Total No.	of Questions	:	8]
-----------	--------------	---	----

P1233

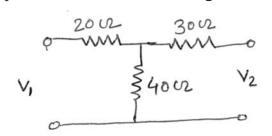
[5438]-101 M.Sc.

[Total No. of Pages : 3

ELECTRONIC SCIENCE

EL1UT - 01 : Mathematical Methods in Electronics and Network Analysis

(2013 Pattern) (Semester - I) (Credit System)


Time: 3 Hours] [Max. Marks: 50

Instructions to the candidates:

- 1) Attempt any five questions.
- 2) All questions carry equal marks.
- 3) Use of non-programmable calculator is allowed.

Q1) Answer the following:

- a) State and explain different type of modelling. Derive the mathematical model for ideal integrator and ideal differentiator circuit using op-amp.[4]
- b) Determine the unit step response to the series R-L circuit using differential equation. [3]
- c) Determine the Z parameters for the following Netowrk. [3]

Q2) Answer the following:

- a) The co-ordinates of a point in cylindrical system are $(r, \theta, z) = (2, -\pi/4,$
 - 1) and the co-ordinates of a point in spherical system are $(\rho, \theta, \phi) = \left(2, \frac{\pi}{4}, \frac{\pi}{3}\right)$.

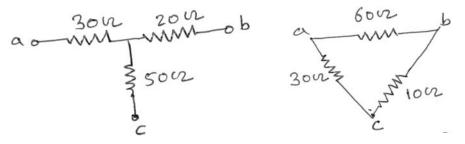
Determine their co-ordinates in Cartesian system. [4]

b) Solve following differential equation using Laplace transform

$$\frac{d^2v(t)}{dt^2} + 6\frac{dv(t)}{dt} + 8v(t) = 2u(t) \text{ for subject to } v(0) = 1, v'(0) = -2.$$
 [3]

c) Define the terms Mesh, Node and Loop. [3]

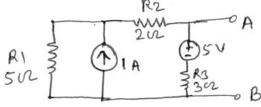
Q3) Answer the following:


a) State initial and final value theorem. Find out initial and final value of following function. Verify your answer using f(t).

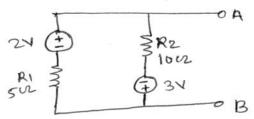
$$f(s) = \frac{5(s+1)}{(s+2)(s+3)}$$
. [4]

- b) State and explain superposition theorem. Explain it's limitation. [3]
- c) Write Bessel differential equation. List application of Bessel equation in physics and Electronics field. [3]

Q4) Answer the following:


a) Convert T to Delta and Delta to T network of following circuit. [4]

- b) Define z transform. Find z transform of exponential function. [3]
- c) Find general solution of the following differential equations: [3]
 - i) $\frac{dy}{dx} = 8y$ ii) $x\frac{dy}{dx} + 2y = 3$


Q5) Answer the following.

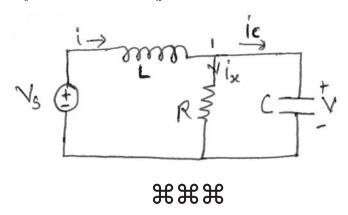
- a) What is mean by partial differential equation? Give its applications in physics and Electronics. [4]
- b) Find Laplace transform of [3]
 - i) cosh (at) ii) sinh (at)
- c) State Norton theorem for dc circuit. Find Norton equivalent circuit for following circuit. [3]

Q6) Answer the following:

a) State maximum power transfer theorem for dc circuit. Find maximum power available for following network. [4]

- b) Define signal. Explain standard test signals used in Electronic Laboratory. [3]
- For the given denominator polynomial of a network function, determine the stability of network. [3] $D(s) = s^5 + s^4 + 3s^3 + 3s^2 + 6s + 4$

Q7) Answer the following:


- a) What is analogus system? Explain how electrical system can be analogus to translational mechanical system. [5]
- b) Use separation variable to solve 3-dimensional Laplace equation in Cartesian co-ordinates. Obtain it's solution. [5]

Q8) Answer the following:

a) Define the convolution theorem. Find f(t) using convolution of following

network
$$f(s) = \frac{2s}{(s+1)(s^2+4)}$$
. [5]

b) Compare state variable approach over transfer function approach. Find the state space representation of the circuit as shown in following figure where V_s is the input and i_x is the output. [5]

Iutai	110.	UΙ	Questions	• (

P1234

SEAT No. :	
------------	--

[Total No. of Pages: 3

[5438]-102

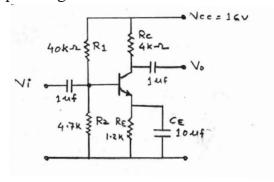
M.Sc. - I

ELECTRONIC SCIENCE

EL1UT02: Analogue Circuit Design (2013 Pattern) (Credit System) (Semester-I)

Time: 3 Hours [Max. Marks: 50

Instructions to the candidates:


- 1) Attempt any five questions.
- 2) All questions carry equal marks.
- 3) Use of log table/ non-programmable calculator is allowed.
- 4) Figures to the right indicate full marks.

Q1) Attempt the following:

- a) Explain switching characteristics of P-N junction diode. [4]
- b) Compare MOSFET and JFET. [3]
- c) Draw circuit diagram of collector- emitter feedback bias. Derive expression for its stability factor 'S'. [3]

Q2) Attempt the following:

- a) What is clipper? With circuit diagram and waveforms explain the working of positive and negative externally biased series type clipper . [4]
- b) Explain different types of distortion in amplifier. [3]
- c) Determine the input impedance, voltage gain and current gain of the CE amplifier given below using h-parameter with $h_{ie}=3.2 \Omega$ and $h_{fe}=100$ at the operating conditions. [3]

Q3) Attempt the following:

- a) With the help of circuit diagram, explain the operation of RC phase shift oscillator using BJT. Write the expression for frequency of oscillations of it. [4]
- b) How will you determine h-parameters from characteristics of CB configurations. [3]
- c) State the circuit parameters such as input impedance, output impedance and closed loop gain for inverting and non-inverting amplifier. [3]

Q4) Attempt the following:

- a) Draw the circuit diagram of practical integrator. What are the practical design consideration for integrator circuit using op-amp. [4]
- b) In a Hartley oscillator, the value of capacitor in the tuned circuit is 500pf and the two sections of coil have inductances 38 μH and 12 μH . Find the frequency of oscillations and the feedback factor β . [3]
- c) Write a short note on "frequency compensation (phase compensation) for an op-amp". [3]

Q5) Attempt the following:

- a) What is tuned amplifier? Distinguish between double tuned and staggeer tuned amplifier. [4]
- b) Explain frequency response of multistage amplifier. [3]
- c) Draw the circuit diagram of Wein-bridge oscillator. Find the value of capacitor if R is $100 \text{ k}\Omega$ and frequency of oscillation is 20 kHz for Wein-bridge oscillator. [3]

Q6) Attempt the following:

- a) What are the different coupling schemes used in amplifiers? Explain each. [4]
- b) Explain with circuit diagram, capacitance coupled single tuned amplifier. [3]
- c) A tank circuit has a capacitor of 100 pf and an inductor of 50 μ H. The resistance of the inductor is 10 Ω . Find the resonant frequency, bandwidth and Q-factor. [3]

Q7) Attempt the following:

- a) With the proper circuit diagram, explain the working of transducer bridge amplifier.
- b) Obtain the value of R_1 , R_2 , R_c and R_E for single stage RC coupled amplifier using transistor; if $V_{cc}=10V$, $I_c=4mA$. [5]

Q8) Attempt the following:

- a) Draw the block diagram of PLL and explain the function of each block.What is lock range and capture range. [5]
- b) With the help of neat sketches and characteristic curves, explain the operation of junction FET. Show the different regions of the output characteristics of a JFET. [5]

P1235

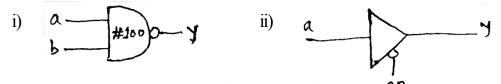
[Total No. of Pages: 3

[5438]-103 M.Sc. - I

ELECTRONIC SCIENCE

EL1 UT 03: Digital System Design

(2013 Pattern) (Credit System) (Semester - I)


Time: 3 Hours] [Max. Marks: 50

Instructions to the candidates:

- 1) Answer any five questions.
- 2) All questions carry equal marks.
- 3) Use of log tables/non programmable calculator is allowed.
- 4) Figures to the right indicate full marks.
- **Q1)** Attempt the following:
 - a) Explain design flow for digital system design using verilog HDL. [4]
 - b) Implement the following function using 4:1 multiplexer [3]

 $F(A, B, C)=\Sigma m (1, 3, 5, 6)$

- c) Explain with neat diagram architecture of CPLD. [3]
- **Q2)** Attempt the following:
 - a) Write the verilog code for 4:1 MUX using dataflow and behavioral modeling. [4]
 - b) State the advantages of PLD's over fixed function IC's. List various types of PLD's. [3]
 - c) Write verilog code for [3]

Q3) Attempt the following:

a) Draw the truth table with 3-input variables A, B, C and P, Q as output variables for following [4]

P is LOW when all inputs are same

Q is HIGH when exactly one input is HIGH

Write SOP expression for P, Q and implement it using logic gates.

b) Implement the following using PAL [3] $F_1(A, B, C) = \Sigma m (1, 4, 5, 7)$ $F_2(A, B, C) = \Sigma m (1, 2, 3, 6)$ Explain different loop structures used in verilog. c) [3] **Q4)** Attempt the following: Design synchronous counter for sequence [4] $0 \rightarrow 1 \rightarrow 3 \rightarrow 6 \rightarrow 7 \rightarrow 5 \rightarrow 0$ using JK flip flop. Design 2-bit magnitude comparator. b) [3] Write excitation table and draw state diagram for JK flip flop and write c) verilog code for it. [3] **Q5)** Attempt the following: Write a verilog code for 4-bit ring counter using behavioral modeling. a) Write test bench for 4-bit ring counter. [4] Design 3-bit binary to gray converter. [3] b) Minimize the following expression using K-map and realize using logic c) gates. [3] $Y(A, B, C, D) = \sum m(2, 3, 5, 6, 11, 12, 15)$ **Q6)** Attempt the following: Write the verilog code for a) [4] i) 4-bit ALU 8 to 3 priority encoder ii) If X = 4' b1010b) [3] Y = 4' b1011Z = 4' b10X1Find output of following X & Y i) $X \mid Y$ ii) iii) X ^~ Y iv) X & Z v) & X vi) P = X >> 1Explain with circuit diagram 4-bit parity generator and checker. [3]

Q7) Attempt the following:

- a) Draw and explain architecture of FPGA. List applications of FPGA.[5]
- b) Write verilog code for traffic light control using FSM. [5]

Q8) Attempt the following:

- a) Explain with neat diagram SRAM memory cell. Explain 'write' operation with the help of timing diagram. [5]
- b) Design stepper motor sequence generator using FSM. What should be clock frequency to rotate stepper motor with 240 rpm. [5]

Total No. of Questions : 6]	SEAT No.:	
P1236	[Total	No. of Pages :

[5438]-104 M. Sc. - I

ELECTRONIC SCIENCE EL1UT - 04: Advanced 'C' Programming (2013 Pattern) (Credit System) (Semester - I) Time: 3 Hours] [Max. Marks: 40 Instructions to the candidates: *1*) Attempt any four questions. 2) All questions carry equal marks. Figures to the right indicates full marks. 3) **Q1)** Answer the following: Explain with example the command line argument in C. [4] a) Discuss with suitable example the conditional statements in C. b) [3] Write a C-language program to find smallest number from given n c) numbers. [3] **Q2)** Answer the following: Write a C-program to draw symbol of JFET using graphics commands.[4] a) State the features of object oriented programming. b) [3] Give the difference between public and private class. [3] c) **Q3)** Answer the following: Write a C-program to find the sum of digits of 4-digit integer number. [4] a) State different types of memory allocations in C. b) [3] What is polymorphism? Give its types. c) [3]

Q4) Answer the following:

- a) Explain functions available in C language to access the parallel port of computer. [4]
- b) Write a C-language program to find factorial of a given number using recursive function. [3]
- c) Explain the following functions of file handling. [3]
 - i) fgetc ()

ii) rewind()

Q5) Answer the following:

- a) Differentiate between Pointer (*) and address (&) operator with suitable example. [5]
- b) Write a C-program to calculate the resistance value using color code table. [5]

Q6) Answer the following:

- a) Write a C-program to reverse a string using pointers. [5]
- b) Write a note on video adapter and video graphics modes. [5]

α

SEAT No. :	
SEAT No.:	

[Total No. of Pages: 2

P1237

[5438]-201 M.Sc. - I

ELECTRONIC SCIENCE EL2UT05: Applied Electromagnetics, Microwave and Antennas (2013 Pattern) (Credit System) (Semester - II) Time: 3 Hours [Max. Marks : 50] Instructions to the candidates: Answer any five questions. *2*) All the questions carry equal marks. 3) Neat diagram must be drawn wherever necessary. Figures to the right indicate full marks. *4*) Use of non-programmable calculators is allowed. **Q1**) Answer the following questions: Starting with Maxwell's equations, obtain the electric and magnetic field a) wave equations in time domain. A uniform transmission line has constants $R = 12 \text{ m}\Omega\text{m}^{-1}$, $L = 1.5 \mu\text{Hm}^{-1}$, b) $G = 1.4 \mu 75 \,\mathrm{m}^{-1}$ and $C = 1.4 \,\mathrm{nFm}^{-1}$ at 7 KHz frequency. Find its characteristic impedance. [3] State the formula for cut off frequency for a rectangular waveguide c) involving guide parameters and medium in the waveguide in case of TE wave. Explain precisely each term in it. [3] **Q2**) Answer the following questions: An airfilled rectangular waveguide of inside dimensions 7×3.5 cm operator in dominant TE₁₀ mode. Find the cutoff frequency and phase velocity of wave in the guide at a 3.5 GHz frequency. Write a short note on Skin effect. [3] b) What is Smith chart? What are its important characteristics? [3] c) Q3) Answer the following questions: Write the Maxwell's equations in integral and differential form. [2] a) i)

What is reflection and transmission coefficient of transmission line? 11)

[2]

- What is a waveguide? What are the waveguide components? [3] b)
- Write a short note on Yogi Uda antenna. [3] c)

P.T.O.

Q4) Answer the following questions:

- a) Explain the working of a reflex klystron using its schematic diagram. [4]
- b) The electric field for a TEM wave is 100 V/m. Calculate the velocity and magnitude of poynting vector for the wave in air. [3]
- c) What are the various types of power losses in a rectangular waveguide? [3]

Q5) Answer the following questions:

- a) Why impedance matching is necessary in transmission lines? Describe any two methods of impedance matching on transmission lines. [4]
- b) Find the depth of penetration of an electromagnetic wave of frequency 1 MHz in copper. $[6 = 5.8 \times 10^7 \text{ mho/m}]$ [3]
- c) What is cavity resonator? Explain Q-factor of cavity resonator. [3]

Q6) Answer the following questions:

- a) With suitable diagram explain the construction and working of magnetron.
 [4]
- b) Explain single stub matching of transmission line with necessary diagram. [3]
- c) Compare the circular waveguide and optic fiber. [3]

Q7) Answer the following questions:

- a) For a plane wave propagating through a conductor show that $\alpha = \beta = \sqrt{\pi \rho \mu 6}$ where α is attenuation constant, μ is permeability, β is phase constant and 6 is conductivity of the medium. [5]
- b) What is Gunn effect? Draw the schematic diagram of n-type GaAs diode and explain the Gunn effect. [5]

Q8) Answer the following questions:

- a) A transmission line has a characteristic impedance of $50 + j0.01\Omega$ and is terminated in a load impedance of $73 j42.5\Omega$. Find the reflection coefficient and the standing wave ratio. [5]
- b) Write short note on: [5]
 - i) End fire antenna.
 - ii) Broadband antenna.

Total No.	of Questions	:	8]
-----------	--------------	---	----

D1	220	
PΙ	23X	

SEAT No.	:	

[Total No. of Pages: 3

[5438]-202 M.Sc. - I

ELECTRONIC SCIENCE

EL2UT06: Instrumentation and Measurement Techniques (2013 Pattern) (Credit System) (Semester - II)

Time: 3 Hours | [Max. Marks: 50]

Instructions to the candidates:

- 1) Answer any five questions.
- 2) All questions carry equal marks.
- 3) Neat diagrams must be drawn wherever necessary.
- 4) Figures to the right indicate full marks.
- 5) Use of non-programmable calculator is allowed.
- Q1) a) Prove that for shunt connected instrument, the measured voltage is given

by
$$E_{L} = \frac{E_{0}}{\left(1 + \frac{Z_{0}}{Z_{L}}\right)}$$
.

What type of error involved in the measurement? How to minimize it?[4]

- b) Classify transducers according to transduction principle used and energy requirement. [3]
- c) List the advantages of electronic instruments over mechanical and electrical. [3]
- Q2) a) Define static sensitivity, Dead zone and Resolution. A moving coil voltmeter has uniform scale with 100 divisions, the full scale reading is

100 V and $\frac{1}{10}^{th}$ scale division can be estimated with fair degree of

uncertainty. Determine the resolution of the voltmeter. [4]

b) A voltmeter having sensitivity of $10 \,\mathrm{k}\Omega/\mathrm{V}$ reads 100V on its 150 V scale, when connected across an unknown resistor in series with milliammeter, when it reads 5 mA current. [3]

Calculate:

- i) Apparent resistance of unknown resistor.
- ii) Actual resistance of the unknown and
- iii) Error due to loading effect of voltmeter.

P.T.O.

- c) Define Accuracy and precision. "Precision is composed of conformity and number of significant figures". Comment with suitable example. [3]
- Q3) a) What is dynamic response of measurement system? Describe First order system for step input.[4]
 - b) A temperature probe is transferred from air at 25°C to air at 35°C, then to water at 70°C and back to air at 35°C. In each case the transfer is instantaneous. The effective time constant and the timing sequence is:

In air dry probe $\tau = 30$ sec.

In water $\tau = 5$ sec.

In air wet probe $\tau = 20$ sec.

for t < 0, T = 25°C Initial temperature,

0 < t < 7, T = 35°C dry probe in air,

7 < t < 15, T = 70°C probe in water and

15 < t < 30, T = 35°C wet probe in air.

Calculate the temperature indicated at the end of each time interval. [3]

- c) List the different type of errors involved in measurement. A resistance is determined by voltmeter. Ammeter method, the voltmeter reads 100V with probable error of ±12V and the ammeter reads 10A with probable error of ±2A. Determine the probable error in the computed value of resistance. [3]
- Q4) a) Derive the expression for voltage across the capacitor with time for first order electrical system.[4]
 - b) Describe linear approximation of non-linear system. A resistance temperature detector (RTD) with steady state gain of $0.3925 \,\Omega$ /°C and a time constant of 5.5 sec experiences a step change of 75°C. Before the temperature change, it has a stable 100Ω resistance. Write the time domain equation for resistance and find its value after 15 sec of application of step input. [3]
 - c) State the selection criteria of transducer for the measurement of physical parameters. [3]
- Q5) a) List the transducers used for displacement measurement. State advantages of strain gage and LVDT. [4]
 - b) A strain gage is bonded to a beam of 0.1m long and has cross sectional area 2 cm². Young's modulus of steel is 207 GN/m² and the unstrain resistance is of 240Ω with gage factor 2.2. When a load is applied, the gage resistance changes by 0.013Ω . Calculate the change in length of the steel beam and the amount of force applied. [3]

c) The output of LVDT is connected to a 5V voltmeter through an amplifier of amplification factor 250. The voltmeter scale has 100 divisions and

the scale can be read to $\frac{1}{5}^{th}$ of the division, an output of 2mV appears

across the terminals of LVDT, when the core is displaced through a distance of 0.5 mm. Calculate: [3]

- i) The sensitivity of LVDT.
- ii) The sensitivity of the whole setup.
- iii) The resolution of the instrument.
- Q6) a) List the basic methods of force measurements. A mild steel shaft is used to connect a motor drive to a constant load torque. To measure the torque, a resistance strain gage with resistance of 120Ω and gage factor 2 is mounted at 45° to the shaft axis. The shear modulus of steel is 80 GPa, shaft diameter is 50 mm and change is gage resistance due to load is 0.1Ω . Find the load torque. [4]
 - b) Give the comparison between resistance thermometer and thermocouple.

[3] [3]

- c) Describe inductive transducers with
 - i) Change in self inductance.
 - ii) Change in mutual inductance and
 - iii) Production of eddy current.

Give at least one application of each.

- Q7) a) List the pressure transducers. Give different methods of pressure measurements. Describe working principle of Ionization gage. [5]
 - b) Classify flow meters. Write working principle of Ultrasonic flow meter. For ultrasonic flow meter a bear frequency of 1000 cps. The angle between transmitter and receiver is 45°, and the sound path is of 12 inches. Calculate the fluid velocity in m/sec. [5]
- **Q8)** a) Give classification of temperature transducer. Describe thermistor and resistance thermometer.

A platinum resistance thermometer has a resistance of 100Ω at 25° C. Find its resistance at 65° C and find temperature for 150Ω resistance. The temperature coefficient of platinum is $0.00392/^{\circ}$ C. [5]

b) Describe working principle of radiation pyrometers. State their types, specification and advantages. [5]

Total No. of Questions: 8]

P1239

[Total No. of Pages: 4]

[5438]-203 M.Sc. - I

ELECTRONIC SCIENCE

EL2UT07: Embedded System Design (2013 Pattern) (Credit System) (Semester - II)

me : 3 Hours]	[Max. Marks : 50
	L

Instructions to the candidates:

- 1) Answer any four questions.
- 2) All the questions carry equal marks.
- 3) Neat diagrams must be drawn wherever necessary.
- 4) Use of non-programmable calculators is allowed.

Q1) Answer the following questions:

a) Compare RS232 and RS485 bus standards. Write a 'C' program for PIC 18 F458 or PIC 18 F4550 to transfer the message "ELECTRONICS" serially at 9600 baudrate. Assume XTAL = 10 MHz to determine the value of SPBRG register. [4]

CSRC	TX9	TXEN	SYNC	О	BRGH	TRMT	TX9D	
D7							D0	

TXSTA: Transmit status & control register.

RCIF TXIF	-	-
-----------	---	---

PIR1: Peripheral interrupt register 1.

- b) What is an embedded system? What are its characteristics? Draw block diagram of a typical embedded system & explain all the components in it. [3]
- c) Write a C program for ATMEGA16 microcontroller to implement 8-bit Johnson counter on 8 LED's connected to PORTB. [3]

Q2) Answer the following questions:

- a) i) Draw data memory map of PIC18F458 or PIC 18F4550. What is Access bank in it? [2]
 - ii) Explain any four instructions used to access RAM bitwise. [2]
- b) Draw the interface of 2 digit multiplexed display using. Comman cathode SSD's to ATMEGA16. Write a 'C' program to implement a two digit BCD Counter. [3]
- c) State the difference between RISC and CISC architecture. [3]

Q3) Answer the following questions:

a) Write a 'C' program for ATMEGA 16 to toggle LED connected at PORTD bit O continuously at 1 Hz frequency. Use timer 1, Normal mode, 1:256 prescalar to create the delay. Assume XTAL = 8 MHz[4] TCCR1A

	COM1A1	COM1A0	COM1B1	COM1B0	FOC1A	FOC1B	WGM11	WGM10	
TC	TCCR1B								
	ICNC1	ICES1	-	WGM13	WGM12	CS12	CS11	CS10	
TIFR									
	OCF2	TOV2	ICF1	OCF1A	OCF1B	TOV1	OCF0	TOV0	

b) Describe the PIC18F458 or PIC18F4550 microcontroller status register in short.

Find the C, Z & DC flags for each of the following

- i) MOVLW 0×3F ADDLW 0×45
- ii) MOVLW 0×99 ADDLW 0×58
- iii) MOVLW 0×F5 ADDLW 0×0B

[3]

c) Write a note on SPI protocol.

[3]

Q4) Answer the following:

a) Write the output of each instruction in the following code and state the purpose of the code. [4]

MYNUM	EQU	0×20
	MOVLW	0×34
	ANDLW	0×0F
	MOVWF	MYNUM
	SWAPF	MYNUM, F
	MOVLW	0×37
	ANDLW	0×0F
	IORWF	MYNUM, F

- b) Draw interface of a 4 × 4 keyboard to ATMEGA16. With the help of a flowchart, explain the steps to detect the keypress. [3]
- c) Compare assembly language programming & 'C' programming for microcontroller.

What is IDE? What are typical IDE's used for PIC & AVR based system design. [3]

Q5) Answer the following questions:

- a) Draw interfacing of DAC 0808 to ATMEGA16 microcontroller. Write C program to generate a stair step ramp waveform. [4]
- b) Draw neat circuit diagram of target board of PIC18F458 or PIC18F4550, Show [3]
 - i) Reset and oscillator circuit.
 - ii) In Circuit Serial Programming (ICSP) pin connections.
- c) What is I2C? List I2C devices which can be interfaced with microcontroller. State advantages of I2C over SPI. [3]

Q6) Answer the following:

- a) Draw architecture of ATMEGA16 and explain it in short. [4]
- b) Draw interface of LDR and bulb (using relay) to PIC18F458 or PIC18F4550. Write C program to implement light ON-OFF controller.

 [3]
- Explain with examples any four addressing modes of AVR. If C = 1, R1 = 95H and R2 = 4FH prior to execution of "SBC R1, R2", what will be the contents of R1 and C after subtraction in AVR microcontroller?

Q7) Answer the following:

a) Draw interface of temperature sensor LM35 and DC motor to ATMEGA16. Write 'C' program to control the speed of DC motor automatically according to temperature. [5]

ADMUX:

	REFS1	REFS0	ADLAR	MUX4	MUX3	MUX2	MUX1	MUX0
AD	CSRA							
	ADEN	ADSC	ADATE	ADIF	ADIE	ADPS2	ADPS1	ADPS0
TCCRO								
	FOC0	WGM00	COMO1	COMO0	WGMO1	CSO2	CSO1	COSO0

- b) i) What are the criteria the designer should consider in choosing a microcontroller for embedded system development. [3]
 - ii) Explain in short development cycle of embedded system. [2]

Q8) Answer the following:

a) Draw a block diagram of a car parking controller using PIC18F458/PIC18F4550. Assume INTO pin of PIC microcontroller is connected to IR entry sensor. INT1 pin is connected to IR exit sensor. Display total number of cars present using 4-LED's connected to PORTD.0 to PORTD.3. Activate parking full indicator when number of cars entered are 15. Write 'C' program to implement car parking system. [5]

INTCON:	- 10	SIE	-	-	INTOIE	-	INTF	-
INTCON3:	-	-	-	-	INT1IE	-	-	INT1TF

b) Explain the following communication standards:

[5]

- i) Zigbee.
- ii) Bluetooth.

SEAT No.:	
-----------	--

[Total No. of Pages: 2

P1240

[5438]-204 M.Sc. - I

ELECTRONIC SCIENCE

EL2UT 08: Foundation of Semiconductor Devices (2013 Pattern) (Semester - II) (Credit System)

Time: 2½ Hours] [Max. Marks: 40

Instructions to the candidates:

- 1) Answer any four questions.
- 2) All questions carry equal marks.
- 3) Neat diagram must be drawn whenever necessary.
- 4) Figures to the right side indicate full marks.
- 5) Use of Non-programmable calculator is allowed.

Q1) Attempt the following.

- a) Explain the working of heterojunction bipolar transistor (HBT). [4]
- b) 'In n-type semiconductor the position of the Fermi energy level is above the donor energy level at absolute zero temperature.' Comment. [3]
- c) A Si sample is doped with 10^{16}cm^{-3} boron atoms and a certain number of shallow donors. The Fermi level is 0.36 eV above E_i at 300 K. What is the donor concentration N_d ? (Given ni = $1.5 \times 10^{10} \text{ cm}^{-3}$) [3]

Q2) Attempt the following.

- a) With the help of schematic band diagram explain density of state, Fermi Dirac distribution and carrier concentration for extrinsic (p type and n type) semiconductors at thermal equilibrium.
 [4]
- b) Compare the position of Fermi energy band diagram for p-region and n-region of a p-n junction diode at zero bias, reverse bias and forward bias. [3]
- c) What do you mean elementary, binary, ternary and quaternary compound in semiconductor materials? Give examples of each. [3]

Q3) Attempt the following.

- a) Explain the basic operation of MOS capacitor with suitable diagram.[4]
- b) Explain the concept of minority carrier life time. [3]
- c) How many atoms are found inside a unit cell of SC, BCC and FCC crystal? How far apart in terms of lattice constant 'a' are the nearest neighbour atom in each case, measured from center to center. [3]

Q4) Attempt the following.

- a) Write short notes on Epitaxial growth techniques. (any two) [4]
- b) Two possible conduction bands are shown in the E-K diagram given in following figure. [3]

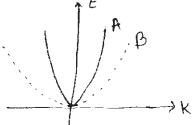


Fig. conduction bands for (Q4b)

State which band will result in the heavier electron effective mass. State why?

Discuss qualitatively the I_D-V_D curve for variation of a negative gate bias for JFET (V_{DS} = constant). Explain pinch-off variation for different negative gate bias voltage.
 [3]

Q5) Attempt the following.

- a) What is schrodinger time independent wave equation? Show that the energies of a particle in a one dimensional potential well of infinite height are quantized. [5]
- b) What is Hall effect? Derive the relation for Hall coefficient? Give it's applications. [5]

Q6) Attempt the following.

- a) How p-n junction is formed? Explain reverse breakdown region in p-n junction diode. [5]
- b) Explain the formation of allowed and forbidden energy bands in solids, with proper energy level diagram. [5]

Total No.	of Questions	:8]
-----------	--------------	-----

[Total No. of Pages: 2

P1241

[5438]-301 M.Sc.

ELECTRONIC SCIENCE

EL3UT09: Communication Electronics

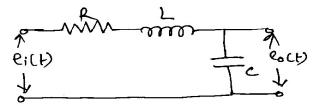
(2013 Pattern) (Credit System) (Semester - III) Time: 3 Hours] [Max. Marks: 50 Instructions to the candidates: Answer any five questions. *2*) Neat diagrams must be drawn wherever necessary. 3) Figures to the right indicates full marks. Draw block diagram of communication system and explain each block *Q1*) a) in brief. [4] With reference to an Antenna explain following terms in brief: [3] b) Directivity. i) Bandwidth. ii) Radiation Pattern. iii) Explain IrDA module and write its specifications. [3] c) Draw and explain block diagram of superheterodyne receiver. [4] **02**) a) Draw diagram of Cassegrain fed parabolied antenna and explain its b) working. [3] What is CDMA? State features of CDMA technique. c) [3] Explain need of XMODEM protocol. Describe fields of the XMODEM **Q3**) a) frame. [4] In AM transmitter carrier power is of 500 Watts and modulation is 70%. b) Calculate power in each sideband. Also calculate the total power. [3] Draw a block diagram of Frequency Hopped Spread Spectrum (FHSS) c) transmitter. [3]

Q4)	a)	State SDLC frame format and explain SDLC flag field.	[4]
	b)	Explain in brief:	[3]
		i) Signal to Noise ratio.	
		ii) Noise figure.	
	c)	Explain frequency Reuse concept in cellular phone system.	[3]
Q5)	a)	Describe the Yagi-Uda antenna. Write it's features.	[4]
	b)	What is the need of modulation?	[3]
	c)	State Shannon's fundamental theorem of an information theory. Calculate capacity of standard 4 kHz telephone signal channel with 32 dB stratio.	
Q6)	a)	With the help of neat diagram, describe construction and working microstrip patch antenna.	g of [4]
	b)	Explain the terms:	[3]
		i) Equipment Noise.	
		ii) Atmospheric Noise.	
	c)	Explain working of Pulse Amplitude Modulator in brief.	[3]
Q7)	a)	What is ISDN? Write features of ISDN services.	[4]
	b)	Draw block diagram of FDM multiplexer and explain in brief.	[3]
	c)	Draw diagram of an antenna π -coupler and state its advantages.	[3]
Q 8)	a)	Write advantages, disadvantages and applications of 3G wirel	ess
		technology.	[4]
	b)	Describe working of 8QAM in brief.	[3]
	c)	Explain the ground effect of horizontal electric dipole antenna.	[3]

Tota	l No	. of Questions : 8]	SEAT No.:		
P1242		[5/12Q] /01	[Total No. of Pages : 2		
		[5438]-401 M. ScII			
			CE		
		ELECTRONIC SCIEN			
		EL4UT 10: Control Syst			
		(2013 Pattern) (Semester - IV) (Cı	redit System)		
Time: 3 Hours		Hours]	[Max. Marks : 50		
Insti	ructi	ons to the candidates:	-		
	<i>1)</i>	Answer any five questions.			
	<i>2)</i>	All questions carry equal marks.			
	<i>3)</i>	Neat diagrams must be drawn wherever necessary.			
	<i>4)</i>	Figures to the right side indicate full marks.			
	<i>5)</i>	Use of non-programmable calculator is allowed.			
Q1)	An	swer the following:			
	a)	Distinguish with suitable example, between	en the open loop and closed		
		loop control system.	[4]		
	b)	Explain the following terms:	[3]		
		i) Stable system ii) Co	onditionally stable system		
		iii) Unstable system			
	c)	Sketch the outputs of P, PI and PID control	ler for a step input signal.[3]		
()2)	Λn	sever the following:			
Q2)		nswer the following: Explain the working principle of servomoto	.r. [A]		
	a)				
		Define transfer function. Explain its feature			
	c)	What is offset error? How it can be reduce	d. [3]		
Q3)	An	swer the following:			
	a)	Using Routh's method, check the stability of gi	ven characteristic equation.[4]		

- $S^6 + 2S^5 + 8S^4 + 12S^3 + 20S^2 + 16S + 16 = 0$
- b) Explain principle and characteristics of control valves. [3]
- Write short note on adaptive control. [3] c)

Q4) Answer the following:


- Explain the working of ON-OFF controller. What is meant by differential gap? Why it is necessary.
- Explain Nyquist stability criteria to determine stability of control system.[3] b)
- Write a short note on solenoid. [3] c)

Q5) Answer the following:

- a) Define the term root locus. Explain essential conditions that every point on root locus should satisfy. [4]
- b) What is Bode plot? Explain the procedure for Bode plot. [3]
- c) What is the role of different types of modeling in control systems? [3]

Q6) Answer the following:

a) Find the transfer function of following network. [4]

- b) Explain proportional control mode. What is offset error? [3]
- c) Comment: 'Derivative mode cannot be used alone'. [3]

Q7) Answer the following:

- a) Derive the transfer function of simple closed loop system in simple or canonical form. [5]
- b) Write a short note on standard Graphic symbols for process control and instrumentation. [5]

Q8) Answer the following:

- a) For a proportional controller, the controlled variable is a process temperature with a range of 50 to 130°C and a set point of 73-5°C. Under nominal conditions, the set point is maintained with an output of 50%. Find the proportional offset resulting from load change that requires a 55% output if the proportional gain is [5]
 - i) 0.1

ii) 0.7

iii) 2.0

- iv) 5.0
- b) Explain control system for paper tension control system application.[5]

രുന്ദ