Analysis (2008 Pattern) (Semester-III)

Time: 3 Hours] [Max. Marks: 80

- 1) Attempt any five questions.
- 2) Figures to the right indicate full marks.
- **Q1)** a) Let H be a Hilbert space and f be a functional on H. Prove that there exits a unique vector y in H such that $f(x) = \langle x, y \rangle$ for every $x \in H$. [8]
 - b) Let X be a normed space over \mathbb{C} . Let $0 \neq a \in X$. Show that there is some functional f on X such that f(a) = ||a|| and ||f|| = 1. [6]
 - c) Show that the norm of an isometry is 1. [2]
- **Q2)** a) Show that an operator T on a finite dimensional Hilbert space is normal if and only if its adjoint T* is a polynomial in T. [6]
 - b) State and prove Hahn-Banach Theorem. [8]
 - c) Let H be 2-dimensional Hilbert space. Let the operator T on H be defined by $Te_1=e_2$ and $Te_2=-e_1$. Find the spectrum of T. [2]
- **Q3)** a) If T is an operator on a Hilbert space H, then prove that T is normal if and only if its real and imaginary parts commute. [6]
 - b) i) Let X and Y be normed spaces. If X is finite dimensional then show that every linear transformation from X to Y is continuous. [4]
 - ii) Give an example of a discontinuous linear transformation. [4]
 - c) A linear operator $T: l^2 \to l^2$ is defined by $T(x_p, x_2, x_3,) = (0, x_1, x_2, x_3,)$. Find T^* . [2]

- **Q4)** a) Show that a closed convex subset C of a Hilbert space H contains a unique vector of samllest norm. [6]
 - b) If T is any operator on a Hilbert space H and if α, β are scalars such that $|\alpha| = |\beta|$, then show that $\alpha T + \beta T^*$ is normal. [4]
 - c) If T is an operator on a Hilbert space H for which $\langle Tx,x \rangle = 0$ for all $x \in H$, then prove that T=0. [6]
- **Q5)** a) Prove that $||T^*|| = ||T||$ and $||T^*T|| = ||T||^2$. [8]
 - b) Give an example of a (non-identity) operator which is self-adjoint. Justify. [4]
 - c) Show that the unitary operators on a Hilbert space H form a group. [4]
- **Q6)** a) State and prove the uniform Boundedness principle. [8]
 - b) Let T be an operator on H. If T is non-singular, then show that $\lambda \in \sigma(T)$ if and only if $\lambda^{-1} \in \sigma(T^{-1})$.
 - Show that every positive operator on a finite dimensional Hilbert space has a unique positive square root.
- **Q7)** a) Let T be a normal operator on H, with spectrum $\{\lambda_1, \lambda_2,, \lambda_m\}$. Show that T is self-adjoint if and only if each λi is real. [4]
 - b) Let M be a closed linear subspace of a normed linear space N and T be a natural mapping of N onto N/M defined by T(x)=x+M. Show that T is a bounded linear transformation with ||T||≤1.
 - c) If $\{ei\}$ is an orthonormal set in a Hilbert space H and x is any vector in H, then prove that the set $S = \{ei : \langle x, ei \rangle \neq 0\}$ is either empty or countable. [8]
- **Q8)** a) State and prove the closed graph Theorem. [8]
 - b) Let X=C'[a,b] with norm $||f|| = ||f||_{\infty} + ||f'||_{\infty}$ and Y+C'[a,b] with sup norm. Let $F:X \to Y$ be defined as identity map. Show that F is continuous but F^{-1} is discontinuous. Why the open mapping theorem fails? Justify.

Total No. of Questions: 8	1
----------------------------------	---

SEAT No.	:	
----------	---	--

[6]

P2061

[4821]-32 M.A./M.Sc.

MATHEMATICS

MT-702: Ring Theory

(2008 Pattern) (Semester-III)

Time: 3 Hours] [Max. Marks:80

Instructions to the candidates:

- 1) Attempt any five questions.
- 2) Figures to the right indicate full marks.
- **Q1)** a) Prove that any finite integral domain is a field.
 - b) Show that $\underline{if} n = a^k b$ for some integers a and b then \overline{ab} is a nilpotent element of $\frac{2}{n}$. [5]
 - c) If x is a nilpotent element of the commutative ring R then prove that 1+x is unit in R. [5]
- Q2) a) If A is a subring and B is an ideal of the ring R then prove that

$$\frac{A+B}{B} \cong \frac{A}{A \cap B}.$$
 [6]

b) Prove or disprove [6]

The ideal I = (2, x), generated by 2 and x in Z[x] is a principal ideal.

- c) If $x^2 + x + 1$ is an element of $E = F_2[x]$ then find $\overline{E} = \frac{F_2[x]}{(x^2 + x + 1)}$. [4]
- Q3) a) Prove that in a Boolean ring the ideal I is prime ideal if and only if it is maximal ideal.[6]
 - b) If R is a commutative ring and if every element of R is either nilpotent or a unit then prove that R has exactly one prime ideal. [5]
 - c) If F is a field then prove that F contains a unique smallest subfield F_0 which is isomorphic to either Q or Z_p for some prime p. [5]

- **Q4)** a) If R is a commutative ring with unity and A_1, A_2 are comaximal ideals in R then prove that $\frac{R}{A_1 A_2} \approx \frac{R}{A_1 \cap A_2} \approx \frac{R}{A_1} \times \frac{R}{A_2}$. [8]
 - b) If R is the ring of all continuous functions on [0,1] and I is the collection of functions f(x) in R with $f\left(\frac{1}{3}\right) = f\left(\frac{1}{2}\right) = 0$ then prove that I is an ideal of R but not a prime ideal of R. [8]
- **Q5)** a) Define Euclidean domain. Prove that every ideal in a Euclidean domain is principal. [6]
 - b) Prove that the quotient ring $\frac{Z[i]}{I}$ is finite for any non-zero ideal I of Z[i].[6]
 - c) Find a generator for the ideal I = (2 + 3i, 4 + 7i) in Z[i]. [4]
- Q6) a) Prove that every non-zero prime ideal in a principal ideal domain is a maximal ideal.[6]
 - b) If R is an integral domain and R[x] is a PID then prove that R is a field. Use above result to show that neither Z[x] nor R[x,y] are PIDs. [6]
 - c) Show that the ring $R = \left\{ \frac{m}{n} | m, n \in \mathbb{Z}, n \text{ is odd} \right\}$ is a principal ideal domain. [4]
- **Q7)** a) Prove that every irreducible element in UFD is a prime element. [6]
 - b) Prove that every Noetherian ring wihich is also an integral domain is a factorisation domain. [6]
 - c) Give an example to show that in a UFD the g.c.d of two elements a and b need not be expressible in the form $\lambda a + \mu b$ for some λ , $\mu \in \mathbb{R}$. [4]
- **Q8)** a) If $p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0$ is a polynomial of degree n with integer coefficients. If $\frac{r}{s} \in \mathbb{Q}$ is in lowest terms with $p\left(\frac{r}{s}\right) = 0$ then prove that r divides a_0 and s divides a_n .
 - b) State and prove Eisenstein's criterion for Z[x]. [6]
 - c) Prove that the polynomial $x^4 + 4x^3 + 6x^2 + 2x + 1$ is irreducible over Z.[4]

Total No. of	Questions	:	8]	
--------------	-----------	---	----	--

|--|

[4821]-33 M.A./M.Sc.

MATHEMATICS

MT:703- Mechanics

(2008 Pattern) (Semester-III)

Time: 3 Hours] [Max. Marks: 80

Instructions to the candidates:

- 1) Attempt any five questions.
- 2) Figures to the right indicate full marks.
- **Q1)** a) Explain the following terms.

[8]

- i) D'Alembert's principle.
- ii) Virtual displacement.
- iii) Lagrange's equations for Non-holonomic constraints.
- iv) Eulerian angles.
- b) Obtain Lagrange's equation of motion from D' Alembert's principle.[8]
- **Q2)** a) A particle of mass m moves in a plane under the action of a conservative force F with components $F_x = -k^2(2x + y)$, $F_y = -k^2(x + 2y)$, k is constant. Find the total energy of the motion the Lagrangian and the equation of motion of particle. [8]
 - b) Find the Lagrangian of a particle moving in the field of force given by

$$F = \frac{1}{r^2} \left(1 - \frac{\dot{r}^2 - 2r\ddot{r}}{c^2} \right).$$
 [8]

- **Q3)** a) Find the Lagrange's equation of motion for simple pendulum. [6]
 - b) Show that the generalized momentum corresponding to a cyclic coordinate is conserved. [4]
 - c) Show that the geodesic in a Euclidean plane is a straight line. [6]

- Q4) a) Find the Euler-Lagrange differential equations satisfied by twice differentiable function y(x) which extremizes the functional $I(y(x)) = \int_{x_1}^{x_2} f(x, y, y') dx$, where y is prescribed at the end points. [8]
 - b) State and prove the Brachistochrone problem in calculus of variations.[8]
- **Q5)** a) Deduce Newton's second law of motion from Hamilton's principle. [6]
 - b) Obtain Hamilton's equation of motion from the Hamilton's Principle.[8]
 - c) Express Hamilton's canonical equations of motion in terms of poisson brackets. [2]
- **Q6)** a) Find the Routhian for the Lagrangian

$$L = \frac{1}{2}l_3(\dot{\psi} + \dot{\phi}\cos\theta)^2 + \frac{1}{2}l_1(\dot{\theta} + \dot{\phi}^2\sin^2\theta) - \text{mgl }\cos\theta.$$
 [6]

- b) If $f = f(q_j, \dot{q}_j, t)$ then show that $\Delta f = \delta f + \Delta t \cdot \frac{df}{dt}$. [6]
- c) Prove that central force motion is always motion in a plane. [4]
- **Q7)** a) Prove the Keple's third law of planetary motion. [8]
 - b) Prove that an orthogonal transformation in the inverse matrix is identified by the transpose of the matrix. [8]
- Q8) a) Eulerian angles $\phi = \frac{\pi}{4}$, $\theta = \frac{\pi}{2}$ and $\psi = \frac{\pi}{4}$ bring space frame s into coincidence with body frame S' with common origin. Find the transformation relating co-ordinates of S and S'. Show that if the transformation is equivalent to a rotation through an angle x about some axis through

origin them
$$\cos\left(\frac{x}{2}\right) = \frac{1}{2}$$
. [6]

- b) Show that the transformation $p = \frac{1}{Q}$, $q = PQ^2$ is canonical and find the generating function. [6]
- c) Prove that Poisson brackets are invariant under canonical transformation. [4]

Total No.	of Questions	: 8	8]
-----------	--------------	-----	----

P2063	

SEAT No.:	
~	

[4821]-34 M.A./M.Sc.

MATHEMATICS

MT-704: Measure and Integration (2008 Pattern) (Semester-III)

Time: 3 Hours] [Max. Marks:80

Instructions to the candidates:

- 1) Attempt any five questions.
- 2) Figures to the right side indicate full marks.
- 3) All symbols have their usual meanings.
- **Q1)** a) Show that every non-empty open set G in \mathbb{R} is a union of countably many disjoint open intervals. [6]
 - b) If $E_i \in \mathcal{B}$ then prove that $\mu(\bigcup_{i=1}^{\infty} E_i) \le \sum_{i=1}^{\infty} \mu E_i$. [5]
 - c) Let (X, \mathfrak{B}, μ) be a measure space and $Y \in \mathfrak{B}$. Let \mathfrak{B}_{Y} consist of those sets of \mathfrak{B} that are contained in Y and $\mu_{Y}(E) = \mu(E)$ if $E \in \mathfrak{B}_{Y}$. Then show that $(Y, \mathfrak{B}_{Y}, \mu_{Y})$ is a measure space. [5]
- **Q2)** a) Define a σ -algebra. Show that the class of measurable sets \mathcal{M} is a σ -algebra. [6]
 - b) Let c be any real number and let f and g be real valued measurable functions defined on the same measurable set E. Show that f + c, cf, f + g, f g and fg are measurable. [6]
 - c) For k > 0 and $A \subseteq R$ let $kA = (x : k^{-1}x \in A)$. Show that [4]
 - i) m*(kA) = km*(A),
 - ii) A is measurable iff kA is measurable.
- Q3) a) Let for each α in a dense set D of real numbers there is assigned a set B_{\alpha} \in \mathbb{G} \text{ such that } \mu(B_\alpha B_\beta) = 0 \text{ for } \alpha < \beta \text{. Then prove that there is a measurable function } f \text{ such that } f \leq \alpha \text{ a.e. on } B_\alpha \text{ and } f \geq \alpha \text{ a.e. on } X \sim B_\alpha. \text{ [6]}

P.T.O.

State and prove Fatou's Lemma. b)

[6]

- Show that the set of numbers in [0,1] which possess decimal expansions c) not containing the digit 5 has measure zero. [4]
- Let v be a signed measure on the measurable space (X,\mathcal{B}) then prove **Q4**) a) that there is a positive set A and a negative set B such that $X=A \cup B$ and $A \cap B = \phi$.
 - [6] b) Define signed measure. i)
 - ii) Let v be a signed measure on (X,\mathfrak{B}) and $E \in \mathfrak{B}$ with v(E)>0. Then show that there exits A, a set positive with respect to v, such that $A \subset E$ and v(A) > 0.
 - Show that $\mu(E_1 \Delta E_2) = 0$ implies $\mu E_1 = \mu E_2$ provided that $E_1, E_2 \in \mathcal{B}$. c) [4]
- **Q5)** a) Let $(X, \mathcal{B}, \mathcal{\mu})$ be a σ -finite measure space and let ν be a measure defined on \mathfrak{B} which is absolutely continuous with respect to μ . Then prove that there is a nonnegative measurable function f such that for each set E in \mathfrak{B} we have $vE = \int_{\Gamma} f d\mu$. [6]
 - Let (X, \mathcal{G}, μ) and (Y, \mathcal{B}, ν) be two complete measure spaces and f an b) integrable function on X×Y. Then prove the following: [6]
 - For almost all x the function f_x defined by $f_x(y) = f(x,y)$ is an integrable i) function on Y.
 - For almost all y the function f_x defined by $f^y(x) = f(x, y)$ is an ii) integrable function on X.
 - $\int_{Y} f(x,y)dv(y)$ is an integrable function on X.
 - $\int_{X} f(x, y) d\mu(y)$ is an integrable function on Y.
 - Give an example of a function such that |f| is measurable but f is not. [4] c)

- **Q6)** a) Let F be a bounded linear functional on $L^{P}(\mu)$ with $1 \le p < \infty$ and μ a σ -finite measure. Then show that there is a unique element g in L^{q} where 1/p+1/q=1, such that $F(f) = \int fg d\mu$ with $||F|| = ||g||_{a}$.
 - b) Show that the class $\mathfrak B$ of μ^* -measurable sets is a σ -algebra. [6]
 - c) An arbitrary set $E \subset X$ is μ^* -measurable if and only if $\mu^*O \ge \mu^*(O \cap E) + \mu^*(O \cap \tilde{E})$ for each open O with $\mu^*O < \infty$. [4]
- **Q7)** a) i) Define product measure.
 - ii) Let E (subset of X×Y) a set in $\Re_{\sigma\delta}$ and x be a point of X. Then show that $E_x(x)$ cross section E) is a measurable subset of Y.

[8]

- b) Let E be a set in $\mathfrak{R}_{\sigma\delta}$ with $\mu \times v(E) < \infty$. Then show that the function g defined by $g(x) = \mu E_x$ is a measurable function of x and $\int g d\mu = \mu \times v(E).$ [8]
- **Q8)** a) Let μ be a measure on an algebra \mathscr{G} and μ^* the outer measure induced by μ . Then prove that the restriction $\overline{\mu}$ of μ^* to the μ^* -measurable sets is an extension of μ to σ -algebra containing \mathscr{G} .
 - b) Let μ be a finite measure defined on σ -algebra which contains all the Baire sets of a locally compact space X. If μ is inner regular then show that it is regular. [6]
 - c) Let B be a μ *-measurable set with μ *B< ∞ then prove that μ *B= μ *B. [4]

Total No. of Questions: 8]		SEAT No.:	
P2064	[4004] 05	l [Total]	No. of Pages :2

|4821|-35 M.A./M.Sc.

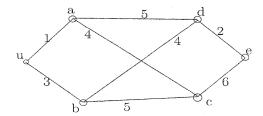
MATHEMATICS MT-705: Graph Theory (2008 Pattern) (Semester-III) Time: 3 Hours] [Max. Marks:80 Instructions to the candidates: Attempt any five questions. Figures to the right indicate full marks. **Q1)** a) Prove that an edge is a cut edge if and only if it belongs to no cycle. [6] b) Prove that the isomorphism relation is an equivalence relation on the set of simple graphs. [6] Prove that the Petersen graph has girth 5. c) [4] Prove that K_n decomposes into three pairwise–isomorphic subgraphs if **Q2)** a) and only if n+1 is not divisible by 3. [8] Prove that a graph G is Eulerian if it has at most one nontrivial component and its vertices all have even degree. [8] **Q3**) a) Show that the number of vertices in a self-complementary graph is either 4k or 4k+1, where k is a positive integer. [6] b) Prove that for a connected nontrivial graph with exactly 2k odd vertices, the minimum number of trails that decompose it is $max\{k,l\}$. [6] Show that a hypercube Q_k is k-regular and $e(Q_k)=k2^{k-1}$. c) [4] is a subgraph of G.

- *04*) a) If T is a tree with k edges and G is a simple graph with $\delta(G) \ge k$, then T [7]
 - Use Cayley's Formula to prove that the graph obtained from K, by b) deleting an edge has (n-2)nⁿ⁻³ spanning trees. [6]
 - Show that every graph has an even number of vertices of odd degree.[3] c)

Q5) a) State and prove the Havel-Hakimi Theorem.

[10]

- b) Prove that for k > 0, every k-regular bipartite graph has a perfect matching. [6]
- **Q6)** a) Prove that two blocks in a graph share at most one vertex. [6]
 - b) Prove that if G is a simple graph with diam $G \ge 3$, then diam $\overline{G} \le 3$. [5]
 - c) Using Dijkstra's algorithm find the shortest distance from u to every other vertex in the following graph. [5]



- Q7) a) Prove that in a connected weighted graph G, Kruskal's Algorithm constructs a minimum-weight spanning tree.[6]
 - b) Let $\alpha'(G)$, $\beta'(G)$ and n(G) denotes maximum size of matching, minimum size of edge cover and number of vertices in G respectively. Prove that if G is a graph without isolated vertices, then $\alpha'(G) + \beta'(G) = n(G)$.
- Q8) a) Prove that every component of the symmetric difference of two matchings is a path or an even.[5]
 - b) Explain the Ford-Fulkerson labeling algorithm to find an f-augmenting path. [5]
 - c) Prove that if x and y are distinct vertices of a graph G, then the minimum size of an x,y disconnecting set of edges equals the maximum number of pairwise edge-disjoint x,y paths. [6]

Total No. of Questions: 8	1
----------------------------------	---

P2065	

SEAT No.:	
-----------	--

[Total No. of Pages :2

[4821]-41 M.A./M.Sc.

MATHEMATICS

MT-801: Field Theory

(2008 Pattern) (Semester-IV) (Old)

Time: 3 Hours] [Max. Marks:80

Instructions to the candidates:

- 1) Attempt any five questions.
- 2) All questions carry equal marks.
- 3) Figures to the right indicate full marks.
- **Q1)** a) If $f(x) = a_0 + a_1 x + \dots + a_{n-1} x^{n-1} + x^n \in \mathbb{Z}[x]$ is monic polynomial and if f(x) has a root $a \in \mathbb{Q}$, then prove that $a \in \mathbb{Z}$ and a divides a_0 [6]
 - b) Is $f(x) = x^4 2$ irreducible over the ring of Gaussian integers? Why?[6]
 - c) Let F be a finite field. Construct a polynomial over F which has none of the elements of F as a root. [4]
- Q2) a) Define an algebraic extension. If E is a finite extension of the field F then prove that E is an algebraic extension of F. Is the converse of the above result true? Justify.[8]
 - b) Find the inverse of $1 \sqrt[3]{2} + \sqrt[3]{4}$ in the field $Q(\sqrt[3]{2})$. [8]
- **Q3)** a) Define an algebraically closed field. Prove that the field K is algebraically closed if and only if every irreducible polynomial in K[x] is of degree 1.[8]
 - b) Prove that an algebraically closed field cannot be finite. [4]
 - c) If E is an extension of the field F and [E:F] is prime then prove that there are no fields properly between E and F. [4]
- **Q4)** a) If p is a prime then prove that $f(x) = x^p 1$ in Q[x] has splitting field $Q(\alpha)$ where $\alpha \neq 1$ and $\alpha^p = 1$. Also prove that $[Q(\alpha):Q] = p-1$. [8]
 - b) Find the conditions on a and b such that the splitting field of $x^3 + ax + b \in O[x]$ has
 - i) Degree of extension 3 over Q;
 - ii) Degree of extension 6 over Q.

- Q5) a) If F is finite field then prove that there exist an irreducible polynomial of any given degree n over F.[8]
 - b) Investigate whether a finite field with following number of elements exist and if so construct such a field. [8]
 - i) 625
 - ii) 70.
- *Q6*) a) Define

[8]

- i) A separable extension.
- ii) Perfect field.

Prove that an algebraic extension of a perfect field is separable.

- b) If K is a field of characteristic $p \neq 0$ and if $K^p = K$ then prove that K is a perfect field. [4]
- c) Prove that any extension E of a field F, such that [E:F]=2 is a normal extension. [4]
- **Q7)** a) If E is a finite separable extension of a field F and if [E:F] = |G(E/F)| then prove that F is the fixed field of G(E/F).
 - b) Show that the group $G(Q(\sqrt[3]{2})/Q)$ is trivial group. [5]
 - c) Show that a finite field is a Galois extension of any of its subfields. [5]
- **Q8)** a) If E is a Galois extension of F and K is any subfield of E containing F then prove that [6]

$$[E:K] = |G(E/K)|$$
 and

[K:F] = index of G(E/K) in G(E/F).

- b) Find the splitting field of $x^4 + 1 \in Q[x]$ and show that it is a Galois extension of Q. [4]
- c) Show that the polynomial $x^7 10x^5 + 15x + 5$ is not solvable by radicals over Q. [6]

Total No.	of Questions	:	8]	
-----------	--------------	---	----	--

[Total No. of Pages :3

P2066

[4821]-42 M.A./M.Sc.

MATHEMATICS

MT-802: Combinatorics (2008 Pattern) (Semester-IV)

Time: 3 Hours] [Max. Marks: 80

Instructions to the candidates:

- 1) Attempt any five questions.
- 2) Figures to the right side indicate full marks.
- **Q1)** a) How many ways can a committee be formed from four men and six women with [6]
 - i) At least two men and at least twice as many women as men.
 - ii) Four members, at least two of whom are women, and Mr. and Mrs. Baggins cannot both be chosen?
 - b) How many ways are there to place an order for 12 chocolate sundaes if there are 5 types of sundaes, and at most 4 sundaes of one type are allowed? [6]
 - c) Find the rook polynomial for a full n×n board. [4]
- **Q2)** a) How many integers between 1000 and 10,000 are there with [6]
 - i) Repetition of digits allowed but with no 2 or 4?
 - ii) Distinct digits and at least one of 2 and 4 must appear?
 - b) If 10 steaks and 15 lobsters are distributed among four people, how many ways are there to give each person at most 5 steaks and at most 5 lobsters?
 - c) Verify the identity by a committee selection model. [4]

$$\binom{n}{0}^2 + \binom{n}{1}^2 + \binom{n}{2}^2 + \dots + \binom{n}{n}^2 = \binom{2n}{n}.$$

- Q3) a) How many ways are there to form a committee of 10 mathematical scientists from a group of 15 mathematicians, 12 statisticians and 10 operations researchers with at least one person of each different profession on the committee? [6]
 - b) How many numbers greater than 3,000,000 can be formed by arrangements of 1, 2, 2, 4, 6, 6, 6? [6]
 - Show that any subset of eight distinct integers between 1 and 14 contains a pair of integers k,l such that k divides l.
- Q4) a) How many ways are there to distribute 18 chocolate doughnuts, 12 cinnamon doughnuts and 14 powdered sugar doughnuts among four school principals if each principal demands at least 2 doughnuts of each kind?
 [6]
 - b) Solve the recurrence relation $a_n = 3a_{n-1} 2a_{n-2} + 3$, $a_0 = a_1 = 1$. [6]
 - c) How many integer solutions are there to the equation $x_1 + x_2 + x_3 + x_4 \le 15$ with $x_i \ge -10$ for i=1, 2, 3, 4? [4]
- **Q5)** a) Find ordinary generating function with $a_r = r(r+2)$. [6]
 - b) A school has 200 students with 80 students taking each of the three subjects: trigonometry, probability and basket-weaving. There are 30 students taking any given pair of these subjects, and 15 students taking all three subjects. [6]
 - i) How many students are taking none of these three subjects?
 - ii) How many students are taking only probability?
 - c) How many arrangements of letters in REPETITION are there with the first E occurring before the first T? [4]
- **Q6)** a) Using generating functions, solve the recurrence relation, $a_n = 2a_{n-1} + 2^n \text{ with } a_0 = 1.$
 - b) How many ways are there to distribute 15 identical objects into four different boxes, if the number of objects in box 4 must be a multiple of 3?
 - c) Find a generating function for the number of integers between 0 and 999, 999 whose sum of digits is r. [4]

- **Q7)** a) How many permutations of the 26 letters are there that contain none of the sequences MATH, RUNS, FROM, or JOE? [6]
 - b) How many r-digit quaternary sequences are there in which the total number of 0's and 1's is even? [6]
 - c) Show that any subset of n+1 distinct integers between 2 and 2n ($n \ge 2$) always contains a pair of integers with no common divisor. [4]
- **Q8)** a) Find and solve a recurrence relation for the number of ways to arrange flags on an n-foot pole using three types of flags; red flags 2 feet high, yellow flags 1 foot high and blue flags 1 foot high. [8]
 - b) Five officials O_1, O_2, O_3, O_4, O_5 are to be assigned five different city cars: an Escort, a Lexus, a Nissan, a Taurus and a Volvo. If O_1 will not drive an Escort or Volvo; O_2 will not drive Lexus or Nissan; O_3 will not drive Nissan; O_4 will not drive Escort or Volvo; O_5 will not drive Nissan. How many ways are there to assign the officials to different cars? [8]

Total No. of Questions: 8	3]
----------------------------------	----

Total No. of Questions: 8]		SEAT No.:
P2067	[4021] 42	[Total No. of Pages :2

[4821]-43 M.A./M.Sc.

MATHEMATICS

MT:803- Differentiable Manifolds (2008 Pattern) (Semester-IV)

[Max. Marks:80 Time: 3 Hours]

Instructions to the candidates:

- Attempt any five questions.
- Figures to the right indicate full marks.
- Define the terms: **Q1)** a)

[4]

[Total No. of Pages :2

- Volume of a parametrized manifold. i)
- Centroid of a parametrized manifold. ii)
- Let M be a manifold in \mathbb{R}^n and $\alpha: U \to V$ be a coordinate patch on M. b) If U_0 is a subset of U, then prove that the restriction of α to U_0 is also a coordinate patch in M. [7]
- Give an example of a 1-manifold in \mathbb{R}^2 which can be covered by a single c) coordinate patch. [5]
- Let M be an oriented k-manifold with non-empty boundary, then prove **Q2)** a) that ∂M is orientable. [7]
 - b) Show that n-ball $B^n(a)$ is an n-manifold in \mathbb{R}^n . Find its boundary. [6]
 - Give an example of a 2-manifold in \mathbb{R}^3 . c) [3]
- What is the dimension of $A^{k}(V)$, the space of alternating k-tensors on *Q3*) a) an n-dimensional space. Justify. [7]
 - Let f and g be tensors on \mathbb{R}^4 given by $f(x, y, z) = x_1 y_2 z_2 x_2 y_3 z_1$ and $g = \phi_{2,1} - 5\phi_{3,1}$. Express $f \otimes g$ as a linear combination of elementary 5-tensors. [5]
 - If w = xyzdx + (x + y + z)dy + (xy + xz + yz)dz, then find dw. c) [4]

- **Q4)** a) Let $w = x^2 z dx + xy dy + z^2 y dz$ and $\alpha(u, v) = (u v, u + v, u^2)$. Find $\alpha * (dw)$. [7]
 - b) State Green's theorem. [4]
 - c) Let M be a compact k-manifold in \mathbb{R}^n . Define volume of M. [5]
- **Q5)** a) For any k-form w, show that d(dw)=0. [7]
 - b) Give an example of an alternating tensor. [4]
 - c) State Stoke's theorem. [5]
- **Q6)** a) If f and g are alternating tensors of order k and l respectively, then prove that $g \wedge f = (-1)^{kl} f \wedge g$. [6]
 - b) If $w = xzdx + y^2dy + xe^ydz$ and $\eta = y\sin xdx + zdy + yzdz$, then find $w \wedge \eta$.
 - c) Give an example of a closed form. [4]
- **Q7)** a) Let $A = (0,1)^2$. Let $\alpha: A \to \mathbb{R}^3$ be given by the equation $\alpha(u,v) = (u,v,u^2+v^2+1)$. Let Y_{α} be the image set of α . Evaluate the integral over Y_{α} , the following two-form: $y \, dy \wedge dz + xz dx \wedge dz$. [8]
 - b) With usual notation, prove that $\alpha^*(dw) = d(\alpha^*w)$. [8]
- **Q8)** a) If w and η are k and l forms respectively, then prove that $d(w \wedge \eta) = dw \wedge \eta + (-1)^k w \wedge d\eta.$ [8]
 - b) Give an example of a c^{∞} -function $\alpha: \mathbb{R}^2 \to \mathbb{R}^3$ such that α^{-1} is continuous, but $D\alpha$ is not of rank 2. [4]
 - c) Let $f(x, y, z) = x \sin y + y \cos z + ze^x$. Find df. [4]

Total No. of Questions: 8	3]
----------------------------------	----

SEAT No.:		
[Total	No. of Pages	:2

P2068

[4821]-44 M.A./M.Sc.

	MATHEMATICS MT:804 - Algebraic Topology (2008 Pattern) (Semester-IV)	
Time: 3 Instructi 1) 2)	Hours] [Max. Marks: ons to the candidates: Attempt any five questions. Figures to the right side indicate full marks.	80
Q1) a)	If $A \subseteq X$ and $f_0, f_1: X \to Y$ are continuous, when are f_0 and f_1 said be homotopic relative to A.	to [4]
b)		ce [6]
c)		all 6]
Q2) a)	When do two spaces X and Y have the same homotopy type?	4]
b)	1 /1	ру [6]
c)	Prove that S^n is a strong deformation retract of $\mathbb{R}^{n+1} \setminus 0$.	6]
Q3) a)	Prove that the continuous image of a path connected space is pacennected.	th [4]
b)	Is $S^n, n \ge 1$, path connected? Why?	6]
c)	If f is a path in X , prove that $f_*\overline{f}$ is homotopic to a null path.	6]

- **Q4)** a) Define the fundamental group $\pi_1(X, x_0)$. [4]
 - b) If $f: X \to Y$ is continuous, define the in duced map $f^*: \pi_1(X, x_0) \to \pi_1(Y, f(x_0))$. Prove that this map is a homomorphism. [6]
 - c) Find the fundamental group of the projective plane. [6]

P.T.O.

- **Q5)** a) When is $P: \tilde{X} \to X$ said to be a covering map? [4]
 - b) Prove that $P: S^1 \to S^1$ given by $P(z)=z^2$ is a covering map. [6]
 - c) Find a map $f:[0,2\pi]\times[0,2\pi]\to\mathbb{R}^3$ whose image is a focus. What is the fundamental group of a torus? [6]
- **Q6)** a) Let a group G act on a space X. Prove that any two orbit of this action are either disjoint or equal. [4]
 - b) Give an action of \mathbb{Z} on \mathbb{R} and prove that it is an action. What are the orbits?
 - c) Let P: X̄ → X be a covering map, and f₁, f₂: Y → X̄ be two liftings of f: Y → X. Suppose Y is connected, and ∃ y₀∈ Y with f₁(y₀) = f₂(y₀). Prove that f₁ = f₂.
 [6]
- Q7) a) When is a map $P: E \to B$ called a fibration? [4]
 - b) Give an example of a fibration. [6]
 - c) Prove that a fibration has unique path lifting if and only if every fibre has no non null path. [6]
- **Q8)** a) What is a geometric p-simplex? [4]
 - b) Let $e_1 = (1, 0, 0)$, $e_2 = (0, 1, 0)$, $e_3 = (0, 0, 1)$, $e_0 = (0, 0, 0)$. Draw the 0,1,2 and 3 faces of $s_3 = \{e_0, e_1, e_2, e_3\}$. [6]
 - c) Is the surface of the unit sphere in \mathbb{R}^3 a triangulable space? Why? [6]

Total No. of Questions : 8]		SEAT No. :	
P2069	[4001] 45	[Total	No. of Pages :

[4821]-45 M.A./M.Sc. MATHEMATICS

MT-805 : Lattice Theory (2008 Pattern) (Semester-IV)

Time: 3 Hours [Max. Marks: 80

Instructions to the candidates:

- 1) Attempt any five questions.
- 2) Figures to the right indicate full marks.
- **Q1)** a) Let \mathbb{N}_0 be the set of all non-negative integers. Define $m \le n$ if and only if there exists $k \in \mathbb{N}_0$ such that n = km. Prove that \mathbb{N}_0 is a lattice under this relation.
 - b) Define a congruence relation on a lattice L and prove that the set of all congruence relations on L forms a lattice. [6]
 - c) Prove that every homomorphism is an isotone map but not conversely.[4]
- **Q2)** a) Prove that a lattice L is distributive if and only if for any two ideals I, J of L, $I \lor J = \{i \lor j | i \in I, j \in J\}$.
 - b) Prove that in a distributive lattice L, if the ideals $I \vee J$ and $I \wedge J$ are principal then so are I and J.
 - c) Let L be a finite distributive lattice. Prove that L is pseudocomplemented. Is finiteness necessary to prove the assertion. Justify your answer. [4]
- (23) a) Show that the following inequalities hold in any lattice. [6]
 - i) $(x \wedge y) \vee (x \wedge z) \leq x \wedge (y \vee z);$
 - ii) $(x \wedge y) \vee (x \wedge z) \leq x \wedge (y \vee (x \wedge z))$
 - b) Prove that in a distributive lattice L, the element $a \neq 0$ is join-irreducible if and only if L-[a] is a prime ideal. [6]
 - c) Let L be a distributive lattice. Show that Id(L), the ideal lattice of L, is distributive. [4]

- **Q4)** a) Prove that every maximal chain C of the finite distributive lattice L is of length |J(L)|. [6]
 - b) Prove that every prime ideal is a meet-irreducible element of the ideal lattice but not conversely. [6]
 - c) Prove that every distributive lattice is modular but not conversely. [4]
- **Q5)** a) Let L be a pseudocomplemented lattice. Prove that $S(L) = \{a^* | a \in L\}$ is a bounded lattice. [8]
 - b) Prove that a lattice is modular if and only if it does not contain a pentagon (N_5) as a sublattice. [8]
- **Q6)** a) Prove that a lattice is distributive if and only if it is isomorphic to ring of sets. [8]
 - b) Let L be a bounded distributive lattice with |L| > 1 and the set P(L) of all prime ideals of L is unordered. Prove that L is complemented. [8]
- Q7) a) Prove that every prime ideal of a Boolean lattice is maximal and conversely.[8]
 - b) Let L be a distributive, lattice, let I be an ideal, let D be a dual ideal of L, and let $I \cap D = \emptyset$. Then prove that there exists a prime ideal P of L such that $P \supset I$ and $P \cap D = \emptyset$.
- **Q8)** a) State and prove Jordan-Hölder Theorem for semimodular lattices. [7]
 - b) Prove that in a finite distributive lattice, |J(L)| = |M(L)|, where J(L) and M(L) are the of join-irreducibles and meet-irreducibles of L. [5]
 - c) Prove that every modular lattice is semimodular but not conversely. [4]

