| Total No. | of Questions | : | 5] |  |
|-----------|--------------|---|----|--|
|-----------|--------------|---|----|--|

| SEAT No. : |  |
|------------|--|
|------------|--|

[Total No. of Pages :3

P2675

## [5034]-11 M.Sc. I

## **ELECTRONIC SCIENCE**

## **ELIUT01: Foundation of Semiconductor Devices** (2008 Pattern) (Semester - I)

Time: 3 Hours] [Max. Marks: 80

Instructions to the candidates:

- 1) All questions are compulsory.
- 2) Figures to the right side indicate full marks.
- 3) Draw neat diagrams wherever necessary.
- 4) Use of non-programmable calculator is allowed.

#### *Q1*) Attempt any two of the following:

 $[2 \times 8 = 16]$ 

- a) What is ambipolar transport? Derive the ambipolar transport equation. State application of it.
- b) What is distribution function? Explain Fermi-Dirac probability function at absolute zero and higher temperature.
- c) Explain low frequency small signal two port equivalent circuit of BJT.

### **Q2)** Attempt any two of the following:

 $[2 \times 8 = 16]$ 

- a) Define the following terms:
  - i) lattice
  - ii) basis
  - iii) primitive vector.

For a bcc lattice of identical atoms with a lattice constant of 5A. Calculate maximum packing fraction and radius of atom. Assume atoms are hard spheres with nearest neighbours touching.

- b) Explain principle of LED with energy level diagram. Why specific materials are used in LED?
- c) Explain depletion mode and enhancement mode of MOSFETS. Show diagrametically  $I_D$ - $V_{DS}$  relationship for n-channel depletion mode MOSFET.

### *Q3*) Attempt any four of the following:

 $[4 \times 4 = 16]$ 

- a) Define Miller indices of crystal planes. What are its applications?
- b) Describe concept of excess carrier generation and recombination rate across a semiconductor.
- c) Explain concept of buit in potential
  - i) under zero bias
  - ii) forward bias and
  - iii) reversed bias
- d) Explain construction and energy level diagram of HBT. What are its special feature over BJT?
- e) Explain the operation of MOS capacitor with suitable diagram.

#### **Q4)** Attempt any four of the following:

 $[4 \times 4 = 16]$ 

- a) Explain the position of Fermi-level in extrinsic semiconductor. Draw energy band diagram with suitable equations.
- b) Explain zener effect and avalanche effect in a reverse biased pn junction.
- c) Explain SCR structure, obtain relationship for switching action of SCR using two transistor equivalent model.
- d) Following are transistor parameters

 $I_E = 1$ mA,  $\beta = 100$ ,  $C_{je} = 1$  PF, total emitter to collector time delay  $\tau_{ec} = 103.9$  PS at T = 300 k

Find: i) emitter resistance r<sub>a</sub>

- ii) cut off frequency  $f_T$
- iii) beta cutoff frequency  $f_{\beta}$

Given  $K = 8.62 \times 10^{-5} \text{ ev/k}$ .

e) Describe internal pinch off voltage and pinch off voltage of JFET, Give suitable mathematical relationships.

## **Q5)** Attempt any four of the following:

$$[4 \times 4 = 16]$$

a) Calculate first three energy levels of an electron in an infinite depth potential well of width 6A.

Given 
$$h = 1.054 \times 10^{-34} \text{ JS}.$$
  
 $m_e = 9.11 \times 10^{-31} \text{ kg}.$ 

- b) Explain concept of effective mass.
- c) Draw and explain I-V characteristic of a pn junction diode obtain expression for ideal diode equation of pn junction.
- d) Explain Eber-moll model for BJT with equivalent circuit diagram.
- e) Explain small-signal equivalent circuit for MOSFET amplifier. Obtain drain current relationship with  $V_{\rm gs}$ .



| Total No. | of Questions | : | 5] |  |
|-----------|--------------|---|----|--|
|-----------|--------------|---|----|--|

| D2676 |
|-------|
| P20/0 |

| SEAT No.: |  |
|-----------|--|
|           |  |

[Total No. of Pages: 3

## [5034]-12 M.Sc.

#### **ELECTRONIC SCIENCE**

## EL1 UT0 2: Analog Circuit Design and Analysis (2008 Pattern) (Semester - I)

Time: 3 Hours] [Max. Marks: 80

Instructions to the candidates:

- 1) All questions are compulsory.
- 2) Figure to the right indicate full marks.
- 3) Draw neat diagrams wherever necessary.
- 4) Use of log table/non-programmable calculator is allowed.

#### *Q1*) Solve any Two:

a) Obtain the inverse Laplace transformation for the given function

$$F(S) = \frac{s+5}{s(s^2+2s+5)}.$$
 [8]

- b) Draw the block diagram of operational amplifier and explain function of each block in brief. [8]
- c) i) What is two port network? Explain what are its hybrid parameters.[4]
  - ii) What are equalisers? Explain series equaliser in brief. [4]

## *Q2)* Solve any Two:

- a) i) What is an ideal current source? Explain the Wilson current source.What is its advantage? [4]
  - ii) Explain supply independent biasing. How it is achieved? [4]
- b) i) Obtain Laplace transform of following functions [4]
  - $1) f(t) = e^{-at}$
  - $2) f(t) = \cos wt$

ii) Draw pole - zero diagram of a network function [4]

$$F(s) = \frac{4(s+2)s}{(s+1)(s+3)}$$

- c) i) Explain following characteristics of operational amplifier [4]
  - 1) Input bias current
  - 2) CMRR
  - 3) Differential and common mode input resistance.
  - ii) Explain series RLC circuit in brief. [4]

#### *Q3*) Solve any TWO:

- a) Explain the working of a two op-amp practical log amplifier circuit. Obtain necessary equation. Explain temperature compensation technique. [8]
- b) i) With proper circuit diagram, explain R-2R Ladder in brief. [4]
  - ii) A 4-bit DIA convertor of type R-2R ladder has digital inputs 1010 and 1110. If Vref = 5V.  $RF = 1K\Omega$ ,  $R = 5K\Omega$ , Find output voltage for given digital inputs. [4]
- c) i) What is peak detector? With circuit diagram explain peak detector using op-amp. [4]
  - ii) Derive an expression for Z-parameters in terms of Y-parameters.[4]

## **Q4)** Solve any TWO:

- a) Explain the shielding and guarding techniques used in op-amp circuit design. [8]
- b) What is an active filter? State advantage of active filters over passive filters. Design 2<sup>nd</sup> order low pass filter for cut of frequency 1KHz and pass band gain 5. [8]
- c) Explain  $\Sigma$  to  $\triangle$  converter in brief. [8]

#### *Q5*) Solve any Four:

- a) Explain in brief the output current boosting technique for a general purpose
   OPAMP with proper circuit diagram. [4]
- b) State applications of ADC's and DAC's. [4]
- c) What is programmable OPAMP? Which of its parameters can be programmed? How? [4]
- d) Explain with block diagram the working of successive approximation ADC. [4]
- e) Draw the practical integrator circuit diagram and explain practical design considerations of it. [4]



| Total No. | of Questions | : | 5] |
|-----------|--------------|---|----|
|-----------|--------------|---|----|

P2677

| SEAT No. : |  |
|------------|--|
|------------|--|

[Total No. of Pages: 3

## [5034]-13 M.Sc.

#### **ELECTRONIC SCIENCE**

## EL1UT03: Instrumentation and Measurement Techniques (2008 Pattern) (Semester - I)

Time: 3 Hours] [Max. Marks: 80

Instructions to the candidates:

- 1) All questions are compulsory.
- 2) All questions carry equal marks.
- 3) Draw neat labeled diagrams wherever necessary.
- 4) Use of logarithmic table and non-programmable calculator is allowed.
- **Q1)** a) Answer any two of the following

 $[2 \times 6 = 12]$ 

- i) Give the types of measurement systems. Describe any one type with suitable example.
- ii) What is static calibration? Give steps considered in performing static calibration.
- iii) Describe selection criteria of transducer for the measurement of given physical parameter. List the factors influencing the choice of transducer.
- b) Define the following

[4]

- i) Resolution
- ii) Precision
- iii) Hysteresis and
- iv) Threshold.
- **Q2)** a) Answer any two of the following

 $[2 \times 6 = 12]$ 

i) What is loading effect? Explain voltmeter and Ammeter loading effect with suitable example.

- ii) Describe the generalized mathematical model of measurement system. Give operational transfer function of measurement system.
- iii) Explain zero-order instrument with suitable example.
- b) State the advantages and limitations of potentiometric transducer. [4]

#### *Q3)* a) Answer any two of the following

 $[2 \times 6 = 12]$ 

- i) State different techniques used in flow measurement. Write working principle of -
  - 1) Hot wire anemometer and
  - 2) Ultrasonic flow meter.
- ii) State different methods (gages) used for vacuum measurement. Explain working principle of thermal conductivity gage.
- iii) Give different methods of data transmission. Explain with block diagram of general telemetry system. State different types of telemetry systems.
- b) What is wave analyzer? Define the following terms
  - i) VSWR
  - ii) ISWR and
  - iii) SWR

## **Q4)** Answer any four of the following:

 $[4 \times 4 = 16]$ 

[4]

- a) Draw neat block diagram of basic strip chart recorder, explain different moving mechanisms used in it.
- b) Draw the following OPAMP circuits and write their out put equations.
  - i) Trans impedance amplifier
  - ii) Voltage follower with gain
  - iii) Zero crossing detector and
  - iv) Differential amplifier.

- c) A 6.25 mm long RTO with a steady gain of 0.3925°C and a time constant of 5.5 sec experiences a step change of 75°C in temperature. Before temperature change it has a stable  $100\Omega$  resistance. Write the time domain equation for resistance and find its value after 15 sec of the application of step input.
- d) Define absolute and relative error of measurement. A voltage has a true value of 7.5V. An analog instrument with scale range of 0-10V gives reading of 7.35V. What is the value of absolute error and correction? Epress the error as a fraction of true value and FSD.
- e) Draw the neat block diagram of DFM. Expalin frequency measurement mode in detail.
- f) Describe different methods used in magnetic recording. State their advantages.

#### **Q5)** Answer any four of the following:

 $[4 \times 4 = 16]$ 

- a) Describe DC signal conditioning system with neat block diagram.
- b) State different methods for measurement of unknown force. Explain the force measurement using bonded strain gage.
- c) List the temperature transducers. Explain thermocouple temperature transducer. State advantages of it.
- d) An amplifier is used to measure the output of LVDT whose gain is 250. The LVDT o/p is 2 mV when the core moves through a distance of 0.5mm. Calculate the sensitivity of LVDT and that of the whole setup. The millivoltmeter scale has 100 divisions, the scale can be read to  $\frac{1}{5}$ th of a division. Calculate the resolution of the instrument in mm.
- e) Explain FDM and TDM methods of telemetry. State advantages of them.
- f) Describe advantages of digital indicating instruments over analog type.



| SEAT No.: |  |
|-----------|--|
|-----------|--|

P2678

## [5034]-21

[Total No. of Pages: 3

### M.Sc. (Electronic Science)

## EL2 - UT04: APPLIED ELECTROMAGNETICS, RF & MICROWAVE (2008 Pattern) (Semester - II)

Time: 3 Hours [Max. Marks: 80

Instructions to the candidates:

- 1) All questions are compulsory.
- 2) Figures to the right indicate full marks.
- 3) Draw neat diagrams wherever necessary.
- 4) Use of log tables/non-programmable calculator is allowed.

#### **Q1)** Attempt any two of the following:

 $[2 \times 8 = 16]$ 

- a) Obtain the expression for reflection coefficient for a uniform plane wave incident normally on the plane between two dielectrics. Hence find the transmission coefficient 'T'.
- b) Draw the elementary section of a transmission line and obtain the transmission line equations in voltage form and current form.
- c) Explain the structure and working of a tunnel diode with suitable energy band diagrams. Draw the I-V characteristics of the tunnel diode and explain the nature of characteristics.

### Q2) Attempt any two of the following

 $[2 \times 8 = 16]$ 

- a) Describe, with proper diagrams, different methods of excitations of TE and TM modes in rectangular waveguides.
- b) Starting with Maxwell's equation, obtain the expression for poynting theorem in frequency domain.
- c) A lossy dielectric has intrinsic impedance of  $100 \angle 60^{\circ}$  at a certain frequency  $\omega$ . If the magnetic field component is

$$\vec{H} = 10e^{-\alpha x} \cos\left(wt - \frac{1}{2}x\right) \hat{a}_y A_m$$
, Find  $\vec{E}$ ,  $\alpha$ .

## Q3) Answer any four of the following:

 $[4 \times 4 = 16]$ 

- a) With a neat diagram explain the working of a reflex Klystron.
- b) Find the radiation resistance of a Hertzian dipole antenna if its length is  $dl = \frac{\lambda}{10}.$
- c) Write a short note on patch antenna.
- d) How can an antenna be used to measure distant temperature?
- e) A certain Ga As MESFET has the following parameters :  $g_m = 50$  mmho Cgs = 0.50 pF.

Determine its cutoff frequency.

### **Q4)** Answer any four of the following:

 $[4 \times 4 = 16]$ 

- a) What is single stub matching? What is the procedure to do single stub matching?
- b) Describe the steps used in fabrication of MMIC.
- c) What do you mean by skin depth? Show that skin depth is  $\delta = \sqrt{\frac{2}{\omega\mu\sigma}}$ .
- d) If  $\gamma = j\omega\mu(\sigma + j\omega \in)$  and  $\gamma = \alpha + j\beta$ ,

Find the expression for  $\alpha$  and  $\beta$ .

e) A plane - wave in a non-magnetic medium has  $\beta = 2$ . Find its  $\omega$  and  $\lambda$ .

## **Q5)** Answer any four of the following:

 $[4 \times 4 = 16]$ 

- a) An airfilled rectangular waveguide has dimensions  $8 \times 4$  cm, and operates in dominant  $TE_{10}$  mode. Its cutoff frequency is 2.5 GHz. Find the phase velocity of the wave in the guide at a frequency of 4 GHz.
- b) Describe the process for determination of characteristic impedance of a given transmission line.
- c) What are cavity resonators? What is Q of a cavity? How can it be determined?
- d) A loss less transmission line has inductance per unit length of  $1\mu H/m$  and capacitance per unit length of 10PF/m. Find its characteristic impedance.
- e) A transmission line has reflection coefficient of  $0.35\angle -15^{\circ}$  Find the standing wave ratio.



**Total No. of Questions: 5**]

P2679

| SEAT No.: |              |    |
|-----------|--------------|----|
| [Total    | No. of Pages | :2 |

[5034]-22 M.Sc.

## **ELECTRONIC SCIENCE**

## EL2 UT-0 5: Communication Electronics (2008 Pattern) (Semester - II)

Time: 3 Hours [Max. Marks: 80

Instructions to the candidates:

- 1) All questions are compulsory.
- 2) Figures to the right indicate full marks.
- 3) Draw neat diagrams wherever necessary.

#### **Q1)** Answer any four of the following

 $[4 \times 4 = 16]$ 

- a) With the help of diagram, explain the working of FM generation using Varactor diode.
- b) Draw the structure of HDLC. Explain each field of it in short.
- c) Explain the terms selectivily of the receiver and image frequency in short.
- d) Write short note on error detection and error correction.
- e) What is wide band amplifier? Describe any two applications of it.
- f) What is noise figure? Explain its importance in communication system.

#### **Q2)** Answer any TWO of the following:

 $[2 \times 8 = 16]$ 

- a) What is pulse code modulation (PCM)? Draw the block diagram of it and explain its working.
- b) What is time division multiplexing? With the help of neat block diagram, explain its working. Write its advantages and disadvantages.
- c) Draw the circuit diagram of balanced modulator. Write its working. Draw and explain the graphical characteristics of it.

### **Q3)** Write any four of the following:

 $[4 \times 4 = 16]$ 

- a) List the transmission media. With the help of diagram, explain any one of them.
- b) Explain the sampling theorem and write the importance of it in communication.
- c) Describe internal and external noise in short.
- d) With the help of diagram, explain the working of RF tuned amplifier.
- e) Explain the role of limiter in FM receivers.
- f) With the help of block diagram, write the working of frequency shift keying. (FSK)

#### **Q4)** Answer any TWO of the following:

 $[2 \times 8 = 16]$ 

- a) What is delta modulation? With the help of neat diagram, explain the working of adaptive delta modulation. Write the advantages of adaptive over delta modulation.
- b) Draw the architecture of ISDN. Explain the function of each block/component in short. Describe any one application of ISDN in detail.
- c) Draw the block diagram of high level amplitude modulation transmitter. Explain the working of each block in short.

### **Q5)** Attempt any four of the following:

 $[4 \times 4 = 16]$ 

- a) Describe typical data communication link with special reference to DTE and DCE.
- b) Explain the local loop of land line telephone in short.
- c) With the help of diagram, explain the working of collector neutralisation.
- d) Write the mathematical analysis of amplitude modulator. Write any two advantages of FM over AM.
- e) With reference to bluetooth technology, explain the terms piconet and scatternet in short.



| Total No. | of | Questions | : | 5 |  |
|-----------|----|-----------|---|---|--|
|-----------|----|-----------|---|---|--|

| SEAT No. : |  |
|------------|--|
|------------|--|

[Total No. of Pages: 3

P2680

[5034]-23 M.Sc. - I

#### **ELECTRONIC SCIENCE**

## EL2 - UT0 6: Digital System Design Using VHDL (2008 Pattern) (Semester - II)

Time: 3 Hours] [Max. Marks: 80

Instructions to candidates:

- 1) All questions are compulsory.
- 2) Figures to the right indicate full marks.
- 3) Neat diagrams must be drawn wherever necessary.
- **Q1)** Attempt any two of the following.
  - a) What is procedure in VHDL? Write Syntax for defining a procedure. Write a procedure to add two 4-bit numbers and a carry and returns 4-bit sum and a carry. [8]
  - b) Explain different types of ROM with special reference to data storage principle of any one. [8]
  - c) Design an automobile alarm system that detects status of door, the ignition, the seat belts, the head lights. An alarm should be switched 'ON' when [8]
    - i) If the head lights are ON while ignition is off.
    - ii) The door is open while ignition is ON.
    - iii) The seat belts are not fastened when ignition ON.
- **Q2)** Attempt any two of the following:
  - a) i) Compare a signal and a variable in VHDL with reference to their declaration, assignment, scope and behaviour. [4]
    - ii) Write a VHDL code for full adder using behavioral modelling. [4]

b) A combinational circuit is defined by

[8]

$$F1 = \Sigma m(3,5,7)$$

$$F2 = \Sigma m(4,5,7,)$$

Implement the circuit with PLA having 3 inputs, three product terms and two outputs.

c) Design a synchronous counter to generate the following sequence 0,2,4,5,0...... using T-flip-flops. [8]

Give all steps involved in design and draw the final hardware diagram.

#### Q3) Attempt any two of the following

a) Explain in detail different classes of VHDL operators. Which operators have highest precedence?

If A = "110", B = "111"., and C = "011000" then write a result of the following statements. [8]

- i) ((A and (not B)) OR (C ROR 2)
- ii) A Srl 3
- b) Explain with block diagram CPLD, also explain with diagram typical macrocell of CPLD. [8]
- c) Write down VHDL code for ALU having four arithmetic and four logical operations. [8]

### **Q4)** Attempt any two of the following:

- a) Draw the circuit diagram of bipolar static RAM cell. Draw timing diagram of read cycle of static RAM. Define memory access time and complete read cycle time of RAM. [8]
- b) What do you mean by parity? Design an even parity generating circuit for three bit data using k-map. Write VHDL code for even parity generator for seven bit data. [8]

2

c) What is FSM? What are types of FSM? Write VHDL code using FSM for decade up counter. [8]

#### **Q5)** Attempt any two of the following

- a) Design a four bit parallel adder using full adders. Explain look ahead carry generator. [8]
- b) i) Write a VHDL code for full adder. [4]
  - ii) Write a VHDL code for four bit parallel adder using module defined in (i) as a component. [4]
- c) Write a VHDL code for four-bit binary up/down counter using process.[8]



| Total No. | of Questions | : | 5] |  |
|-----------|--------------|---|----|--|
|-----------|--------------|---|----|--|

| SEAT No. : |  |
|------------|--|
|------------|--|

[Total No. of Pages: 2

P2681

[5034]-31 M.Sc. - II

### **ELECTRONIC SCIENCE**

EL3 - UT - 05 : Embedded Systems

(2008 Pattern) (Semester - III)

Time: 3 Hours [Max. Marks: 80

Instructions to the candidates:

- 1) All questions are compulsory.
- 2) Figures to the right indicate full marks.
- 3) Draw neat diagrams wherever necessary.
- **Q1)** Attempt any four of the following.

 $[4 \times 4 = 16]$ 

- a) Write an assembly/'C' program to rotate stepper motor clockwise continiously. (For 8051).
- b) Explain program states word (PSW) of 8051.
- c) Draw an interfacing of DC motor to 8051. Write an assembly/ 'C' program to rotate it clockwise and anticlock wise with some delay before change of direction.
- d) Explain timer o for PIC micro controller. Write delay function in C to generate 1 sec. delay.
- e) Write short note on programmer as hardware development tool.
- **Q2)** Attempt any FOUR of the following:

 $[4 \times 4 = 16]$ 

- a) Explain TMOD register of 8051.
- b) Explain serial communication in 8051.
- c) Explain logic analyzer and general purpose evaluation boards.
- d) Explain port registers of PIC microcontroller.
- e) Write an assembly 'C' program for AVR.

Micro controller to generate RAMP wave using DAC.

### Q3) Attempt any two of the following:

 $[2 \times 8 = 16]$ 

- a) Explain with neat schematic diagram, 8051 target board. List the components used in designing target board.
- b) Draw an inter facing of  $4 \times 4$  matrix keyboard to 8051. Write a procedure to read a key.
- c) Explain with neat diagram architecture of AVR microcontroller.

#### **Q4)** Attempt any Four of the following:

 $[4 \times 4 = 16]$ 

- a) Explain interrupts in AVR microcontroller.
- b) Write an assembly/'C' program for PIC microcontoller to generate sequence wave on a pin of PORTB.
- c) Write an assembly/'C' program for AVR microcontroller to convert ASCII digits '4' and '7' to packed BCD and display it an PORTB.
- d) Write an assembly/'C' program that continiously gets 8-bit data from PO and send it to P1, While simulteneously generating 5KHz square wave of 50% duty cycle on pin P2.1. Assume XTAL = 11.0592 MHz.
- e) Explain -Linker and compiler.

#### **Q5)** Attempt any TWO of the following:

 $[2 \times 8 = 16]$ 

- a) Explain with example addressing modes of 8051.
- b) Write an assembly/'C' program to display "M.Sc." on first line of LCD. (For PIC microcontroller).
- c) Write short note on
  - i) I2C
  - ii) SPI



| Total No. | of Questions | : | 5] | ı |
|-----------|--------------|---|----|---|
|-----------|--------------|---|----|---|

| ~                |  |
|------------------|--|
| <b>SEAT No.:</b> |  |
|                  |  |

P2682

## [5034]-41

[Total No. of Pages : 2

### M.Sc. (Electronic Science)

# EL4UT - 06 : CONTROL SYSTEMS THEORY AND APPLICATION (2008 Pattern) (Semester - IV)

Time: 3 Hours] [Max. Marks: 80

Instructions to the candidates:

- 1) All questions are compulsory.
- 2) Figures to the right indicates full marks.
- 3) Use of non-programmable calculator is allowed.

#### *Q1*) Solve any TWO

 $[2 \times 8 = 16]$ 

- a) Giving a neat diagram explain feedback control system. Discuss each block function in detail.
- b) What is block diagram? How it can be used for the analysis of control system? Explain any four rules of block diagram reduction.
- c) Explain frequency response method of control system analysis.

## **Q2)** Solve any TWO

 $[2 \times 8 = 16]$ 

- a) What is PLC processor scanning? Explain the program sweep for series go-30 PLC.
- b) What is meant by PID control mode? How it can be implemented using opamp. List the applications of PID control.
- c) Draw the block diagram of PLC architecture and explain each block of PLC. Why isolation is used to input and output blocks?

### *Q3*) Solve any Four

 $[4 \times 4 = 16]$ 

a) For  $G(s) = \frac{K}{s(s+4)}$ , test a point s = -2 + j5 for its existence on root

locus and find the value of K.

b) Evaluate the stability of control system having following characteristics equation

$$s^5 + s^4 + 2s^3 + 2s^2 + 3s + 15 = 0$$

- c) Write a short note on annuciator.
- d) Explain the operation of synchro-servo motor.
- e) What is meant by quarter amplitude criterion? Discuss in short.

#### **Q4)** Solve any Four

 $[4 \times 4 = 16]$ 

- a) Explain the working of ON-OFF controller using LM 35 temperature sensor.
- b) Justify "Traffic signal system is open loop system".
- c) Explain the terms control log and dead time in process control application.
- d) State the advantages and disadvantages of Nyquist plot method.
- e) Draw a ladder diagram to realize two input EX-OR Gate.

#### *Q5)* Solve any Four

 $[4 \times 4 = 16]$ 

- a) Compare Continuus Control and discrete state control with suitable example.
- b) Explain the nature of bodeplot for
  - i) Poles at origin
  - ii) Simple Pole and
  - iii) Simple zero
- An integral controller is used for speed control with a set point 12 rpm with range of 10 to 15 rpm. Initial controller output is 22%. The constant  $K_1 = -0.15\%$  Controller output per second per percentage error. If speed jumps to 13.5 rpm, calculate the controller. Output after z seconds for constant ep. where  $K_1$  is integral gain and  $e_n$  is error.
- d) Describe OFF\_delay timer instruction of PLC.
- e) Write a short note on solenoid.

