P2904

SEAT No. :	
CIE A TE NI	

[5023] - 1001

[Total No. of Pages :3

M.Sc.-I

PHYSICAL CHEMISTRY

CHP - 110 : Fundamentals of Physical Chemistry - I (2014 Pattern) (Semester - I) (4 Credits)

Time: 3 Hours] [Max. Marks:50

Instructions to the candidates:

- 1) Answers to the two sections should be written in separate answer books.
- 2) All questions are compulsory.
- 3) Figures to the right side indicate full marks.
- 4) Use of logarithmic tables / calculator is allowed.
- 5) Neat diagrams must be drawn wherever necessary.

Physico - Chemical Constants

1.	Avogadro Number	N	=	$6.022 \times 10^{23} \text{ mol}^{-1}$
2.	Boltzmann Constant	k	=	$1.38 \times 10^{-16} \ \mathrm{erg} \ \mathrm{K}^{-1} \mathrm{molecule^{-1}}$
			=	1.38 × 10 ⁻²³ J K ⁻¹ molecule ⁻¹
3.	Planck Constant	h	=	$6.626 \times 10^{-27} \text{ erg s}$
			=	$6.626 \times 10^{-34} \mathrm{J}\mathrm{s}$
4.	Electronic Charge	e	=	$4.803 \times 10^{-10} \text{ esu}$
	·		=	$1.602 \times 10^{-19} \text{ C}$
5.	1 eV		722	23.06 k cal mol ⁻¹
			=	1.602 × 10 ⁻¹² erg
	• • • • •		=	$1.602 \times 10^{-19} \text{ J}$
			=	8065.5 cm ⁻¹
6.	Gas Constant	R	m	$8.314 \times 10^{9} \text{ erg K}^{-1} \text{ mol}^{-1}$
				8.314 J K ⁻¹ mol ⁻¹
			=	. 1.987 cal K ⁻¹ mol ⁻¹
7.	Faraday Constant	F	=	96487 C equiv ⁻¹
8.	Speed of light	c	=	$2.997 \times 10^{10} \mathrm{cm \ s^{-1}}$
			==	$2.997 \times 10^8 \text{ m s}^{-1}$
9.	1 cal		=	$4.184 \times 10^7 \text{erg}$
			=	4.184 J
10.	1 amu			$1.673 \times 10^{-27} \text{ kg}$
11.	Bohr magneton	β_e	_=	$-9.274 \times 10^{-24} \text{ J} \text{ T}^{-1}$
12.	Nuclear magneton	β_n	=	$5.051 \times 10^{-27} \text{ J T}^{-7}$
13.	Mass of an electron	$m_{_{e}}$	=	$9.11 \times 10^{-31} \text{ kg}$

SECTION -I

Q1) Attempt the following:

[10]

- Explain the terms black body radiation, ultraviolet catastrophe and Rayleigh
 Jeans law.
- b) Define heat capacity. Distinguish between heat capacity and molar heat capacity.
- c) Define vapour pressure of liquids. How does it vary with temperature?
- d) What are colligative properties? Explain the terms osmosis and osmotic pressure.
- e) Define Helmholtz free energy. Show that it is state function.

Q2) Attempt any two of the following:

[10]

- a) Give eigen function and eigen value equation for partical in one dimensional box. Sketch and explain the probability distribution curves for the first four energy levels of a partical in a one dimensional box.
- b) Derive the vant Hoff reaction isotherm. Give its application?
- c) Derive the workdone in a reversible isothermal expansion of a perfect gas.
- d) Define chemical potential. Explain the phase diagram of solid liquid boundary with respect to $\frac{dP}{dT}$.

Q3) Solve any one of the following.

[5]

- a) The energy required for the ionisation of a certain atom is 3.44×10^{-18} J. The absorption of a photon of unknown wavelength ionises the atom and eject an electron with velocity 1.03×10^6 ms⁻¹. Calculate the wavelength of incident radiation.
- b) Calcualate the change in entropy with 2 moles of nitrogen gas are mixed with 8 gm chlorine gas at 25°C.

[Atomic wts. N = 14, Cl = 35.5]

SECTION -II

Q4) Attempt the following:

[10]

- a) Give second order reaction rate constant equation for equal initial concentration and show that $t \frac{1}{2} = \frac{1}{ak}$.
- b) Explain Lineweaver and Eadie plot for enzyme uncompetitive inhibition.
- c) State the law of photochemical equivalence and Define the term 'einstein'.
- d) What are fast reactions? Distinguish between flow technique and stopped flow technique.
- e) Explain Fermi-Dirac statistics.

Q5) Attempt any two of the following.

[10]

- a) What is partition function? Obtain an expression for rotational partition function.
- b) Derive the expression for the velocity constant of the bimolecular reactions on the basis of absolute reaction rate theory.
- c) What are consecutive reactions? How can the kinetics of such reactions be studied by using steady state principle.
- d) Explain the terms initiation, propogation, inhibition and termination. Discuss with suitable examples the phenomenon of chain reaction.

Q6) Solve any one of the following:

[5]

- a) What will be the initial rate of a reaction if its rate constant is 10⁻³ min⁻¹ and the concentration of the reactant 0.2 mol dm⁻³. How much of reactant will be converted in to product in 200 minutes.
- b) The enzymatic conversion of substrate at 25°C has a Michaelis constant 0.035. The rate of reaction is 1.2×10⁻³ MS⁻¹, when the substrate concentration is 0.11 M. What is the rate constant of enzymolysis of the initial concentration of enzyme is considered constant.

P29	05
------------	----

SEAT No.:	

[Total No. of Pages :3

[5023] - 1002 M.Sc. I

INORGANIC CHEMISTRY

CHI - 130: Molecular Symmetry and Chemistry of P - Block Elements (2014 Pattern) (New) (4 Credit) (Semester - I)

Time: 3 Hours [Max. Marks: 50

Instructions to the candidates:

- 1) All questions are compulsory.
- 2) Answer to the two sections should be written in separate answer books.
- 3) Figures to the right indicate full marks.
- 4) Use of log tables / character tables and calculator is allowed.

SECTION - I

Q1) Answer the following:

[10]

- a) What is the point group symmetry of cyclopentane and cyclobutane?
- b) Find the product of $\sigma \times 4 \times c_2^z$ using cartesian coordinates.
- c) Write down all the associative operations with S_5 axis.
- d) How do you distinguish between C₄v and C₄h point groups. Using suitable examples?
- e) Identify and draw different types of planes in No₃-ion.
- **Q2)** Attempt any two of the following:

[10]

- a) Write the matrices for C_2^x , C_2^y and C_2^z . Find the product of the following using matrix multiplication:
 - i) $C_2^x \times C_2^y$
 - ii) $C_2^y \times C_2^z$
 - iii) $C_2^x \cdot C_2^z$
- b) Sketch and describe all symmetry operations in MnO₄-ion. Justify it and find out the point group.

P.T.O.

- c) Derive the character table for D₂h point group using great orthogonality theorem.
- d) List all the possible symmetry elements for trans dichloroethylene molecule and show that they form a mathematical group.

Q3) Attempt any one of the following:

[5]

- a) For PC1₅ considering sigma band as a basis of representation find the reducible representation and find out the arbitals that are offered for sigma banding.
- b) Find out the narmalized SALC using projection operator of Eu irreducible representation which operates an σ_1 orbital of the [Cu (NH₃)₄]²⁺ complex ion.

SECTION - II

Q4) Answer the following:

[10]

- a) BF₃ is a hard Lewis acid. Explain.
- b) Name different Pseudohalogens and corresponding halogens.
- c) Mention different crown ethers used for extraction of alkali metals.
- d) Borazole is called as inorganic benzene. Explain.
- e) What are electron precise hydrides? Explain with example.

Q5) Attempt any two of the following:

- a) Write a note on molecular sieves.
- b) Give an account of oxanions of nitrogen.
- c) What are intercalation compounds of graphite? Explain with example
- d) Give an account of oxoanions of halogens.

[5]

- a) B₅ Hg
- b) Al₂ Cl₆
- c) IF5
- d) $\operatorname{Li}_{4}\left(\operatorname{CH}_{3}\right)_{4}$
- e) AS_4O_{10}
- f) S₂ N₂
- g) B₃ N₃ H₃ Cl₃

Given:

Character Table for D₃h Point Group

D_3h	Е	2C ₃	$3C_2$	$\sigma_{_h}$	2S ₃	$3\sigma_{\rm v}$		
A_1^1	1	1	1	1	1	1		$x^2 + y^2 + z^2$
\mathbf{A}_2^1	1	1	-1	1	1	-1	R _z	
E^{1}	2	-1	0	2	-1	0	(x, y)	(x^2-y^2,xy)
\mathbf{A}_1^{11}	1	1	1	-1	1	1		
\mathbf{A}_2^{11}	1	1	-1	-1	-1	1	Z	
E^{11}	2	-1	0	-2	1	0	(Rx, Ry)	(xz, yz)

Total No. of Questions: 6]

P2906

SEAT No.:	
-----------	--

[Total No. of Pages: 5

[5023]-1003 M.Sc. - (I)

ORGANIC CHEMISTRY

CHO - 150: Basic Organic Chemistry (2014 Pattern) (Semester - I) (4 Credits)

Time: 3 Hours] [Max. Marks: 50

Instructions to the candidates:

- 1) All questions are compulsory.
- 2) Figures to the right indicate full marks.
- 3) Answers to the two sections should be written in separate answer books.

SECTION - I

Q1) Attempt the following:

[5]

- a) Explain hyperconjugation with suitable example.
- b) What is the current concept of aromaticity.
- c) Comments on the conformational analysis of cyclic compounds.
- d) Discuss in brief stereospecific reactions.
- e) Explain enantiomeric relationship.

Q2) Attempt any five of the following:

[10]

- a) Which factors affect acidity of organic compounds?
- b) Write short note on non-benzeroid compounds.
- c) Explain structure and stability of nitrenes.
- d) Comment on the stability of the following.

and

e) Comment on the optical activity of the following with justification.

$$H'''''c = c = c$$
 H_{3C}
 $C = C = C$
 $C = C$
 $C = C$

f) Assign pro-R and Pro-S labels to H_A and H_B .

Q2) Attempt any five of the following:

[10]

a) Identify the diastereomers [if present]

b) Explain which of the following is more basic.

c) Assign E/Z designation to the followings.

d) Assign R/S label to the chiral carbons.

e) Write equivalent structures.

$$H \longrightarrow OH$$

$$H = \frac{2}{2} \longrightarrow OH$$

$$CH2OH$$

$$CH2OH$$

$$CH2OH$$

$$CH2OH$$

f) What is the stereochemical relationship between the following compounds?

SECTION - II

Q4) Answer the following:

[5]

- a) Define non-classical carbocation.
- b) What is IPSo attack?
- c) Explain regioselectivity in addition reactions.
- d) What is syn elimination?
- e) Give examples of ambident nucleophile.

Q5) Suggest the mechanism (Any Five):

[10]

b)
$$101010 + 101 \xrightarrow{Me} \frac{HF}{S6F_5} = \frac{N02}{Me} + Phenonthrene}{Me}$$

c)
$$\frac{1}{130^{\circ}}$$
 $\frac{130^{\circ}}{130^{\circ}}$ $\frac{1}{130^{\circ}}$ $\frac{1$

d)
$$m_e o + *$$
 $c_1 \rightarrow o o m_e$

$$(H_2 = CH - C = N + CH_3 - CO - CH_2 - CO - CH_3)$$
 $(H_2 = CH - C = N + CH_3 - CO - CH_2 - CO - CH_3)$
 $(H_2 = CH - C = N + CH_3 - CO - CH_2 - CO - CH_3)$
 $(H_2 = CH - C = N + CH_3 - CO - CH_2 - CO - CH_3)$
 $(H_2 = CH - C = N + CH_3 - CO - CH_2 - CO - CH_3)$
 $(H_2 = CH - C = N + CH_3 - CO - CH_2 - CO - CH_3)$
 $(H_2 = CH - C = N + CH_3 - CO - CH_2 - CO - CH_3)$
 $(H_2 = CH - CH_2 - CH_2 - CH_3 - CO - CH_3 - CH_3 - CO - CH_3)$
 $(H_2 = CH - CH_2 - CH_2 - CH_3 -$

f) Erythro 1-acetoxy - 2- deutereo –1, 2 - diphenylethane.

$$\xrightarrow{\Delta} P \downarrow D$$

$$P \downarrow P \downarrow$$

$$P \downarrow$$

$$\frac{9}{1}$$

$$\frac{ABr/hv}{-78^{\circ}}$$

$$\frac{Br}{-78^{\circ}}$$

Q6) Predict the products (ANy five):

$$\begin{array}{c} G \\ \hline \\ O \\ \hline \\ \hline \\ H \\ \hline \end{array} \begin{array}{c} n-P_{T}OH \\ \hline \\ H \\ \hline \end{array} \begin{array}{c} ? \\ \\ \end{array}$$

d)
$$O_2$$
 + KCN O_2 ?

Total No. of Questions: 6]

P2907

SEAT No.:	
-----------	--

[Total No. of Pages : 2

[5023]-1004 M.Sc. - I

ANALYTICAL CHEMISTRY

CHA -190 :Safety in Chemical Laboratory and Good Laboratory Practices

(2014 Pattern)(Semester -I)(Credit System)(4-Credits)(New)

Time: 3 Hours] [Max. Marks: 50

Instructions to the candidates:

- 1) Answer to the two sections should be written in separate answer books.
- 2) All questions are compulsory.
- 3) Neat diagram must be drawn wherever necessary.

SECTION - I

Q1) Attempt the following:

[10]

- a) Explain the term LD 50, LD 100.
- b) Discuss the term bio-hazardous with suitable example.
- c) Explain the responsibility of student in the Laboratory.
- d) Discuss the contents in first aid kit.
- e) Enlist the hazardous substances that may comes as compressed gases.

Q2) Attempt any two of the following:

- a) Explain the term green chemistry and discuss the principle of green chemistry.
- b) Discuss the factors that affect the in haled material is absorbed by the body.
- c) Explain the general guidelines during storage of chemicals.
- d) Discuss the steps to establish safety and security management system.

Q3) Attempt any one of the following:

[5]

- a) Discuss the different types of disposal methods of hazardous chemicals.
- b) Explain the term flammable substances and list the characteristics of substances that make more flammable.

SECTION - II

Q4) Attempt the following:

[10]

- a) Explain the term protocol-amendment.
- b) Draw pictogram of globally harmonized system.
- c) Explain the term waste. Enlist the properties of harzardous waste.
- d) Explain the term master-schedule for good laboratory practices.
- e) Define fire, give its different types.

Q5) Attempt any two of the following:

[10]

- a) Explain the general precautions when working with electrical equipments.
- b) List the fundamental points of good laboratory practices.
- c) What are the different methods of disposal of laboratory waste.
- d) Discuss the importance of recycling of chemicals.

Q6) Attempt any one of the following:

[5]

- a) Discuss the house keeping rules for safe laboratory.
- b) Explain the necessary precautions taken during the handling of highly toxic chemicals.

Total No. of Questions : 6]	SEAT No.:	
-----------------------------	-----------	--

P2908

[5023]-2001 M.Sc.

[Total No. of Pages: 3

PHYSICAL CHEMISTRY

CHP-210: Fundamentals of Physical Chemistry - II (2014 Pattern)(Semester - II)

Time: 3 Hours] [Max. Marks: 50

Instructions to the candidates:

- 1) Answers to the two sections should be written in separate answer books.
- 2) All questions are compulsory.
- 3) Figures to the right side indicate full marks.
- 4) Use of logarithmic table calculator is allowed.
- 5) Neat diagrams must be drawn wherever necessary.

Physico - Chemical Constants

Ι.	Avogadro Number	N =	$6.022 \times 10^{23} \text{ mol}^{-1}$
2.	Boltzmänn Constant	k =	$1.38 \times 10^{-16} \text{ erg K}^{-1} \text{ molecule}^{-1}$
			$1.38 \times 10^{-23} \text{ J K}^{-1} \text{ molecule}^{-1}$
3.	Planck Constant	h =	$6.626 \times 10^{-27} \text{ erg s}$
	•	=	$6.626 \times 10^{-34} \text{ J s}$
4.	Electronic Charge	e ==	$4.803 \times 10^{-10} \text{ esu}$
			1.602 × 10 ⁻¹⁹ C
5.	1 eV	==	23.06 k cal mol ⁻¹
		=	$1.602 \times 10^{-12} \text{ erg}$
			$1.602 \times 10^{-19} \text{ J}$
		=	8065.5 cm ⁻¹
6.	Gas Constant		$8.314 \times 10^7 \text{erg K}^1 \text{mol}^1$
			8.314 J K ⁻¹ mol ⁻¹
		=	1.987 cal K ⁻¹ mol ⁻¹
7.	Faraday Constant	F =	96487 C equiv-1
8.	Speed of light	c =	$2.997 \times 10^{10} \text{ cm s}^{-1}$
		=	$2.997 \times 10^8 \text{ m s}^{-1}$
9.	l cal	= .	$4.184 \times 10^7 \text{erg}$
		=	4.184J 、
10.	l amu	=	$1.673 \times 10^{-27} \text{ kg}$
11.	Bohr magneton	β =	$-9.274 \times 10^{-24} \mathrm{J}\mathrm{T}^{-1}$
12.	Nuclear magneton		$5.051 \times 10^{-27} \text{ J T}^{-1}$
13.	Mass of an electron	* 44	9.11 × 10 ⁻³¹ kg

SECTION - I

011	A 44	. 1	C 11	•	
<i>() ()</i>	Attempt	the	tall	OWING	•
\mathbf{v}_{II}	1 XIIICIIIDI	uic	1011		
~	1			ϵ	,

[10]

- a) What is Zero-point energy? What is its significance?
- b) Define polarizability ellipsoid.
- c) What are symmetric and asymmetric vibrations? Explain with an example.
- d) What is a hot band?
- e) What is the effect of breakdown of Born-Oppenheimer approximation on the nature of vibrational rotational spectrum?

Q2) Attempt any two of the following:

[10]

- a) What is Raman shift? Explain the occurrence of stokes and antistokes lines with respect to quantum theory.
- b) Give the detailed classification of molecules based on moment of inertia with suitable examples.
- c) Describe different processes by which an electronically excited molecule can lose energy.
- d) Discuss the various factors affecting the band broadening of spectral transitions.

Q3) Attempt any one of the following:

[5]

- a) The rotational Raman spectrum of $CO_2(g)$ shows a series of lines separated by 3.16cm^{-1} in the S branch calculate the rotational constant and moment of inertia of CO_2 .
- b) The fundamental vibrational frequency of HCl is 2990 cm⁻¹. Find the position of first two lines in P and R branches of vibrational-rotational spectrum of HCl.
 - [bond length of HCl=127.4pm, H=1amu, Cl=35amu]

SECTION - II

Q4) Attempt the following:

[10]

- a) Define dose and dose rate.
- b) What is design parameter? Give its significance.
- c) Explain the use of radio isotopes to understand friction and wear out of moving machine parts.
- d) Define elementary separation factor.
- e) Explain gas diffusion to enrich ²³⁵U.

Q5) Attempt any two of the following:

[10]

- a) Write a note on compton scattering.
- b) How does zone diffusion technique be used to determine the diffusion coefficients of radio-isotopes. Explain with suitable diagram and boundry conditions.
- c) Describe the working and mechanism of natural nuclear reactor.

Q6) Solve any one of the following:

[5]

a) The electronic absorption coefficient is 0.211 b/ \overline{e} for 1meV γ -rays. Calculate μ_{linear} , μ_{mass} and μ_{a} for ethanol.

[Given: ρ for ethanol =0.789 g/cm³]

b) 0.1 g of Mn sample was irradiated in a thermal neutron flux of 10^7 n.cm⁻²s⁻¹ for 1h. What will be the radioactivity induced at the end of irradiation?

[Given: $\gamma = 100\%$, $\sigma = 13.3$ b, $t_{1/2} = 2.58$ h for 56 Mn]

Total No.	of Questions	:	6]	
-----------	--------------	---	----	--

P2909

SEAT No.:	

[Total No. of Pages: 6

[5023]-2002 M.Sc. - I

INORGANIC CHEMISTRY

CHI - 230 : Co-ordination and Bioinorganic Chemistry (2014 Pattern) (New 4 - Credits) (Semester - II)

Time: 3 Hours [Max. Marks: 50

Instructions to the candidates:

- 1) All questions are compulsory.
- 2) Answers to the two sections should be written in separate answer books.
- 3) Neat and labelled diagrams must be drawn wherever necessary.
- 4) Figures to the right indicate full marks.
- 5) Given: Atomic number; Co = 27, Ni = 28, Fe = 26, Ce = 58.

SECTION - I

Q1) Answer the following questions:

- [10]
- a) Give the ground state term symbol for following ions.
 - i) Ni²⁺
 - ii) Ce^{3+}
- b) Calculate the total degeneracy for the following terms/states/configurations.
 - i) $2(p^1d^2)$
 - ii) ⁵H
- c) Classify the following transitions as vibronically allowed, orbitally allowed & forbidden in an octahedral complex. Justify your answer.
 - $i) \quad A_{2g} \to A_{1g}$
 - ii) $E_g \rightarrow E_g$
- d) How would you account for the magnetic moment listed against the following complex.

$$[Co(H_2O)_6]SO_4$$
, $\mu_{obs} = 5.1B.M$.

e) Predict the expected electronic transitions in [FeCl₄]²⁻.

Q2) Attempt any two of the following:

[10]

- a) Derive the allowed R-S terms and hence prepare a table of microstates for nitrogen atom. Find out ground state R-S term.
- b) Calculate the effective magnetic moment of [Ni(H₂O)₆]²⁺ using following data.
 - i) $\lambda = -350 \text{cm}^{-1}$
 - ii) $10 \text{ Dq} = 8500 \text{ cm}^{-1}$
- c) Describe in brief orgel diagram for D and F ground state term.
- d) Give the splitting of ²G R-S term in weak cubic field using character table for pure rotational point group and reduction formula.

Q3) Attempt any one of the following:

[5]

- a) For a complex three absorption bands are observed at 7,730 cm⁻¹, 12972 cm⁻¹ and 24,040 cm⁻¹. Calculate Δ o and Racah parameter. Comment on nature of M-L bond.
- b) Write a note on charge transfer spectra.

SECTION - II

Q4) Answer in short:

[10]

- a) Explain the role of sodium in biological system.
- b) Which iron-sulphur cluster compounds are involved in electron transfer reactions.
- c) Trans-platin cannot be used as a anticancer drug. Explain.
- d) Differentiate between hemoglobin and myoglobin.
- e) Explain oxygen transport in Arthropods.

Q5) Attempt any two of the following:

- a) Give an account of Protein as a ligand.
- b) Write a note on Na⁺/K⁺ ATPase.
- c) Write a note on Irving-William series.
- d) Explain in detail structure of DNA.

06)	Attemp	ot anv	one	of the	follo	wing:
20	1 10001111	, c <u>carr</u> ,	CIIU	OI UII	10110	, , , , , , ,

[5]

- a) Draw the structures:
 - i) Porphyrin.
 - ii) Cobalmin.
 - iii) Cardiolyte.
 - iv) Glutamate.
 - v) Uracil.

OR

- b) Match the following:
 - i) K
 - ii) Mo
 - iii) Mn
 - iv) W
 - v) Fe

- a) Photosynthesis
- b) Dehydrogenase
- c) Rubredoxin
- d) Nitrogen fixation
- e) Charge carrier

Character Table for O rotational group

0	ī.	5C;	3C2(=C22)	8C3	6C1		
A_1	Į	1	1	i			x2+y2+'x2
E	2	0	1 2	-1	0		$\begin{array}{c} (2z^2 - x^2 - y^2 \\ x^2 - y^2) \end{array}$
Τ,	3	Į	-1	0	-1	(R. R. R.):(Y. Y-7)	x^2-y^2
T_{-3}	3	-1	-1	0	1	$(R_s, R_s, R_t); (x, y, t)$	(37, 21, 72)

Correlation Table for the Group O_h

Oh	0	Ta	D44	D24	C4 ^V	CsY	DM	D ₃	Cza
Asg	Αι	Aı	Ag	A ₁	Aı	A ₂	Aig	A ₁	Ag
Aug	Å.	Az	Bıg	Bı	$\mathcal{B}_{\mathbf{i}}$	Az	Aag	Á2	Bg
Eg	E	Ε	Ag+Bg	At+Bi	As +Bs	A+Az	Eg.	Ε	Ag+Eg
Tig	73	Ti	Az+Ez	A ₁ +E	Az+E				Ag+1Bg
T2g	Ti	7	Ba+Eg	Ba+E	BatE				2Ag+Bg
Asu	A:	ŲΣ	Asir	Bŧ	As		Am	A	A
Azz	Az	As	Ba	A	B_a	Aı	Ass	A2	B _u
Εĸ	E	Ε	An +Bia	A ₁ +B ₁	Az+Bz	Atha	Eu	Ε	A+B
Tix	Ti	T ₂	Asa+Ea	Ba+E	A++E	ActBstB.	Am+Ex	A.E	A.+2B.
T.,	Ti	Ti	Bas+Eu	A+E	B _t +E	人物物	Aut E.	A+E	2A.+B.

DIRECT PRODUCTS

- I Groups of the form G x for G x o, : The z, u or ', additions to the IR symbols in these groups satisfy $\mathbf{I} \times \mathbf{I} = \mathbf{I} \times \mathbf{I} \times \mathbf{I} = \mathbf{I} \times \mathbf{I} \times \mathbf{I} \times \mathbf{I} = \mathbf{I} \times \mathbf{I} \times$
- Products of the form A x A, B x B, A x B: For all groups: Lotter symbols: A X A = A, B X B = A, A X B = B. Subscripts: $1 \times 1 = 1$, $2 \times 2 = 1$, $1 \times 2 = 2$ except for the B representations of D, and D, where $B \times B - B$ and $1 \times 2 = 3$, $2 \times 3 = 1$, $3 \times 1 = 2$.
- 3. Products of the form : A x E, B x E:
 - (a) For all groups: $A \times E_k = E_k$ impossive of the radia on A.
 - (b) For all groups encoge Des Des Es: $B \times B_1 = B_1 B \times B_2 = B_1$ irrespective of the suffix on B. I if the aroun has only one. H representative put Elientian L.)
 - (c) For Der: BXE, FE, BXE, HXE, BXE, FE, BXE, FE, BXE, FE incopocities of the editic on B.
 - (d) For D4, 8, : BXH = E BXE = E BXE = E अंत्राह्म की ग्रंथ स्थानि का B.
- 4. Products of the term B x B:

(For groups which have A, B or B symbols without suffice put A, as A, as A, cic in the equations below)

- (a) For O, O, T, D, D, C, C, C, C, S, D, D, D, C, C, C, C, $B_1 \times B_1 = B_1 \times B_2 = A_1 + A_2 + B_2 B_1 \times B_2 = B_1 + B_2 + B_2$
- (b) For Day D4 Con Cut C4 S4 DW: B×B=A, +A, +B, +B,
- (c) For Du:

B. XB. m.B. XB. m.A. + A. + B. BX BL = BX X BL = AI + AI + B. $E_1 \times E_1 = A_1 + A_2 + E_1 + E_2$ B, x B, = B, x B, = B, + B, B, x B, = B, x B, = E, + B, 及 X LL = L X B = B + B, B × B = E, X L = B + E,

(d)
$$D_{54i}$$
 D_{5k} , D_{5i} C_{5ni} C_{2k} , C_{5}
 $E_{1} \times E_{1} = A_{1} + A_{2} + E_{2i}$, $E_{2} \times E_{2} = A_{1} + A_{2} + E_{1i}$,
 $E_{1} \times E_{2} = E_{1} + E_{2}$.

(e) For
$$D_{44}$$
, S_4 ,
 $E_1 \times E_1 = E_3 \times E_3 = A_1 + A_2 + E_2$,
 $E_2 \times E_2 = A_1 + A_2 + B_1 + B_2$
 $E_1 \times E_2 = E_2 \times E_3 = E_1 + E_3$, $E_1 \times E_3 = B_1 + B_2 + E_2$.

- 5. Products involving the T (or F) representations of O_k , O and T_k $A_1 \times T_1 = T_1, A_1 \times T_2 = T_2, A_1 \times T_1 = T_2, A_2 \times T_2 = T_1,$ $E \times T_1 = E \times T_2 = T_1 + T_2,$ $T_1 \times T_1 = T_2 \times T_2 = A_1 + E + T_1 + T_2,$ $T_1 \times T_2 = A_2 + E + T_1 + T_2.$
- 6. The complete results for O are:

						Marketon Company of the Parketon of the Parket
مسوفسة	Ó	Ą	Å ₂	E	Ti	T ₂
	Ai	A ₁	A ₁	В	T,	T ₂
	A_2	Å ₂	A _t	8	T_2	$\mathbf{T_{I}}$
	E	E	B	A_1+A_2+E	T_1+T_2	T_1+T_2
	T_1	T_1	Ta	T_1+T_1	$A_1+E+T_1+T_2$	$A_2+B+T_1+T_2$
	T ₂	T ₂	T_{i}	T_1+T_2	•	A ₁ +E+T ₁ +T ₂

P2910	
1 4710	

SEAT No. :

[Total No. of Pages: 4

[5023]-2003 M.Sc. - I

ORGANIC CHEMISTRY

CHO - 250: Synthetic Organic Chemistry and Spectroscopy (2014 Pattern) (Semester - II) (4 Credit) (New)

Time: 3 Hours] [Max. Marks: 50

Instructions to the candidates:

- 1) Answer to the two sections should be written in separate answer books.
- 2) All questions are compulsory.
- 3) Figures to the right indicate full marks.

SECTION - I

Q1) Attempt any three of the following:

[9]

- a) Migratory aptitude in Baeyer Villiger rearrangement.
- b) Give the advantages of organolithium compounds over organomagnesium compounds.
- c) Give two methods for preparation of

d) Explain reactivities of NaBH₄ and LiAlH₄ in reduction of CH₃COCH₂COOC₂H₅.

Q2) Explain any four of the following:

[8]

- a) Write note on Claisen Rearrangement.
- b) The compound

does not undergo Pinacol Rearrangement.

P.T.O.

The compound c)

does not undergo Beckmann Rearrangement.

[4]

[4]

Advantages of Swern oxidation over Jones oxidation. d)

Predict the product (Any two) **Q3**) a)

(iii)
$$\frac{1) \text{ Ph}_3P = \text{CH}_2}{2) \text{ KMmO4 OH}}$$

Suggest the mechanism (Any t b)

(ii)
$$\frac{1) B_2 H_6, H_2 O_2, OH}{2) PCC, PPh_3 = CH_2}$$

(iii)
$$\frac{1) B_2 H_6, H_2 O_2, OH}{2) PCC, PPh_3 = CH_2}$$
(iii) $\frac{1) RCO_3 H/H_3 O}{2) Head}$ CHO

2) $\frac{1) RCO_3 H/H_3 O}{2}$

[5023]-2003

SECTION - II

Q4) Deduce the structure from spectral data and justify your answer (Any three)[9]

a) M.F.-
$$C_6H_{12}O_2$$

IR :
$$1745 \text{ Cm}^{-1}$$

PMR:
$$0.94 \delta (t, 3H)$$

$$1.39 \delta$$
 (Sexhtate, 2H)

$$1.60 \delta$$
 (quin, 2H)

$$2.04 \delta (S, 3H)$$

$$4.06 \delta (t, 2H)$$

b) M.F.-
$$C_8H_{14}O_3$$

PMR:
$$1.00 \delta (t, J=6Hz, 6H)$$

1.69
$$\delta$$
 (Sext. J = 6Hz, 4H)

$$2.43 \delta (t, J = 6Hz, 4H)$$

c) M.F.-
$$C_7H_{13}ON$$

PMR: 1.54
$$\delta$$
 (quin., J = 7 Hz, 4H)

$$1.64 \delta (m, J = 7Hz, 4H)$$

$$3.04 \delta$$
 (quin, J = 7 Hz, 2H)

$$2.08 \delta (s, 3H)$$

d) M.F.-
$$C_{12}H_{18}O$$

PMR:
$$1.5 \delta (s, 6H)$$

$$1.8 \delta (s, 6H)$$

$$2.9 \delta$$
 (bs, 1H, exchangable)

$$7.3 \delta (s, 5H)$$

Q5) Attempt <u>any four</u> of the following:

[8]

a) Complete the following reaction & calculate λ_{max} of the product.

b) How will you monitor following reaction by IR spectroscopy?

$$CI \xrightarrow{CH_2N_2} C \xrightarrow{H_2O} OH$$

- c) Explain the effect of solvent on chemical shift of hydronyl proton in alcohol.
- d) [18]- annulene shows different chemical shift values for protons.
- e) Cyclopentenone shows IR frequency at 1720 cm⁻¹ whereas cyclopentanone shows IR at 1740 cm⁻¹. Explain.

Q6) Attempt any four of the following:

[8]

- a) Explain MaClafferty Rearrangement with suitable example.
- b) What are base peaks and molecular ion peaks in MS?
- c) Use of Deuteration technique in PMR spectroscopy.
- d) Why CMR spectra are broad?
- e) How will you prove the formation of compound **(x)** by IR and PMR spectroscopy?

[5023]-2003

Total No. of Questions: 3]

SEAT No. :

P2911

[5023]-2004

[Total No. of Pages: 14

M.Sc. - I (Semester - II)

ANALYTICAL CHEMISTRY

CHA - 290: General Chemistry - II (2014 Pattern) (New 4 Credits)

New Course Based on Credit & Semester System

- PART A: Modern Separation Methods and Hyphenated Techniques (2.0 Credit / 25 marks)
- PART B: Basic Biochemistry (4.0 Credit / 50 marks)
- PART C: Concept of Analytical Chemistry (2.0 Credit/25 marks)
- PART D: Industrial Methods of Analysis (2.0 Credit / 25 marks)
- PART E: Organometallic and Inorganic Reaction Mechanism (2.0 Credit / 25 marks)
- PART F: Mathematics for Chemists (2.0 Credit / 25 marks)
- PART G: Pericyclic, Photochemistry and Free Radical Reactions (2.0 Credit / 25 marks)

Time: 3 Hours] [Max. Marks: 50

Instructions to the candidates:

- 1) All questions of respective section / part are compulsory.
- 2) Figures to right hand side indicate full marks.
- 3) Neat labelled diagram must be drawn wherever necessary.
- 4) Use of log table / non programmable calculator is allowed.
- 5) Students should attempt any two parts from Part A, C, D, E, F and G or full paper of biochemistry (Part B).
- 6) Write the answers of two parts on separate answer books.

PART - A

Modern Separation Methods and Hyphenated Techniques

Q1) Answer the following:

- a) Give applications of GC-MS technique.
- b) Explain the term selectivity factor ' α '. Write it's equation in terms of retention and dead time.

- c) What is the fundamental difference between adsorption and partition chromatography.
- d) What is a metastable ion in Mass spectrometry.
- e) Give the principle of size exclusion chromatography.

Q2) Attempt any two of the following:

[10]

- a) Write a short note on FTIR-MS.
- b) Give a brief account of columns used and carrier gases used in Gas chromatography.
- c) With a labelled schematic diagram explain the working of the HPLC instrumentation.
- d) Differentiate between isocratic and gradient elutions in HPLC and give an account of different pressure pumps used in HPLC.

Q3) Answer any one of the following:

[5]

- a) Give a brief account of the following:
 - i) Time of flight analyser in MS.
 - ii) Ion cyclotron analyser in mass spectrometry.
- b) On a 1000cm wall coated open tubular column of 0.25mm bore, helium carrier gas velocity is 37cm/sec. The retention time t_R for decane is 1.27min, peak width at half height is 0.88 sec. The retention time for non-retained compound t_m is how much?

• • •

Total No. of Questions: 6]

P2911

[5023]-2004

M.Sc. - I (Semester - II)

CHEMISTRY

CH - 290 B : Basic Biochemistry

(2014-15 Pattern) (4 Credits)

PART - B

Time: 3 Hours [Max. Marks: 50

Instructions to the candidates:

- 1) All Questions are compulsory.
- 2) Answers to the two sections to be written on separate answer books.
- 3) Figures to the right indicate maximum marks.

SECTION - I

Q1) Answer any three of the following:

[12]

- a) How are proteins classified on the bases of their functions?
- b) What do you mean by essential and nonessential amino acids?
- c) Give the structure and function of nucleus and lysosomes.
- d) Describe the role of each organelle in prokaryote.
- **Q2)** Attempt any four of the following:

[8]

- a) Write short account on amino acid therapy.
- b) Why water is called as universal solvent and discuss its role in the body?
- c) Mitochondria is said to be energy house of the cell. Explain.
- d) Write a note on supersecondary structure.
- e) Describe salient features of fluid mosaic model of biological membrane.
- f) Briefly illustrate how protein engineering increases protein stability.

Q3) Answer any two of the following: [5] What is β -oxidation with respect to lipids? Give significance of the same. Define glycolysis. Discuss the pathway in detail. b) Comment on tertiary structure of protein. c)

SECTION - II

Q4) Answer any three of the following:

[12]

- What is Lineweaver Burk equation? Explain its significance. a)
- How does pH and temperature affect the enzyme catalyzed reaction? b)
- Give the salient features of Watson-Crick model of DNA. c)
- Discuss Translation with an overview of the steps involved. d)

Q5) Attempt any four of the following:

[8]

- Explain the structure and function of tRNA. a)
- What is thyroid hormone? List out disorders in hypo and hyper b) thyroidism.
- c) Give the structure and reaction catalyzed by coenzyme FAD.
- Write a note on different forms of DNA. d)
- Explain the following terms: e)
 - i) exons
 - ii) introns
- Write a short account on inhibitors of protein synthesis. f)

Q6) Answer any two of the following:

[5]

- Explain the following: a)
 - i) Therapeutic uses of enzymes.
 - ii) Immobilization of enzymes.
- Classify vitamins and enlist the deficiency diseases. b)
- What is promoter sequence? Discuss its significance for the initiation of c) transcription process.

Total No. of Questions: 3]

P2911

[5023]-2004

M.Sc. - I (Semester - II)

ANALYTICAL CHEMISTRY

CHA - 290 : General Chemistry

(2014 Pattern) (2.0 Credits) PART - C

Concept of Analytical Chemistry

Q1) Answer the following:

[10]

- a) What is meant by test of significance.
- b) What is determinate error? Give an example.
- c) Calculate the proper number of significant figures in each of the following:
 - i) 0.00617
 - ii) 23.0023
- d) What is the principle of solvent extraction?
- e) Explain in brief student 'T' test.

Q2) Attempt any two of the following:

- a) Give the principle of separation of ions by ion exchange technique. What are ion-exchange resins? Give their classification.
- b) Draw a neat labelled diagram of fractionating column and explain it's principle and working.
- c) Explain any two techniques for characterization of nano materials.
- d) Explain the following terms:
 - i) Accuracy.
 - ii) Precision.
 - iii) Propagation of errors.

Q3) Attempt any one of the following:

[5]

- a) Describe various steps involved in sampling operations.
- b) The following results were obtained in the replicate determination of the lead content of a blood sample: 0.700, 0.705, 0.706, 0.708 and 0.710 ppm. Calculate the mean and standard deviation of this set of data.

+ + +

Total No. of Questions: 3]

P2911

[5023]-2004

M.Sc. - I (Semester - II)

ANALYTICAL CHEMISTRY

CHA-290: General Chemistry

(2014 Pattern) (2.0 Credits)

PART - D

Industrial Methods of Analysis

Q1) Answer the following:

[10]

- a) Explain the concept of stepwise formation constants.
- b) 0.28 g of NaOH is dissolved in 250 ml water. What is the concentration of solution in ppm.
- c) Differentiate between acidic and basic buffer.
- d) Mention various bulk properties used in process analyzer.
- e) What are chemical sensors?

Q2) Attempt any two of the following:

- a) Explain the term automatic chemical analyser. Explain any one in detail.
- b) Explain the terms:
 - i) millimoles
 - ii) ppb
 - iii) pH
- c) Write a short note on quality systems in chemical laboratories.
- d) Explain the terms:
 - i) Theoretical yield.
 - ii) Limiting reactants.

Q3) Answer any one of the following:

[5]

- a) Discuss the working of:
 - i) Online potentiometric analysers.
 - ii) Oxygen analysers.
- b) Solve the following:
 - i) Calculate the millimoles present in 0.28g of $CaCO_3$? (Given At. wt. Ca = 40, C = 12, O = 16)
 - ii) How will you prepare 0.25 N $K_2Cr_2O_7$ and 0.2M $K_2Cr_2O_7$. (Given: At. wt. K = 39.068, Cr = 51.96, O = 15.99)

• • •

Total No. of Questions: 3]

P2911

[5023]-2004

M.Sc. - I (Semester - II)

ANALYTICAL CHEMISTRY

CHA - 290: General Chemistry (2014 Pattern) (2.0 Credits)

PART - E

Organometallic and Inorganic Reaction Mechanism

Q1) Answer the following:

[10]

a) Complete the reaction

$$H_3C-Mn(CO)_5 + SO_2 \rightarrow ?$$

b) Which of the following square planar complexes have 16e⁻ valence configuration.

$$[RhCl(PPh_3)_3]$$
 $[Ni(CN)_4]^{2-}$

- c) Explain the important properties of organometallic compounds.
- d) Explain the term oxidative addition with suitable example.
- e) Rate of hydrolysis of $[Co(NH_3)_5Cl]^{2+}$ is faster than the rate of hydrolysis of $[Co(Py)_5Cl]^{2+}$.

Q2) Attempt any two of the following:

- a) Write a note on base hydrolysis.
- b) What is trans effect?
- c) IR spectroscopy is useful to predict structure of organometallic compounds.
- d) Explain the bonding in ferrocene.

Q3) Answer any one of the following:

[5]

- a) Explain formation of aldehyde by Hydroformylation process.
- b) Explain electron counting in the following complexes by neutral ligand method.
 - i) $(\eta^5 C_5 H_5) \text{ Fe(CO)}_5$
 - ii) $\operatorname{Fe}_{2}(\operatorname{CO})_{9}$
 - iii) ClMn(CO)₅
 - iv) [Co(CO)₃PPh₃Cl]
 - v) HMn(CO)₅

• • •

Total No. of Questions: 3]

P2911

[5023]-2004

M.Sc. - I (Semester - II)

ANALYTICAL CHEMISTRY

CHA - 290 : General Chemistry - II

(2014 Pattern) (2.0 Credits)

PART - F

Mathematics for Chemists

Q1) Answer the following:

[10]

- a) Define unit and diagonal matrices with suitable examples.
- b) Differentiate with respect to x.

$$y = x \sin x$$
.

c) Find differential coefficients of the following:

$$(2x+3)(3-x)$$

d) If
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} B = \begin{bmatrix} -1 & 5 \\ 5 & 9 \end{bmatrix}$$
.

evaluate 5(A + B) = 5A + 5B.

e) Enlist properties of a determinant.

Q2) Attempt any two of the following:

- a) Enlist rules of partial differentiation and give suitable examples.
- b) Evaluate the following:

i)
$$\int x^{-7/2} dx$$

ii)
$$\int (\cos x - 3\sin x) dx$$

- c) What is a cusp? Describe different types of cusps.
- d) What is limit? Explain right hand limit and left hand limit with suitable examples.
- *Q3*) Attempt any one of the following:

[5]

a) Evaluate the following:

Differentiate:

i)
$$y = \frac{x^2 + 2x + 2}{x + 4}$$

ii)
$$y = \frac{e^x}{e^x + 1}$$

b) Find the minimum and maximum values of $2x^3 - 15x^2 + 36x + 10$

• • •

Total No. of Questions: 3]

P2911

[5023]-2004

M.Sc. - I (Semester - II)

ANALYTICAL CHEMISTRY

CHA - 290 : General Chemistry

(2014 Pattern) (2.0 Credits)

PART - G

Pericyclic, Photochemistry and Free Radical Reactions

Q1) Attempt any two of the following:

[8]

- a) Explain with the help of FMO approach $\pi^2 s + \pi^2 s$ cycloaddition reaction and predict whether this reaction will be thermally allowed or photochemically allowed.
- b) Explain, irradiation of benzene yields a mixture of three products (A), (B) and (C).

$$\frac{hu}{166-200 \text{ hm}} + \frac{1}{100} + \frac{1}{100} + \frac{1}{100}$$

c) With the help of suitable example, explain Norrish type I and II photochemical reaction.

Q2) Explain the mechanism for <u>any three</u> of the following:

[9]

Q3) a) Predict the product/s and explain (any two):

[4]

[4]

- i) hu > 9
- ii) H_3 CH_3 CH_3 D ?
- iii) e=0 hu ?
- iv) hu.
- b) Answer Any two of the following:
 - i) Why on thermal reaction of cis-3, 4 dimethylcyclobutene gives (2E, 4Z) -2, 4- hexadiene while the trans isomer gives the (2E, 4E)-2, 4- hexadiene.
 - ii) Discuss the mechanism of the photoreduction of benzophenone leading to the formation of benzpinacol.
 - iii) Distinguish between Heterolytic and Homolytic reactions.

• • •